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ARTICLE INFO ABSTRACT

Keywords: Accurate diagnosis and early prediction of Alzheimer’s disease (AD) often require multiple neuroimageing

Alzheimer’s disease diagnosis modalities, but in many cases, only one or two modalities are available. This missing modality hinders

M“It?m"dal k“"Wle.dge. distillation the accuracy of diagnosis and is a critical challenge in clinical practice. Multimodal knowledge distillation

;[(;?Iﬁdence regularization (KD) offers a promising solution by aligning complete knowledge from multimodal data with that of partial
modalities. However, current methods focus on aligning high-level features, which limit their effectiveness
due to insufficient transfer of reliable knowledge. In this work, we propose a novel Consistency Refinement-
driven Multi-level Self-Attention Distillation framework (CRAD) for Early Alzheimer’s Progression Prediction,
which enables the cross-modal transfer of more robust shallow knowledge with self-attention to refine features.
We develop a multi-level distillation module to progressively distill cross-modal discriminating knowledge,
enabling lightweight yet reliable knowledge transfer. Moreover, we design a novel self-attention distillation
module (PF-CMAD) to transfer disease-relevant intermediate knowledge, which leverages feature self-similarity
to capture cross-modal correlations without introducing trainable parameters, enabling interpretable and
efficient distillation. We incorporate a consistency-evaluation-driven confidence regularization strategy within
the distillation process. This strategy dynamically refines knowledge using adaptive distillation controllers that
assess teacher confidence. Comprehensive experiments demonstrate that our method achieves superior accuracy
and robust cross-dataset generalization performance using only MRI for AD diagnosis and early progression
prediction. The code is available at https://github.com/LiuFei-AHU/CRAD.

1. Introduction and accurate diagnosis and prediction of AD are crucial in delay-
ing the progression of dementia (Yiannopoulou and Papageorgiou,
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, 2020; Bouts et al., 2019). Multimodal neuroimaging, such as magnetic

is clinically characterized by a gradual decline in cognitive functions resonance imaging (MRI) and positron emission tomography (PET),
that ultimately leads to complete dementia. Mild Cognitive Impairment

(MCI) represents an intermediate stage between normal cognitive aging
and AD, with approximately 50% of individuals diagnosed with MCI
progressing to AD within five years (Petersen et al.,, 2018). Early

provides complementary insights for the early diagnosis of AD (Dubois
et al.,, 2023; Rudroff et al.,, 2024). However, incomplete or missing
modalities in clinical settings remain a significant barrier to reliable

* Corresponding author.

E-mail address: wanghuabin@ahu.edu.cn (H. Wang).

1 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement List.pdf.

2 Data used in the preparation of this article was obtained from the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the
Commonwealth Scientific and Industrial Research Organization (CSIRO) which was made available at the ADNI database (www.loni.usc.edu/ADNI). The AIBL
researchers contributed data but did not participate in analysis or writing of this report. AIBL researchers are listed at www.aibl.csiro.au.

https://doi.org/10.1016/j.compmedimag.2025.102664
Received 23 April 2025; Received in revised form 5 November 2025; Accepted 6 November 2025

Available online 10 November 2025
0895-6111/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/compmedimag
https://www.elsevier.com/locate/compmedimag
https://orcid.org/0000-0001-6315-8663
https://orcid.org/0000-0001-9953-339X
https://orcid.org/0000-0001-8968-4135
https://orcid.org/0000-0002-3314-9333
https://orcid.org/0000-0001-5938-5409
https://github.com/LiuFei-AHU/CRAD
mailto:wanghuabin@ahu.edu.cn
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://www.loni.usc.edu/ADNI
https://www.aibl.csiro.au
https://doi.org/10.1016/j.compmedimag.2025.102664
https://doi.org/10.1016/j.compmedimag.2025.102664
http://creativecommons.org/licenses/by/4.0/

F. Liu et al

diagnosis. Although multimodal knowledge distillation (KD) offers a
promising solution by transferring knowledge from teacher models
(trained on complete modalities) to student models (handling par-
tial modalities) (Guan et al.,, 2021; Yang et al.,, 2023; Chen et al.,
2023; Van Sonsbeek et al., 2021; Wang et al., 2023b; Song et al.,
2023), existing methods suffer from two critical limitations: (1) insuf-
ficient utilization of discriminative intermediate features that encode
early Alzheimer’s disease (AD) biomarkers (e.g., hippocampus atrophy,
changes in gray matter density) (Weber et al., 2021; Deng et al., 2024),
and (2) vulnerability to imperfect supervision (the teacher model may
not consistently provide reliable knowledge). Current knowledge distil-
lation (KD) frameworks focus primarily on high-level features or soft
labels (Yang et al., 2023; Van Sonsbeek et al., 2021; Wang et al.,
2023b; Song et al., 2023), often neglecting the richness of intermediate
features that capture localized structural abnormalities critical for early
detection of Alzheimer’s disease (AD) (Zhai et al., 2024; Hu et al.,
2023; Deng et al., 2024). Recent studies (Zhai et al., 2024; Hu et al.,
2023) have highlighted the importance of transferring robust inter-
mediate features. These features provide richer information about the
disease, enabling multi-granularity analysis and offering better robust-
ness against noise and overfitting. In addition, they are more effective
than high-level features in diagnosing early AD, as they have high
spatial resolution and local sensitivity, which allows accurate detection
of subtle structural changes (Deng et al., 2024). Specifically, early
pathological markers of AD, such as hippocampus atrophy, reduced
gray matter density, and localized brain abnormalities, are typically
identified through intermediate features (Weber et al., 2021). There-
fore, highlighting intermediate features can enhance the transfer of
discriminating knowledge and improve the generalization performance
of student models.

On the other hand, effectively screening task-relevant intermediate
features remains challenging for traditional feature distillation. Re-
cently, attention distillation methods (Wang et al., 2019, 2020a) have
shown a promising ability to filter knowledge by learning the attentive
semantic context of the teacher model. However, existing methods have
not fully studied the attention transfer of hierarchical discriminating
knowledge. In particular, attention distillation of hierarchical inter-
mediate features can capture discriminating contextual information at
different levels that can achieve multi-granularity knowledge transfer.

Meanwhile, to achieve more accurate knowledge transfer, knowl-
edge refinement is critical for KD. Conventional knowledge refinement
strategies, such as gated regularization (Yang et al., 2023, 2022b), rely
on teacher certainty while ignoring scenarios where student models
may outperform teachers. In this regard, we suggest introducing a
dynamic refinement mechanism, a more flexible regularization consid-
ering the relative gap between the teacher and student models, balanc-
ing teacher confidence and student-teacher consistency. Moreover, a
flexible paradigm that effectively combines consistency regularization
with the distillation of hierarchical knowledge attention is crucial to
robust knowledge transfer.

To address these issues, we propose a Consistency Refinement-
driven Multi-level Self-Attention Distillation framework (CRAD), which
introduces hierarchical multi-level distillation with dynamic knowledge
refinement via consistency evaluation. First, we enhance the teacher
model in two ways: by improving the disease awareness capability of
its intermediate features through a cognitive awareness feature refine-
ment module (CAFR), improving the quality of knowledge transfer,
and further reducing redundancy by disentangling modality-specific
knowledge via orthogonal disentanglement (Chen et al., 2023; Yang
et al., 2022a). Then, unlike existing works focused on high-level fea-
ture alignment (Yang et al., 2023; Wang et al., 2019), we design a
special cross-modal self-attention distillation module (PF-CMAD) to
transfer disease-relevant intermediate knowledge. This module lever-
ages feature similarity-based self-attention to capture cross-modal cor-
relations without introducing trainable parameters (parameter-free),
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enabling interpretable and efficient distillation. In addition, by hierar-
chically aligning multi-level features from intermediate to high-level,
we preserve spatial resolution and disease sensitivity crucial for de-
tecting subtle early AD biomarkers (e.g., localized atrophy) (Weber
et al.,, 2021; Deng et al.,, 2024) from local to global perspectives.
Next, we develop a smooth distillation unit (SDU) within multi-level
distillation, incorporating a consistency-aware confidence regulariza-
tion strategy that dynamically refines knowledge by evaluating teacher
certainty and student-teacher prediction divergence, ensuring accurate
knowledge transfer. Compared to the existing knowledge refinement
method (Yang et al., 2023) that only takes teacher models’ certainty, we
penalize inconsistent teacher—student outputs while promoting reliable
cross-modal correlations.

This study aims to bridge a critical gap in early Alzheimer’s diagno-
sis: accurately predicting disease progression when key neuroimaging
modalities (e.g., PET) are missing. We propose CRAD, a framework that
distills essential diagnostic knowledge from complete multimodal data
into models using only partial inputs (e.g., MRI), while maintaining
reliability and computational efficiency. Comprehensive experiments
demonstrate that our method achieves state-of-the-art diagnostic accu-
racy and generalization on benchmark datasets. The main contributions
are summarized as follows.

« We propose a novel hierarchical distillation framework that uti-
lizes multilevel attention alignment and noise suppression to
enable effective cross-modal knowledge transfer for accurate di-
agnosis and progression prediction of AD.

A lightweight parameter-free attention distillation module is de-
veloped for efficient, robust attentive feature alignment. We uti-
lize the self-similarity of features and incorporate a consistency-
aware confidence regularization to minimize unreliable knowl-
edge transfer by evaluating the confidence level and prediction
consistency.

Extensive experiments demonstrate that our method outperforms
the state-of-the-art methods in the early diagnosis of AD, even us-
ing mono-modality, and visualization analysis reveals its potential
to localize disease-specific biomarkers.

This paper is organized as follows. We introduce and review the
related work in Section 2. The proposed method is then presented
in detail in Section 3. The experimental results are presented and
discussed in Section 4. We summarize this work in Section 5.

2. Related work
2.1. Disease diagnosis with multimodal data

Multimodal models have recently received substantial attention for
their ability to harness complementary information from diverse data
sources, significantly improving the performance of Alzheimer’s Disease
(AD) diagnosis (Shi et al., 2018, 2022; Qiu et al., 2022; Zhang et al.,
2021; Qiu et al.,, 2024). For example, Shi et al. (2018) proposed
a multimodal fragmented deep polynomial network (MM-SDPN) to
integrate features extracted from neuroimaging data for the diagnosis
of AD. Similarly, Shi et al. (2022) and Zhang et al. (2021) developed
advanced feature selection strategies to identify and fuse the most
discriminating information from multimodal data, allowing for more
effective utilization of complementary features. Despite that, they are
often plagued by computational complexity and susceptibility to inter-
ference from redundant information. Recent studies (Chen et al., 2023;
Lu et al., 2020; Yang et al., 2022a; Wang et al., 2023a) suggest that
focusing on modality-specific information can reduce interference from
irrelevant or redundant information, thus enhancing the robustness
of multimodal models. However, these methods often require signifi-
cant computational and storage resources, rendering them impractical
for resource-constrained real-world applications. Hence, we suggest
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introducing an orthogonal loss in the training stage to disentangle
modal-specific knowledge without requiring additional computation
and memory costs at inference.

The lack of sufficient multimodal data is another key challenge. Liu
et al. (2015) introduced a zero-masking strategy, replacing missing
modalities with zero values to preserve model functionality. Subspace
projection methods (Zhou et al., 2019b,a, 2020) extracted features
from existing modalities and then averaged in a latent space to replace
missing data. Alternatively, imputation methods aim to reconstruct
missing modalities based on available data (Wang et al., 2024; Gao
et al., 2021). In addition, feature-sensitive imputation techniques (Pan
et al,, 2022; Gao et al.,, 2023) emphasize extracting disease-related
information from existing modalities during the imputation process. To
address the challenge of incomplete multimodal longitudinal data, Xu
et al. (2022) proposed a deep latent representation collaborated se-
quence learning framework that handles arbitrary modality-missing
patterns and variable-length sequences through degradation networks
and RNN-based progression modeling. Building upon this, Dao et al.
(2024) introduced LMDP-Net with a variational autoencoder-based
fusion module to handle modality uncertainty and an improved LSTM
mechanism (IRLSTM) to optimize information flow in longitudinal
data. However, these methods often suffer from high computational
complexity, resulting in increased training and inference costs, and
may introduce biased information, ultimately leading to suboptimal
performance. Hence, transferring knowledge from complete modalities
to primary modalities is a potential way to avoid the impact of missing
modalities and reduce computational complexity, and knowledge dis-
tillation is a popular framework for efficiently transferring knowledge
from complex teacher models to simple student models.

Recent advancements in multimodal integration have also empha-
sized the importance of capturing both shared and modality-specific
information to improve diagnostic robustness. For instance, low-rank
tensor fusion techniques and shared-specific feature modeling frame-
works have been proposed to exploit complementary information while
reducing redundancy across modalities (Wang et al., 2023a; Qiu et al.,
2024). These methods aim to learn a common latent space where
multimodal data can be effectively combined, even in the presence
of missing or incomplete modalities. Moreover, several studies have
begun to incorporate clinical metadata, such as cognitive scores, ge-
netic markers, and demographic information, alongside neuroimaging
data to create more holistic and clinically actionable models (Qiu
et al., 2022; Wang et al., 2024; Wu et al., 2025). This trend toward
integrative and clinically informed multimodal learning highlights a
growing recognition that combining imaging with non-imaging data
can significantly enhance early diagnosis and progression prediction in
Alzheimer’s disease, achieving more personalized and precise clinical
applications.

2.2. Knowledge distillation

Knowledge distillation (KD) (Gou et al., 2021) is widely adopted
to transfer knowledge from teacher models to student models (Yang
et al., 2023; Wang et al., 2023b; Song et al., 2023). Yang et al. (2023)
and Song et al. (2023) introduced knowledge distillation to improve the
diagnostic performance of AD based on MRI.Van Sonsbeek et al. (2021)
employed variational knowledge distillation to transfer disease-related
knowledge from Electronic Health Records (EHR) to X-ray images.

However, traditional knowledge distillation methods often focus on
knowledge transfer while overlooking the ability to discern the impor-
tance of knowledge. In contrast, attention distillation offers a more
comprehensive approach by transferring the representational power
of teacher models, particularly in capturing contextual dependencies.
For example, Wang et al. (2020a) proposed a novel distillation frame-
work that emphasizes the transfer of self-attention scores from the
teacher model. By distilling attention maps, the student model can
more effectively mimic the behavior of the teacher model. Wang et al.
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(2019) demonstrated significant improvements in transfer learning ef-
ficiency and performance through attention distillation. Nevertheless,
the distillation of intermediate features has not been fully explored.
In particular, due to the robust characteristics of intermediate features
compared to high-level features and soft labels, the distillation of at-
tention on intermediate features can transfer more shallow knowledge,
improving the generalization performance of student models.

In addition, Yang et al. (2023) introduced a gated regularized
distillation mechanism, enabling the student model to learn reliable
knowledge from the teacher model. Similarly, (Yang et al., 2022b)
refined the distillation through a confidence regularization distillation
mechanism. However, the output of the teacher model may be inaccu-
rate because of noise, leading to inconsistent knowledge transfer and
thus affecting the distillation effect. We suggest dynamically applying
confidence scores for flexible gated distillation to enhance accurate
knowledge transfer by comparing the outputs between the teacher and
student models. Moreover, although attention distillation (Wang et al.,
2019, 2020a) and gated regularization (Yang et al., 2023) partially
mitigate the issue of insufficient transfer of discriminating knowledge
and reliable distillation, their static designs (e.g., fixed attention mod-
ules (Hu et al., 2018), error-based uncertainty (Yang et al., 2022b))
limit adaptability to dynamic missing-modality scenarios.

To this end, we propose a Consistency Refinement-driven Multi-
level Self-Attention Distillation framework, which integrates confidence
regularization and attention mechanisms to improve the distillation
efficiency and the generalization performance of student models. In
particular, we design a parameter-free attention module to align mul-
tiscale intermediate features, and then dual confidence regularization
strategies ensure accurate knowledge transfer.

2.3. Challenges in clinical deployment

Beyond the technical limitations of existing multimodal and dis-
tillation methods, several broader challenges impede the widespread
adoption of multimodal Al systems in clinical practice. A significant
hurdle is the inherent heterogeneity of medical data, which varies in
resolution, acquisition protocols, and quality across institutions. This
variability can lead to domain shift, reducing model generalization
when deployed in real-world settings (Ghifary et al., 2015). Further-
more, missing modalities are not merely a technical inconvenience
but a systemic issue in healthcare, influenced by factors such as cost,
patient compliance, and clinical guidelines (Haque et al., 2017). While
imputation and distillation offer partial solutions, they often assume
a static missingness pattern, which rarely holds in dynamic clinical
environments. Finally, computational and infrastructural constraints in
hospitals, such as limited GPU resources and data privacy requirements,
favor lightweight, efficient models that can operate near real-time
without compromising patient data security (Arbabshirani et al., 2018).
These practical considerations underscore the need for robust, efficient,
and interpretable multimodal learning frameworks that are not only
accurate but also deployable in diverse clinical contexts.

3. Method

This section first presents an overview of our proposed frame-
work. Subsequently, each specifically designed module for the proposed
framework is introduced in detail.

3.1. Problem setting

Let X = {X i}i]il represent the training data used in this study, Y =
{Yf}ll are the corresponding diagnostic labels, where N is the number
of data, and (X;, Y;) indicates the ith data and label, respectively.
Each data contains multiple modalities, i.e., X; = {X, ; }j,w:’l, where M;
represents the number of available modalities in X;. In particular, the
modalities used in this study include MRI, PET, and Mini-Mental State
Examination (MMSE). In particular, not all subjects have PET; most
have only MRI. The objective is to predict the disease label Y based
on the given X.
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Fig. 1. Overview of the proposed Consistency Refinement-driven Multi-level Self-Attention Distillation framework. The W learns from paired MRI and PET,
whereas N only learns from MRI. First, for Ny, the cognitive awareness feature refinement (CAFR) improves the disease-aware ability of the intermediate
features by predicting cognitive scores, and the orthogonal projection (OP) disentangles the modality-specific representation to reduce redundancy. Then, the
cross-modal self-attention distillation module (PF-CMAD) aligns intermediate features between N, and N, achieving efficient shallow knowledge distillation.
Moreover, the smooth distillation unit (SDU) employs the consistency-aware regularization strategy to refine the distillation on intermediate- and high-level

features.

3.2. Overadll architecture

The proposed CRAD framework is designed to improve AD diagnosis
under missing modalities through multimodal knowledge distillation.
As illustrated in Fig. 1, the teacher model N, learns from multimodal
data, while the student model Ny learns solely from MRI data. The
encoder extracts shallow features from the input data X. These features
are then projected into a latent space to capture high-level features.
The classifier outputs the predicted disease label Y’. This process can
be described as follows:

Y’ = Classifier(Projection(Encoder(X))). (€})

The teacher model aims to provide high-quality multimodal knowl-
edge that will be transferred to the MRI-only student model. A cognitive
awareness feature refinement module (CAFR) is integrated into the
encoder of N to identify intermediate discriminating features by
predicting the clinical cognitive score (i.e., MMSE), while a orthogonal
disentanglement module (OP) is employed to the output features of
encoder to reduce feature redundancy (see Section 3.2.1 for details).
The teacher model is pre-trained based on paired MRI and PET images,
and it is supervised by the ground truth, namely, the disease label.
In contrast to the teacher model, the student model is a lightweight
architecture with only a feature encoder and classifier. We enhance the
student model by transferring knowledge from the teacher model, in
addition to being supervised by the ground truth.

During knowledge distillation, we do not train the teacher
model. Instead, we design a parameter-free cross-modal self-attention

distillation module (PF-CMAD) to distill intermediate knowledge from
Ny to N (see Section 3.3). In addition, in contrast to the traditional
gated regularization described in Section 3.4, we propose a smooth
distillation unit (SDU) to implement a consistency-aware confidence
regularization strategy, improving the reliability of knowledge distilla-
tion (see Section 3.5). The details of these components are presented
in the following subsections. We provide a train procedure in Appendix
A.1 and a detailed data flow (input and output) in Appendix A.2.

3.2.1. Multimodal teacher model

For the teacher model Ny, we use a 3D convolutional neural
network (CNN) as a feature encoder to extract multimodal features.
Although our proposed framework supports any 3D CNN, VGG (Si-
monyan and Andrew, 2015) is selected as the primary backbone be-
cause it achieves the best performance with moderate complexity (Ta-
ble 9 illustrates the backbone comparison). First, an auxiliary cog-
nitive awareness feature refinement module (see Fig. 1 (CAFR)) is
designed to improve disease awareness of intermediate features Z, =
[ZL, Z%, o Z{f ] by predicting the MMSE score, where K is the number
of layers of intermediate features. Let Z; be the features of the kth
layer. Y/ = h (GAP(ZX; W*)) is the predicted value of the true MMSE
Y,, where A(-) is used to calculate Y, from Z# with learnable parameters
Wk, while GAP(-) is the Global Average Pooling operation. The Mean
Squared Error Loss L), sr is applied to evaluate the prediction error
between Y/ and Y,. As shown in Eq. (2), by minimizing £, the N7
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is encouraged to capture disease-related features.

1
Lyse = K Z - ||2

(2)

]
x| =
|Mw i

h(GAP (Zk);w*) - v,II2

Meanwh11e, inspired by Ranasinghe et al. (2021), we introduce
orthogonal projection loss £, to disentangle modality-specific fea-
tures. Specifically, we perform an orthogonal decomposition among
multimodal features [Z™, Z”] of N, where the zy and Z; are the
features extracted from the paired MRI and PET. L,k aims to refine
the consistent distribution of intra-modal features while increasing the
distance of inter-modal features:

Lorr = (1-s(ZL, Z1)) +d(Z ,z;)), (3)
(i.)e{(m.p).(p.m)}
where s and d indicate the feature cosine similarity. We utilize £y
to constrain s to be close to 1, while d is close to 0.

Subsequently, the disentangled ZJ' and Zi are fused as Z; and
then input into the classifier to predict the disease label Y;. We use

the Cross-Entropy function to calculate classification loss:
Lep=-, (Ylog¥) +(1=Y)log(l - Y})). 4)

Therefore, the optimization objective of the teacher model can be
formulated as:

Ly, =Lcg+711Lyse +72Lorr (5)

where y; and y, are weight factors to balance the contribution of £, ¢
and Lpr.

3.2.2. Distillation between teacher and student models

Similarly to N, we use a simple 3D convolutional neural network
to extract the features Z'J from the MRI. The Z7 is then projected into
the latent space to learn the high-level semantic features Z for the
classifier to output the predicted disease label Y.

Following previous studies (Guan et al., 2021; Chen et al., 2023;
Van Sonsbeek et al., 2021), we align the high-level features between
Ny and N by knowledge distillation, i.e., feature distillation (FD).
This process can be described as:

chy =YK (Zze(ze) 1 Zae (28)"). ©
where the ® represents matrix multiplication and the K L is Kullback—
Leibler divergence (Kullback and Leibler, 1951). In particular, zy
and Zy are normalized along the channel dimension, i.e., Z; =
Z;./(max(|| Z} ||, €)), and e is a small positive real number used to avoid
division by zero.

Knowledge distillation is also applied to align the
soft labels, i.e., soft label distillation (SD). The loss of distillation LZI’; b
is calculated on the soft labels YT’ and YS’, defined in formula (7).
Therefore, the distillation loss between N'g and N7 can be summarized
as Lyxp =LY +LF,.

ZKL (Y].Y%) @

Moreover, as shown in Fig. 2, we not only focus on high-level fea-
ture alignment (Yang et al., 2023; Wang et al., 2019), but also design a
special cross-modal self-attention distillation module (PF-CMAD) to dis-
till the attentive intermediate features (refer to Section 3.3 for details).
This module leverages feature similarity-based self-attention to capture
cross-modal correlations. In addition, we develop a smooth distillation
unit (SDU) that employs a consistency-aware confidence regularization
strategy to dynamically control the distillation process by evaluating
prediction divergence between student and teacher models, ensuring
reliable knowledge transfer. Please refer to Sections 3.4 and 3.5 for
details of this confidence regularization strategy.
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| KD(Zr, Zs) KD(Pp, Ps) |
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Fig. 2. (a) Previous knowledge distillation focuses on aligning high-level
features. (b) Our proposed “Consistency Refinement-driven Multi-level Self-
Attention Distillation” aligns attentive features (PF-CMAD) with consistency
evaluation (SDU) within multiple layers of the student-teacher model.

For the student model N, it is not only supervised by the teacher
model’s output, but also learns from the disease label Y. Thus, the
objective function for optimizing N is defined as:

Lng =Lop+ALip, 8

where 1 is a weight factor to balance the contribution of £ .
3.3. Parameter-free cross-modal self-attention distillation

Apart from distilling knowledge by aligning high-level features,
we propose the cross-modal transfer of more robust shallow knowl-
edge with self-attention and refinement. We develop a self-attention
distillation module (PF-CMAD) to hierarchically transfer cross-modal
discriminating knowledge and incorporate a consistency-driven con-
fidence regularization strategy (SDU) to refine knowledge. As shown
in Fig. 3, the PF-CMAD utilizes hierarchical attention distillation of
intermediate features to capture contextual information at different
levels for multi-granularity knowledge transfer. For each self-attention
block, we design a simple yet effective parameter-free attention con-
verter (PFAC) based on features’ self-similarity to identify the feature’s
importance and then transfer discriminating shallow knowledge by
fusing the intermediate attentive features, i.e., attention distillation
(ATD). In contrast to traditional attention modules (e.g., SENet (Hu
et al., 2018)) that calculate the attention weights with learnable pa-
rameters, our proposed PFAC adaptively infers attention maps without
introducing trainable parameters. As shown in Fig. 4, the PFAC first
normalizes the features along the channel dimension, then performs
Global Average Pooling (GAP) and Global Max Pooling (GMP), followed
by concatenation and reshaping to Z’ with ¢ x 1 dimension, where ¢ is
the channel number. The attention matrix M is obtained by:

M = Sigmoid(diag(Z’ ® (2")T)), ©)

where diag(-) takes the diagonal elements and Sigmoid(-) is the ac-
tivation function. Subsequently, the M is used to highlight the key
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Fig. 4. Diagram of the proposed Parameter-Free Attention Converter (PFAC) module. The PFAC first normalizes the features Z along the channel dimension,
then performs Global Average Pooling (GAP) and Global Max Pooling (GMP), followed by concatenation and reshaping to Z’. Then, the attention matrix M is
used to screen discriminating features that are aligned between N and N7, as defined in Eq. (10).

intermediate features. Then we use EII; p to align attentive features
between N and Ny

K
Fo_ 1 k ks k k2
Lyp= X Z IMgZg" = My Z" |15, (10)
k=1

where [MX, Z;"”] and [MX, Z;""] are the attention matrix and feature
maps (MRI) of kth intermediate layer of Ny and N respectively, and
K is the number of layers.

3.4. Gated regularization distillation

Traditional gated regularization calculates the confidence score S€,
and applies it to distillation loss Ly, refining the knowledge of the
teacher model. Usually, S€ is obtained by measuring the distance
between the output of My and the ground truth. For example, S€
can be calculated by the Euclidean distance function dis(-), and then
a clip(-) is employed to limit the upper bound of S€. Subsequently, the

distance is converted to a confidence score limited to [0, 1]. This can be
formulated as:

S€ =1-clip (dis (Y], Y)), an

where Y] and Y are the output of N7 and the ground truth, respec-
tively.

However, the confidence score obtained by Eq. (11) ignores the rel-
ative errors between Ng and N7, a penalty should be applied to S€ if
the prediction error of N is greater than that of N, namely, learning
from N should be softened. Intuitively, S€ can be constrained by an
additional regularization term y, where y = 0 indicates dis (Ys/, Y) <
dis (YT’,Y), otherwise y = 1. Setting the confidence score to 0 may
result in suboptimal results. Therefore, we employ a higher penalty for
larger errors and a lower penalty for smaller errors. The v is defined
as:

_ ( dis (Y[, Y)

2
; 12
dis (Y}, Y) +dis (Y, Y) +€> (2




F. Liu et al

Table 1
Demographic information and data distribution of the studied subjects.
Dataset Group Modality Sex Age MMSE
Paired MRI-only Male Female (Mean + Std) (Mean + Std)
AD 183 89 146 126 75.03 + 7.65 23.14 + 2.09
pMCI 86 171 149 108 73.78 + 7.12 26.94 + 1.81
ADNI  sMCI 131 400 305 226 72.42 + 7.73 27.88 + 1.73
NC 232 121 175 178 74.97 + 5.78 29.11 + 1.09
AD - 74 30 44 73.35 + 7.93 20.18 + 5.44
pMCI - 11 7 4 74.90 + 5.97 26.27 + 1.60
AIBL sMCI - 69 33 36 75.36 + 7.54 27.04 + 2.13
NC - 85 30 55 75.52 + 6.63 28.71 + 1.35

where ¢ is a small positive real number used to avoid division by zero.
Then, the objective function for optimizing the N can be further
reformulated as:

Lyg=ALcp+(1-DwS Lyp. 13)

In addition, we design a flexible regularization strategy to ensure
accurate knowledge transfer from a global perspective. Specifically, the
confidence scores for regularization are calculated by predicting cogni-
tive scores (from intermediate features) and disease labels (from global
features), respectively. Then, these two types of confidence scores are
used as independent regularization penalties to distill shallow and high-
level knowledge, respectively (see Dual Smooth Distillation Units (SDU)
in Section 3.5).

3.5. Smooth Distillation Units (SDU)

In contrast to the conventional knowledge refinement strategy
(Yang et al., 2023) that only evaluates the teacher model’s certainty
based on soft probabilities, we propose the smooth distillation unit
(SDU) to obtain flexible and reliable knowledge transfer. Specifically,
different regularization terms are employed to refine knowledge at
different levels. Moreover, we further evaluated the consistency of
the output of the student-teacher model at different levels to avoid
transferring noisy signals (see Section 3.4). Let Z = [Zz!,Z2,..., ZX]
denote the multiscale intermediate features. Confidence score S* of the
kth layer is obtained by measuring the distance between the predicted
MMSE score Y/ and the ground truth Y,:

Sk =1-dip (| (Y/-Y,)13)- a4

The confidence scores for all intermediate layers can be denoted as
SM = [s1,52,...,5K], then SM is used to regularize the distillation
on intermediate features.

Moreover, we apply dual confidence scores S™ and S€, and extend
the L p to further refine the knowledge transfer between N'g and N7p:

EKD:SM££D+SC (520"'[1%0)’ s)
where SM and S€ (see Eq. (11)) are two confidence scores for distil-
lation on shallow and high-level knowledge, respectively.

4. Results and discussion

In this section, we first introduce the data preprocessing and perfor-
mance evaluation metrics. Then, we briefly review the competing meth-
ods and compare our proposed method with them on two AD-related
tasks based on extensive analysis.

4.1. Experimental setting
4.1.1. Dataset

Our study utilizes two databases, including the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarker
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and Lifestyle Flagship Study of Aging (AIBL). We acquired 1.5T/3T T1-
weighted structural MRI scans and 18F-FDG Positron Emission Tomog-
raphy scans from the ADNI database. Moreover, we retrieved 1.5T/3T
T1-weighted MRI scans from the AIBL database. All of the scans are
taken at their baseline/screening visits. The data are categorized into
three groups: Alzheimer’s disease (AD), Mild Cognitive Impairment
(MCI), and Normal Control (NC), following their diagnosis labels. The
MCI can be divided into progressive MCI (pMCI) and stable MCI (sMCI).
The pMCI means MCI subjects would convert to AD within 36 months
after the baseline visit, while sMCI means MCI subjects would remain
stable after the baseline visit. The demographic details of the studied
subjects are shown in Table 1. The subjects labeled ‘AD’ and ‘NC’
were selected for the AD diagnosis task. For predicting MCI conversion
(pMCI v.s. sMCI), the subjects labeled ‘MCI’ at the baseline screen were
selected. Note that subjects in this study were selected based on their
diagnostic label, without considering other detailed criteria such as sex,
age, slice thickness, or device manufacturer. The data from the ADNI
database are used to train and test the models, while the data in AIBL
are used only for testing the models’ generalization.

We evaluated the CRAD framework on two tasks: diagnosing
Alzheimer’s disease (AD-NC classification) and predicting the conver-
sion of Mild Cognitive Impairment (MCI) to AD (pMCI-sMCI classifi-
cation) using five-fold cross-validation. The data was divided into five
folds at the subject level, ensuring a balanced distribution of classes:
AD, NC, sMCI, and pMCI. During each of the five training sessions, one
fold was reserved for testing, and the remaining four folds were used
for training. The ratio of training data to test data is 8:2, and 10% of
the training data was randomly selected as a validation set, ensuring
no overlap with the test set.

4.1.2. Preprocessing

Following common practice, we performed a preprocessing pipeline
on the original images, including spatial registration and tissue seg-
mentation. We performed registration to transform MRI and PET to the
MNI152 template (Fonov et al., 2011) based on the Statistical Paramet-
ric Mapping and Computational Anatomy Toolbox (Gaser et al., 2024).
Besides, the PET scans are aligned to the space of the corresponding
MRI. After the preprocessing, MRI and PET are resized to 113 x 113 x
137 voxels.

4.2. Implementation

The proposed CRAD framework is implemented with the PyTorch
framework (Paszke et al., 2019) and trained with an NVIDIA GTX 3090
GPU for 300 epochs. We used Adam as the optimizer with a learning
rate fixed to 0.0001 and a batch size of 8. The hyperparameter 4 is set to
0.8 while y, and y, are set to 1.0 in our experiments. Following the com-
mon practice, we applied multiple metrics, including Accuracy (ACC),
Sensitivity (SEN), Specificity (SPE), the weighted F1-score, and the area
under the receiver operating characteristic curve (AUC), to evaluate the
performance of the proposed method and competing methods.

4.3. Comparison with competing methods

We conducted comprehensive comparisons between the proposed
CRAD framework and eight existing methods, including two baseline
models and six state-of-the-art approaches: (1) a single-modal baseline
(SM-BL) (Korolev et al.,, 2017) using only MRIL (2) a multimodal
baseline (MM-BL) (Han et al., 2019) with both MRI and PET; (3) a mul-
timodal disease-induced network (MDL-Net) (Qiu et al., 2024); (4) an
imputation-based model (TPA-GAN) (Gao et al., 2021) that synthesizes
PET from MRI; (5) a gated regularization knowledge distillation method
(CReg-KD) (Yang et al., 2023); (6) an attentive feature distillation
scheme (AFDS) (Wang et al., 2019); and (7) two recent cross-modal
distillation techniques (DFTD (Chen et al., 2023) and IC-MKD (Kwak
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Table 2
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Performance comparison of different methods on the ADNI dataset. The best results are highlighted. The results are shown with mean and standard deviation

(Mean + Std) across five folds.

Methods AD vs. NC PMCI vs. sMCI
ACC?T AUCT SEN?T SPEt Fl-scoret ACC?T AUCt SEN?T SPEt Fl-scoret

SM-BL (Korolev et al., 2017) 0.894 + 0.04% 0.881 + 0.05% 0.934 + 0.04% 0.827 + 0.11% 0.911 + 0.04% 0.850 + 0.04% 0.853 + 0.03% 0.924 + 0.10 0.781 + 0.14% 0.854 + 0.02%
MM-BL (Han et al., 2019) 0.915 + 0.06 0.914 + 0.06% 0.934 + 0.06 0.894 + 0.09% 0.927 + 0.05% 0.906 + 0.04 0.906 + 0.05 0.933 + 0.06 0.880 + 0.08 0.903 + 0.05
MDL-Net (Qiu et al.,, 2024) 0.953 + 0.04 0.956 + 0.04 0.954 + 0.06 0.958 + 0.06% 0.957 + 0.04 0.911 + 0.04 0.906 + 0.05 0.918 + 0.05 0.893 + 0.08 0.907 + 0.04
TPA-GAN (Gao et al., 2021) 0.861 + 0.02% 0.924 + 0.01% 0.860 + 0.02% 0.861 + 0.05% 0.887 + 0.01% 0.846 + 0.01% 0.885 + 0.01% 0.749 + 0.03% 0.912 + 0.02 0.782 + 0.04%
CReg-KD (Yang et al.,, 2023) 0.934 + 0.022 0.937 + 0.022 0.935 + 0.06 0.940 + 0.06 0.943 + 0.02% 0.906 + 0.03 0.913 + 0.03 0.956 + 0.04 0.871 + 0.06 0.904 + 0.03
AFDS (Wang et al., 2019) 0.945 + 0.02% 0.930 + 0.047 0.981 + 0.03 0.878 + 0.097 0.956 + 0.017 0.874 + 0.03% 0.863 + 0.03% 0.901 + 0.08 0.824 + 0.12 0.871 + 0.03%
DFTD (Chen et al., 2023) 0.934 + 0.05% 0.945 + 0.042 0.906 + 0.09% 0.983 + 0.03 0.941 + 0.04? 0.872 + 0.022 0.875 + 0.01% 0.858 + 0.027 0.892 + 0.047 0.884 + 0.01?
IC-MKD (Kwak et al., 2025) 0.935 + 0.03% 0.932 + 0.02% 0.926 + 0.06 0.937 + 0.06% 0.944 + 0.03% 0.853 + 0.047 0.847 + 0.04% 0.816 + 0.147 0.878 + 0.087 0.848 + 0.07%
CRAD 0.959 + 0.02 0.966 + 0.01 0.947 + 0.04 0.983 + 0.03 0.965 + 0.01 0.911 + 0.04 0.919 + 0.03 0.937 + 0.04 0.900 + 0.08 0.907 + 0.04

2 Denotes that the performance improvements of our proposed method have statistical significance (p < 0.05) based on a paired t-test.

Table 3

Generalization performance comparison of different methods on the AIBL dataset. The best results are highlighted. The results are shown with mean and standard

deviation (Mean + Std) across five folds.

Methods AD vs. NC pMCI vs. sMCI
ACCt AUCT SEN?T SPE? Fl-scoret ACCT AUCt SENT SPET Fl-scoret
SM-BL (Korolev et al., 2017) ~ 0.870 + 0.01 0.874 + 0.01 0.919 + 0.05 0.866 + 0.05 0.866 + 0.01 0.804 + 0.07% 0.860 + 0.06% 0.937 + 0.09% 0.782 + 0.09% 0.685 + 0.12%
MM-BL (Han et al., 2019) 0.812 + 0.072 0.822 + 0.06 0.932 + 0.05 0.711 + 0.15% 0.823 + 0.05% 0.800 + 0.14% 0.860 + 0.08% 0.955 + 0.10% 0.765 + 0.18 0.662 + 0.12%
MDL-Net (Qiu et al., 2024) 0.826 + 0.04% 0.834 + 0.03% 0.926 + 0.05 0.742 + 0.112 0.831 + 0.02% 0.865 + 0.10 0.865 + 0.06% 0.866 + 0.14 0.865 + 0.14 0.724 + 0.11
TPA-GAN (Gao et al., 2021) 0.851 + 0.03% 0.921 + 0.01 0.840 + 0.06% 0.871 + 0.06% 0.877 + 0.03 0.834 + 0.03% 0.889 + 0.01% 0.749 + 0.08% 0.893 + 0.04 0.783 + 0.05
CReg-KD (Yang et al., 2023) 0.807 + 0.03% 0.811 + 0.03% 0.862 = 0.04% 0.760 + 0.07% 0.806 + 0.02% 0.767 + 0.11% 0.805 + 0.09% 0.866 + 0.09% 0.745 + 0.13% 0.596 + 0.14%
AFDS (Wang et al., 2019) 0.780 + 0.06% 0.786 + 0.05% 0.874 + 0.07% 0.698 + 0.15% 0.789 + 0.03% 0.849 + 0.08 0.864 + 0.06% 0.889 + 0.08% 0.840 + 0.10 0.698 + 0.11
DFTD (Chen et al., 2023) 0.873 + 0.01 0.874 + 0.01% 0.885 + 0.03% 0.864 + 0.01 0.865 + 0.01% 0.844 + 0.07 0.847 + 0.09 0.852 + 0.13% 0.842 + 0.06 0.672 + 0.13%
IC-MKD (Kwak et al., 2025) 0.870 + 0.04% 0.871 + 0.02 0.881 + 0.03% 0.857 + 0.04 0.861 + 0.017 0.789 + 0.02% 0.813 + 0.03% 0.852 + 0.067 0.775 + 0.03% 0.598 + 0.04%
CRAD 0.874 + 0.03 0.879 + 0.02 0.938 + 0.04 0.820 + 0.07 0.873 + 0.02 0.886 + 0.06 0.921 + 0.05 0.978 + 0.05 0.865 + 0.07 0.768 + 0.11
2 Denotes that the performance improvements of our proposed method have statistical significance (p < 0.05) based on a paired t-test.
Table 4
Component ablation results of the teacher model on the AD diagnosis task.
opP CAFR ACCt AUC?T SENT SPE? Fl-score?
1 0.881 + 0.02 0.871 + 0.04 0.909 + 0.03 0.832 + 0.11 0.899 + 0.02
2 v 0.941 + 0.03 0.939 + 0.03 0.930 + 0.05 0.949 + 0.05 0.946 + 0.03
3 v 0.934 + 0.01 0.924 + 0.02 0.966 + 0.03 0.883 + 0.06 0.944 + 0.01
4 v v 0.965 + 0.02 0.969 + 0.02 0.980 + 0.03 0.958 + 0.06 0.964 + 0.02

et al., 2025)). All methods were trained and evaluated under the same
dataset settings to ensure a fair comparison.

As summarized in Table 2, our CRAD method consistently achieves
superior performance in both AD vs. NC classification and pMCI vs.
SMCI prediction tasks. Specifically, CRAD attains the highest scores
in ACC, AUC, and F1-Score, demonstrating its effectiveness and ro-
bustness. It is noteworthy that multimodal methods (Qiu et al., 2024;
Han et al., 2019) generally outperform the single-modal baseline (Ko-
rolev et al., 2017), underscoring the benefit of integrating complemen-
tary information from multiple modalities. Furthermore, knowledge
distillation-based approaches (Yang et al., 2023; Chen et al., 2023;
Wang et al., 2019; Kwak et al., 2025) yield noticeably better results
than the imputation-based TPA-GAN (Gao et al., 2021), affirming the
advantage of distillation over synthesis in handling missing modalities.

To assess generalization capability, we evaluated all models on the
AIBL dataset, which is not used for training. As shown in Table 3,
although all methods exhibit performance degradation due to domain
shift, CRAD maintains the highest accuracy and robustness, further
validating its strong generalization across datasets. Among distillation
techniques, AFDS (Wang et al., 2019) and CReg-KD (Yang et al., 2023)
show competitive results in the ADNI dataset, while DFTD (Chen et al.,
2023) and IC-MKD (Kwak et al., 2025) show more robust performance.

In summary, these results highlight that CRAD not only effectively
integrates multimodal information but also achieves competing per-
formance through our proposed cognitive-aware attention distillation
mechanism, even in the presence of missing data.

4.4. Ablation study
In this subsection, we evaluated the effectiveness of different com-

ponents and analyzed attention distillation, confidence regularization,
orthogonal projection, and modality gaps in various settings.

4.4.1. Component ablation experiments

To validate the contribution of each proposed module within the
CRAD framework, we conducted extensive ablation studies on both the
teacher and student networks. All experiments were performed on the
ADNI dataset for the AD vs. NC classification task.

The teacher model’s ablation results are presented in Table 4.
The baseline teacher (Row 1) achieves an ACC of 0.881. Adding the
Orthogonal Projection (OP) module (Row 2) significantly improves
performance (ACC: 0.941), confirming its effectiveness in disentan-
gling multimodal features. Introducing the Cognitive Awareness Fea-
ture Refinement (CAFR) module (Row 3) also provides a substantial
boost (ACC: 0.934), demonstrating that the auxiliary task of MMSE
prediction successfully enhances the learning of disease-relevant fea-
tures. The combination of both OP and CAFR modules (Row 4) yields
the best teacher performance (ACC: 0.965), indicating that feature
disentanglement and disease-aware refinement are complementary.

The student model’s ablation results are presented in Table 5. The
MRI-only baseline (Row 1) serves as the starting point. Adding standard
soft-label and feature distillation (SD+FD) with the SDU unit (Row
2) provides a strong baseline. Incorporating our proposed PF-CMAD
module (Rows 4, 5, 6) consistently improves performance over the
SD+FD baseline, with the most significant gains in specificity (SPE),
highlighting its strength in refining feature distillation. The SDU unit
also shows a clear positive impact by comparing rows with and without
it. The complete CRAD framework (Row 7), integrating SDU, SD,
FD, and PF-CMAD, achieves the best performance across almost all
metrics (ACC: 0.959, AUC: 0.966), validating the synergistic effect of
all components.

We found that there is a subtle performance fluctuation when
combining Feature Distillation (FD) or Attention Distillation (ATD) with
Soft-Label Distillation (SD); this phenomenon arises from distillation
target conflicts, which we resolve via our proposed Smooth Distillation
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Component ablation results of the student model on the AD diagnosis task. The “SD” and “FD” represent soft-label distillation

and feature distillation.

SDU SD FD PF-CMAD ACCt AUCY SEN{ SPE? F1-scoret
1 0.889 + 0.05 0.870 + 0.06 0.942 + 0.04 0.799 + 0.15 0.908 + 0.04
2 v v 0.928 + 0.05 0.926 + 0.05 0.933 + 0.07 0.918 + 0.06 0.951 + 0.04
3 v v v 0.928 + 0.04 0.936 + 0.04 0.900 + 0.07 0.971 + 0.04 0.935 + 0.04
4 v v v 0.922 + 0.05 0.914 + 0.06 0.956 + 0.05 0.872 + 0.15 0.936 + 0.03
5 v v v 0.935 + 0.05 0.933 + 0.05 0.934 + 0.06 0.932 + 0.07 0.945 + 0.05
6 v v v 0.934 + 0.03 0.931 + 0.03 0.945 + 0.04 0.918 + 0.06 0.944 + 0.03
7 v v v v 0.959 + 0.02 0.966 + 0.01 0.947 + 0.04 0.983 + 0.03 0.965 + 0.01
Unit (SDU). FD forces high-level feature alignment between the teacher 1.00
(MRI4PET) and the student (MRI-only), ignoring distribution shifts. 0.97
ATD transfers attention maps of multimodal features, which may cause -
incompatibility with the MRI-only student’s feature space. In other
. e ) - 0.91
words, the FD and ATD attempt to align distributionally incompatible
features, introducing noise that degrades performance. We mitigate 088
this conflict via dual confidence regularization (SDU), which evaluates 0.85
the teacher’s certainty for intermediate and high-level features. By o
adaptively reweighting distillation losses, SDU suppresses conflicting
o s . . . 0.79
distillation (FD/ATD), preserving only reliable knowledge transfer.
In summary, the ablation studies show that each module contributes 0.76
to performance gains, and their combination is essential for achieving 0.73
the optimal result. 070
ACC AUC SEN SPE FIS
4.4.2. Influence of attention distillation ; . )
PET-baseline M MRI-baseline @ PET-only M MRI-only B Both

To further validate the design of our proposed Parameter-Free Cross-
Modality Attention Distillation (PF-CMAD) module, which utilizes an
attention converter (PFAC) to calculate attention maps, we conducted
a comprehensive comparative analysis with multiple widely used at-
tention mechanisms: a baseline method without attention (w/0), four
conventional attention methods with learnable parameters (SENet (Hu
et al.,, 2018), ECA (Wang et al.,, 2020b), CBAM (Woo et al., 2018),
SA (Vaswani et al., 2017)), and three parameter-free attention methods
(AFDS (Wang et al., 2019), SimAM (Yang et al., 2021), and PFAA (Kor-
ber, 2022). In addition, we evaluated several variants: PFAC-w/0 (a
pooling operation without normalization), PFAC-w (a pooling opera-
tion with traditional normalization), and PFAC-w+ (a pooling operation
with normalization from the PFCA (Shi et al., 2023), namely, our full
PF-CMAD). We aim to verify whether introducing learnable parameters
leads to better performance in our knowledge distillation framework
for medical image analysis. As shown in Table 6, all attention modules
bring improvements over the baseline (first row). Among the learnable
modules, SENet and CBAM achieve competitive performance. However,
our parameter-free PF-CMAD (PFAC-w+) consistently achieves the best
balance across metrics, especially in accuracy (ACC) and specificity
(SPE). It outperforms all parameterized attention modules without
adding any learnable parameters. This indicates that carefully designed
parameter-free attention can effectively highlight critical cross-modal
features while avoiding overfitting and enhancing generalization, prov-
ing especially suitable for clinical applications with limited and noisy
data. PF-CMAD offers a superior alternative to learnable attention
modules in the context of cross-modality distillation, by reducing model
complexity while increasing robustness and performance.

4.4.3. Effectiveness of confidence regularization

To evaluate the effectiveness of the SDU, we compared it with the
traditional gating regularization methods (Yang et al., 2023, 2022b).
As shown in Table 7, employing gating regularization improves the
overall performance by approximately 1%, suggesting that knowledge
refinement is useful. In addition, if we directly set the y to zero when
the student’s output is more confident, the AUC further improves by
about 2%, implying that soft regularization (Soften) is better than sim-
ple gating regularization because it considers the consistency of results.
The proposed soft regularization (Soften+) by considering relative error
achieves the best performance, which suggests that applying a soft
regularization strategy can enhance the reliability of distillation.

Fig. 5. Performance analysis under different modality inputs.

4.4.4. Impact of orthogonal projection

The orthogonal projection (OP) loss (Eq. (3)) aims to maximize
intra-modal self-similarity by preserving critical information while min-
imizing inter-modal feature similarity to suppress redundancy. In con-
trast to Chen et al. (2023) and Kwak et al. (2025), our proposed orthog-
onal projection reduces computational cost and the risk of over-fitting
on limited medical data because it has no extra parameters.

We evaluated various projection settings, such as orthogonal projec-
tion, shared projection, and fusion projection. As shown in Table 8, the
orthogonal projection is better than the shared and fusion projections
because it reduces redundant information. Combining orthogonal and
shared projection on modality-specific and modality-shared features
(Orthogonal+) achieves the best AUC.

4.4.5. Modality ablation analysis

A comprehensive ablation study was conducted to evaluate the
performance of the proposed method under different modal inputs.
As shown in Fig. 5, our teacher model achieved optimal performance
when complete modalities (MRI+PET) were available (ACC: 0.965,
AUC: 0.969), validating the effectiveness of multimodal information
fusion. The proposed single-modal models (MRI-only and PET-only)
significantly outperformed their corresponding baselines; the MRI-only
model improved ACC from 0.889 to 0.959 and AUC from 0.870 to
0.965, while the PET-only model increased ACC from 0.875 to 0.956
and AUC from 0.863 to 0.952. These results confirm that the knowl-
edge distillation framework successfully transferred knowledge from
the multimodal teacher to the single-modal students, substantially en-
hancing the representation capability of individual modalities. Be-
tween the two single-modal variants, the MRI-only model slightly
outperformed on most metrics, whereas the PET-only model showed
marginally higher sensitivity, indicating the method’s strong adaptabil-
ity to different input modalities. Importantly, the performance of the
single-modal models closely approximated that of the complete mul-
timodal model, demonstrating that the proposed approach minimizes
performance degradation while maximizing clinical practicality with
limited resources.



F. Liu et al

Computerized Medical Imaging and Graphics 126 (2025) 102664

Table 6

Performances of various attention modules.
Attention ACC?t AUC?t SENT SPEt F1-scoret
w/o 0.928 + 0.04 0.936 + 0.04 0.900 + 0.07 0.971 + 0.04 0.935 + 0.04
SENet? 0.941 + 0.03 0.944 + 0.03 0.933 + 0.05 0.955 + 0.04 0.947 + 0.02
ECA? 0.935 + 0.04 0.942 + 0.04 0.917 + 0.12 0.967 + 0.05 0.938 + 0.04
CBAM? 0.935 + 0.05 0.939 + 0.05 0.917 + 0.04 0.962 + 0.05 0.943 + 0.04
SA? 0.934 + 0.03 0.931 + 0.03 0.947 + 0.06 0.915 + 0.02 0.945 + 0.03
AFDS 0.945 + 0.02 0.930 + 0.04 0.981 + 0.03 0.878 + 0.09 0.956 + 0.01
SimAM 0.951 + 0.02 0.939 + 0.01 0.972 + 0.04 0.906 + 0.02 0.960 + 0.02
PFAA 0.947 + 0.03 0.953 + 0.03 0.935 + 0.04 0.971 + 0.04 0.954 + 0.02
PFAC-w/0 0.950 + 0.02 0.950 + 0.02 0.944 + 0.05 0.955 + 0.05 0.957 + 0.02
PFAC-w 0.958 + 0.02 0.962 + 0.02 0.959 + 0.03 0.964 + 0.04 0.964 + 0.01
PFAC-w+ 0.959 + 0.02 0.966 + 0.01 0.947 + 0.04 0.983 + 0.03 0.965 + 0.01
2 Indicates that the attention modules have learnable parameters.

Table 7

Comparison of different confidence regularization methods.
Gating ACC?t AUC?t SEN1T SPE?t Fl-scoref
w/o 0.934 + 0.03 0.931 + 0.03 0.945 + 0.04 0.918 + 0.06 0.944 + 0.03
Gating 0.942 + 0.03 0.941 + 0.03 0.945 + 0.05 0.936 + 0.05 0.951 + 0.03
Soften 0.956 + 0.02 0.964 + 0.01 0.949 + 0.05 0.978 + 0.04 0.963 + 0.01
Soften+ 0.959 + 0.02 0.966 + 0.01 0.947 + 0.04 0.983 + 0.03 0.965 + 0.01

Table 8

Comparison of different projection methods. “(w/0)” as a baseline represents a fusion projection that only

concatenates features. “Ort” means Orthogonal.

Projection ACCt AUCt SEN1T SPEt F1-scoret
w/0 0.902 + 0.06 0.887 + 0.07 0.931 + 0.05 0.843 + 0.15 0.919 + 0.05
Shared 0.928 + 0.02 0.924 + 0.02 0.931 + 0.05 0.918 + 0.06 0.936 + 0.02
Ort 0.934 + 0.02 0.926 + 0.03 0.953 + 0.05 0.898 + 0.10 0.943 + 0.03
Ort+ 0.934 + 0.03 0.934 + 0.03 0.913 + 0.04 0.956 + 0.05 0.940 + 0.03
Table 9
Performances of the proposed CRAD framework with different backbones.
Backbone ACC?t AUC?T SEN?T SPE? Fl-scoret
VGG-16 0.959 + 0.02 0.966 + 0.01 0.947 + 0.04 0.983 + 0.03 0.965 + 0.01
ResNet-18 0.950 + 0.02 0.952 + 0.02 0.959 + 0.03 0.944 + 0.04 0.957 + 0.02
ResNet-50 0.933 + 0.01 0.942 + 0.01 0.923 + 0.03 0.961 + 0.05 0.945 + 0.01
Densenet-121 0.944 + 0.02 0.943 + 0.02 0.945 + 0.06 0.941 + 0.06 0.953 + 0.02

Table 10
Distillation comparison of different intermediate layers, where the layer num-
bers varying from 1 to 4 represent distillation from shallow to deep layers.

Layers ACC AUC SEN SPE Fl-score

1 0.926 + 0.05 0.925 + 0.05 0.934 + 0.05 0.917 + 0.07 0.938 + 0.04
2 0.922 + 0.04 0.928 + 0.04 0.900 + 0.07 0.956 + 0.07 0.929 + 0.04
3 0.908 + 0.04 0916 + 0.04 0.892 + 0.06 0.941 + 0.06 0.920 + 0.04
4 0.909 + 0.04 0911 + 0.04 0.887 £ 0.05 0.936 + 0.05 0.919 + 0.04
3,4 0.915 + 0.04 0.917 + 0.05 0.925 + 0.05 0.910 + 0.07 0.927 + 0.04
1,2 0.951 + 0.03 0.955 + 0.03 0.946 + 0.05 0.964 + 0.04 0.957 + 0.03
All 0.959 + 0.02 0.965 + 0.01 0.948 + 0.04 0.983 + 0.03 0.965 + 0.01

4.5. Impact of backbone architectures

To evaluate the influence of different backbones, we used 3D
VGG (Simonyan and Andrew, 2015), 3D ResNet (He et al., 2016), and
3D Densenet (Huang et al., 2017) as encoders, respectively. As shown in
Table 9, the performance of AD diagnosis only shows minor differences,
indicating that the proposed CRAD is robust with different backbones.
Interestingly, compared to the simple backbones (i.e., VGG (Simonyan
and Andrew, 2015) and ResNet-18 (He et al., 2016)), the more complex
backbones (i.e., ResNet-50 (He et al., 2016) and Densenet-121 (Huang
et al., 2017)) seem to have a minor performance decrease. This may be
due to the insufficient training data, which can lead to overfitting for
larger models.
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4.6. Layer selection for knowledge distillation

A key design consideration in our distillation framework is the
selection of intermediate layers from which knowledge is transferred.
Different layers in a deep network capture different levels of fea-
ture abstraction. Shallow layers typically retain structural and detailed
information, while deeper layers encode semantic and high-level repre-
sentations. Relying on a single layer may lead to incomplete knowledge
transfer, limiting the student model’s ability to mimic the teacher’s full
behavioral spectrum.

To determine the optimal layer combination, we conducted an
extensive ablation study. We evaluated various layer configurations,
including single-layer and multi-layer distillation settings. As shown
in Table 10, while single-layer distillation (e.g., Layer 1 or 2) already
provides competitive results, the best performance was achieved when
features from all four layers were used jointly (ACC = 0.959, AUC
= 0.965). This suggests that both low-level and high-level features
offer complementary knowledge that collectively enhances the stu-
dent’s learning. Notably, the combination of early layers (1 and 2) also
performed strongly, indicating the importance of shallow-level features
for this task.

These results affirm that multi-layer feature integration is essential
for effective knowledge distillation. Hence, in our proposed CRAD
framework, we distill knowledge from all intermediate layers to max-
imize the student model’s representational capacity and diagnostic
accuracy.
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Table 11
Hyperparameters sensitivity evaluation of the teacher and student models.
Parameter ACC AUC SEN SPE F1-score
0.2 0.942 + 0.02 0.946 + 0.02 0.928 + 0.03 0.964 + 0.04 0.948 + 0.02
0.4 0.944 + 0.02 0.950 + 0.02 0.949 + 0.05 0.952 + 0.04 0.953 + 0.01
0.5 0.955 + 0.03 0.963 + 0.02 0.948 + 0.03 0.981 + 0.01 0.966 + 0.02
A 0.6 0.945 + 0.02 0.949 + 0.02 0.943 + 0.06 0.956 + 0.08 0.949 + 0.02
0.8 0.959 + 0.02 0.965 + 0.01 0.948 + 0.04 0.983 + 0.03 0.965 + 0.01
1.0 0.959 + 0.02 0.962 + 0.01 0.960 + 0.02 0.964 + 0.02 0.964 + 0.01
0.0,1.0 0.941 + 0.03 0.939 + 0.03 0.930 + 0.05 0.949 + 0.05 0.946 + 0.03
1.0,0.0 0.934 + 0.01 0.924 + 0.02 0.966 + 0.03 0.883 + 0.06 0.944 + 0.01
0.2,0.8 0.945 + 0.02 0.944 + 0.02 0.962 + 0.03 0.927 + 0.01 0.951 + 0.01
71-72 0.4,0.6 0.935 + 0.03 0.935 + 0.04 0.922 + 0.03 0.949 + 0.09 0.942 + 0.02
0.6,0.4 0.943 + 0.03 0.949 + 0.03 0.935 + 0.05 0.964 + 0.04 0.951 + 0.03
0.8,0.2 0.934 + 0.03 0.927 + 0.06 0.929 + 0.03 0.926 + 0.13 0.948 + 0.02
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Fig. 6. Plots on the learning curves of different knowledge distillation models (left: train accuracy, middle: validation accuracy, right: differences of train and
validation accuracy). The orange represents our model, the blue represents the attention distillation model (Wang et al., 2019), and the green represents the
regularized distillation model (Yang et al., 2023). The difference curves between the training and validation accuracy are also displayed. Our models show faster

convergence with less variation between the train and validation datasets.

Table 12

Evaluation of model complexity of different methods.
Methods Params. (M)} Flops (G)| Tins. (ms) |
SM-BL (Korolev et al., 2017) 56.8 77.5 4.2
MM-BL (Han et al., 2019) 74.8 132.6 13.1
MDL-Net (Qiu et al., 2024) 2.8 27.4 8.9
TPA-GAN (Gao et al.,, 2021) 20.6 289.1 33.8
CReg-KD (Yang et al., 2023) 46.7 221.9 5.9
AFDS (Wang et al., 2019) 33.3 155.6 4.9
DFTD (Chen et al., 2023) 1.5 10.8 6.9
IC-MKD (Kwak et al., 2025) 8.3 8.7 3.9
CRAD 46.6 73.9 4.1

4.7. Influence of hyperparameter

To ensure the robustness and reproducibility of our proposed CRAD
framework, we conducted a comprehensive sensitivity analysis on its
key hyperparameters: the distillation loss coefficient A and the loss
weighting coefficients y; and y,. The coefficient 4 controls the relative
importance of the knowledge distillation loss versus the task-specific
classification loss. We tested A across a wide range of values [0.2,
0.4, 0.5, 0.6, 0.8, 1.0]. As shown in Table 11, the model performance
is robust across values from 0.5 to 1.0, with the optimal balance of
accuracy (ACC), robustness (AUC), and specificity (SPE) achieved at
A = 0.8. This indicates that emphasizing knowledge transfer from
the teacher is beneficial, but requires balancing with the student’s
own task learning. The weights y; and y, balance the contribution
of feature-level refinement and disentanglement. Ablations show that
using either loss alone (y; = 1.0,y, = 0.0 or y; = 0.0,7, = 1.0) leads to
imbalanced performance, e.g., high SEN but low SPE, or vice versa. The
optimal performance across most metrics was achieved with y; = 0.6
and y, = 04, confirming that both intermediate feature alignment
and final output matching are essential for effective distillation. These
results demonstrate that CRAD is stable under a reasonable range of
hyperparameters, and our chosen values are well-justified to maximize
generalization and performance.
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4.8. Model performance evaluation

Our proposed model exhibits a trade-off in efficiency and complex-
ity compared to competing methods, as detailed in Table 12. It achieves
the lowest inference time of 4.2 ms per sample on one RTX 3090
GPU, owing to its optimized architecture that minimizes redundant
computations. In addition, our model requires only 73.9G FLOPs and
46.6M parameters, fewer than most competing methods, underscor-
ing its computational efficiency. These advantages make our model
highly suitable for real-world applications with strict computational
constraints.

While our method, CRAD, does not offer the lowest computational
complexity, it is specifically designed to excel in generalization, ro-
bustness, and real-world applicability, which are critical in clinical
settings and justify its complexity. For example, CRAD significantly
reduces cross-dataset performance degradation (8.5% vs. 12.7% for
MDL-Net (Qiu et al., 2024)), demonstrating stronger generalization ca-
pability. Moreover, unlike (Gao et al., 2021; Qiu et al., 2024; Han et al.,
2019), which require both MRI and PET modalities during inference,
CRAD’s student model operates robustly using only MRI, improving
practicality in environments where PET is scarce or unavailable. Thus,
while CRAD introduces additional complexity, it offers essential ad-
vantages in terms of real-world usability, cross-domain stability, and
resilience to missing data, making it a more suitable solution for clinical
scenarios.

Fig. 6 shows the accuracies obtained for our proposed model (or-
ange), the attention distillation model (Wang et al., 2019) (blue), and
the regularized distillation model (Yang et al., 2023) (green), and all
of them are averaged across all cross-validations. As Fig. 6 (left and
middle) shows, the CRAD reaches a stable state after 100 epochs and
achieves the highest accuracy. In addition, the accuracy gap between
train and validation datasets suggests the stability of the model, as
shown in Fig. 6 (right). Our model shows faster convergence and a
smaller accuracy gap. This demonstrates its enhanced stability and
efficiency during both training and validation.
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Fig. 7. Comparison of performance between teacher and student models. Top:
Training accuracy, validation accuracy, and their difference curves highlight
the superior performance of the student model in accuracy. Bottom: Training
loss, validation loss, and their difference curves demonstrate the stability of
the student model. Note that the difference curves of the student model are
close to the zero axis, indicating better stability.

As illustrated in Fig. 7, the learning curves (solid lines) and differ-
ence curves (dashed lines) are plotted for the teacher and the student
models of the proposed CRAD in terms of loss and accuracy. In the
learning curves, the accuracy and loss of the teacher model are rep-
resented in orange, while those of the student model are depicted in
blue. It can be observed that the student model converges faster than
the teacher model, as evidenced by the training and validation accu-
racy curves after 100 epochs. This indicates that attention distillation
facilitates faster learning of the student model from the teacher model.
Furthermore, the smaller average accuracy discrepancies (student: 0.12
vs. teacher: 0.26) between training and validation data suggest the
effectiveness of attention distillation in reducing overfitting, and the
smaller average loss discrepancies (student: 0.06 vs. teacher: 0.19)
between training and validation datasets demonstrate the enhanced
stability of the student model during training.

4.9. Visualization and failure case analysis

We computed the mutual information between brain regions and
diagnostic labels to identify brain regions critical for AD diagnosis.
The spatial distribution of these regions is visualized in Fig. 8, while
their original mutual information values with disease labels are detailed
in Table 13. These brain regions are the left Hippocampus (IHIP),
left Parahippocampal Gyrus (IPHG), right Hippocampus (rHIP), right
Middle Occipital Gyrus (rMOG), left Inferior Temporal Gyrus (IITG),
left Amygdala (JAMY), right Parahippocampal Gyrus (rPHG), right
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Fig. 8. Overview of the brain regions related to AD. Regions with purple and
blue colors illustrate that they are more important for diagnosing AD. The
visualization is drawn with the Brain-Net Viewer (Xia et al., 2013). Notably,
the mutual information is normalized to 0-1.

ADNI

AIBL

Fig. 9. Visualization of the feature maps, which are obtained by averaging
all the data of the same groups. For each dataset, the first row is the original
brain images, and the following rows represent shallow intermediate feature
maps.

Misclassified Correctly Classified

Fig. 10. Visualizations of case analysis. The left column shows cases of incor-
rect classification, and the right column shows cases of correct classification.
The upper row is progressive MCI (pMCI), and the lower row is stable MCI
(sMCI).

Amygdala (rAMY), right Superior Temporal Gyrus (rSTG), and right
Inferior Parietal Gyrus (rIPG), encompassing the supramarginal and
angular gyri, respectively. These regions are prominently associated
with AD pathology, underscoring their diagnostic contribution.

As illustrated in Fig. 9, the visualized feature maps highlight regions
of high importance, denoted by deeper color intensities. These regions
exhibit strong correspondence with the critical brain areas identified in
Fig. 8, further validating the disease-aware capability of our proposed
method. Visualization analysis also reveals that most brain regions
contribute minimally to AD diagnosis, indicating the need for the model
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Table 13
Top 10 brain regions with the greatest mutual information with disease
labels.

HIP

IPHG rHIP rMOG  lITG IAMY rPHG rAMY rSTG rIPG

0.1953 0.1203 0.1129 0.1079 0.1041 0.1012 0.0977 0.0901 0.0881 0.0740

to focus more intensively on extracting and leveraging discriminating
features.

Despite the strong overall performance of CRAD, we observed that
the majority of misclassifications occurred between pMCI and sMCI
groups, a challenge in AD research due to the subtlety of early neurode-
generative changes (Petersen et al., 2018; Weber et al., 2021). These
misclassifications may be due to atypical presentations or very early
disease stages. To better understand these errors, we visualized feature
distributions for misclassified samples. The cases are categorized into
two groups (correctly classified and misclassified), and the average
features captured by the proposed model are displayed (the features are
scaled up to the original shape). As shown in Fig. 10, the up left (pMCI
misclassified as sMCI) shows the model attended broadly to temporal
and parietal regions, but failed to highlight the left Hippocampus
strongly enough, the region for predicting progression, while the down
left (sMCI misclassified as pMCI) indicates the model overemphasized
the occipital region, which is less specific to AD pathology, while
under-weighting atrophy in the Parahippocampal Gyrus. For correctly
classified samples, the proposed model focuses on key subtle areas, such
as the Middle Frontal Gyrus and Precuneus.

These visualizations suggest that while CRAD generally focuses on
clinically relevant regions, it can sometimes be distracted by non-
specific structural changes or fail to capture very subtle atrophy pat-
terns. This may be due to the inherent heterogeneity within MCI
subgroups. Future directions include integrating additional biomarkers
and designing more sensitive feature extractors for early structural
changes.

4.10. Discussion

This study proposes a Consistency Refinement-driven Multi-level
Self-Attention Distillation framework to improve multimodal knowl-
edge transfer for disease diagnosis and address the challenge of miss-
ing modalities in clinical practice. Compared with existing knowledge
distillation methods, the CRAD has several unique advantages.

First, existing knowledge distillation methods (Yang et al., 2023;
Van Sonsbeek et al., 2021; Song et al., 2023) ignore the ability to
identify discriminating intermediate features. Our proposed CRAD can
adaptively distill attentive features through a simple yet effective at-
tention converter module, which can be viewed as a regularization
term that refines knowledge. Moreover, we align multi-level features
to distill cross-modal discriminating knowledge. Second, the existing
knowledge refinement ignores the relative error between the output
of the teacher and student models. We develop a consistency-driven
confidence regularization that smooths distillation by introducing a dy-
namic regularization term y to balance knowledge transfer between the
teacher and student models. We further incorporate this regularization
within the hierarchical self-attention distillation process. Third, com-
pared to existing feature disentanglement methods (Chen et al., 2023;
Lu et al., 2020; Yang et al., 2022a; Wang et al., 2019, 2020a), the pro-
posed orthogonal projection and parameter-free attention distillation
are light designs without additional parameters, making them partic-
ularly suitable for resource-constrained real-world applications. More-
over, we focus more on transferring robust shallow knowledge, which
contains subtle disease-related changes, than high-level knowledge.

Despite its strengths, the proposed method shows limitations. First,
the teacher model can only be trained with paired multimodal data,
which limits the amount of data it can learn. In addition, from the
results of Table 3, the disparities among different domains contribute
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to suboptimal generalization performance. This indicates that it is
essential to learn domain-invariant features. Thus, we will study a flex-
ible multimodal distillation framework that transfers knowledge under
random missing modalities. Meanwhile, we will bridge the domain gap
and incorporate it within the distillation framework.

5. Conclusions

In this study, we introduced the Consistency Refinement-driven
Multi-level Self-Attention Distillation framework, a novel approach
designed to address the challenges of Alzheimer’s disease (AD) di-
agnosis and Mild Cognitive Impairment (MCI) conversion prediction
under incomplete multimodal data. The CRAD framework incorpo-
rates three key innovations: (1) the cross-modal attention distillation
module (PF-CMAD), which leverages a parameter-free attention con-
verter (PFAC) to distill attentive features efficiently; (2) the smooth
distillation unit (SDU), which employs consistency-based confidence
regularization to enhance the reliability and stability of the multi-level
distillation process; and (3) cross-modal orthogonal projection (OP),
which disentangles inter-modal features to reduce redundancy with-
out introducing additional learnable parameters. Collectively, these
components form a lightweight and efficient multimodal distillation
framework that is highly adaptable to AD diagnosis under missing
modalities.

Extensive experimental evaluations demonstrate that the proposed
CRAD framework outperforms state-of-the-art methods in AD diagnosis-
related tasks, achieving superior performance in handling incomplete
multimodal data. Visualization experiments further validate the frame-
work’s ability to identify discriminating brain regions associated with
AD, providing interpretable insights into its diagnostic capabilities.
This study advances the field of multimodal knowledge distillation,
providing a scalable and efficient solution for early and accurate diag-
nosis of AD, with potential applications in other medical imaging do-
mains. In the future, we will explore cross-modal and domain-invariant
distillation techniques to enhance the robustness of AD diagnosis.
Additionally, we plan to fully leverage unpaired multimodal data in
the distillation process, addressing a critical limitation in current mul-
timodal learning paradigms. We will also validate CRAD in multi-
center studies (e.g., more disease types) and optimize inference under
resource-limited scenarios to support real-time diagnosis.
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Appendix

A.1. Training procedure

We present an algorithm block that summarizes the training
procedure of the CRAD framework, as shown in Algorithm 1. The
training process contains two main phases: teacher training and
student distillation. The teacher training involves the CAFR module
for cognitive score prediction and OP for feature disentanglement.
The student phase uses knowledge distillation with PF-CMAD
for attention-based feature alignment and SDU for confidence
regularization.

Algorithm 1 Training Procedure of the Proposed CRAD framework

Input:
Multimodal dataset X = X;, labels Y, cognitive scores Y,
Teacher model N7, student model N
Hyperparameters: y;,7,, 4
Output: Trained student model N'g
1: Phase 1: Train Teacher Model N
2: for each batch of paired MRI and PET data do

3:  Extract intermediate features Z; = {Z”, Zi}

4:  Apply Cognitive Awareness Feature Refinement (CAFR):

5 Predict MMSE score Y‘,’

6 Compute MSE loss: L,gp Eq. (2)

7:  Apply Orthogonal Projection (OP)

8 Disentangle MRI and PET features Z, Z;

9: Compute orthogonal loss: Ly Eq. (3)
10:  Predict YT’ and compute classification loss: L Eq. (4)
11:  Update N} via backpropagation
12: end for
13: Phase 2: Distill Knowledge to Student Model Ny
14: Freeze teacher model Ny
15: for each batch of MRI-only data do
16:  Extract student features Zg, predict Yy
17:  Extract teacher features Zr, predict Y,

18:  Compute distillation losses Eq. (15)
19:  Apply Smooth Distillation Unit (SDU) Eq. (12)
20: Update N via backpropagation

21: end for
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A.2. Feature dimensions and alignment

To ensure clarity, we detail the dimensionality of feature
representations at each stage of the proposed CRAD framework.
The overall feature flow and dimensionality changes are summarized
in Table A.1. The detailed description is presented as follows.

Intermediate Feature Extraction & Distillation: The feature
encoder, based on a 3D CNN, extracts hierarchical representations
from the input scans. The output of each convolutional block is
a tensor (B,C,D,H,W), where C is the number of channels, and
(D,H,W) are the spatial dimensions. To prepare these features
for distillation, we reshape them into a 3D tensor (B,C, L), where
L = Dx HxW is the number of spatial locations. For instance,
the output of Layer 4 (B,512,7,8,7) is reshaped to (B,512,392). This
standardized format allows for efficient computation of distillation
losses between corresponding layers of the teacher and student
models.

Projection, Fusion, and High-Level Alignment: In the teacher
model, the modality-specific features zy and Z? (both (B, 512,392))
are processed by the Orthogonal Projection module. The fused
feature Zj is obtained by concatenating them along the channel
dimension, resulting in a tensor of shape (B, 1024,392), which is
then projected back to (B,512,392) using a 1 x 1 x lconvolution.
The student model projects its MRI feature Z'¢(B,512,392) to the
same latent space. The high-level feature distillation loss £[l£ D
is computed directly between the teacher’s Z7 and the student’s
projected feature, both of dimension (B, 512,392).

Final Prediction and Output Distillation: Following global
average pooling (which reduces the features from (B,512,392) to
(B,512)), the classifier predicts logits of shape (B, C), where C is the
number of classes. The soft-label distillation loss ££  aligns these

KD
output distributions between the teacher and student models.

A.3. Supplementary experiments

A.3.1. Ablation analysis of CAFR module

We have conducted ablation experiments to evaluate the
effectiveness of the proposed CAFR module. As shown in Table
A.2, the results demonstrate that CAFR not only enhances the
intermediate features and overall performance of the teacher model
but also, more importantly, leads to a stronger student model
through improved knowledge distillation. The comparative results
are summarized below. Specifically, we observe an increase in
ACC from 0.881 to 0.934 and in AUC from 0.871 to 0.924.
This confirms that CAFR effectively enhances the intermediate
feature representations of the multimodal teacher, leading to a
more powerful and robust model. When the student is trained
with a CAFR-enhanced teacher, it achieves superior performance,
particularly in ACC (0.923 vs. 0.918) and AUC (0.926 vs. 0.918),
which are the primary indicators for classification tasks. This
demonstrates that the improved feature quality of the teacher
directly translates into more effective knowledge transfer, resulting
in a better student model. These results validate that the CAFR
module is integral to our framework. It successfully strengthens
the teacher’s feature representations, which in turn enables the
distillation of a more accurate and reliable student model.

A.3.2. Ablation analysis of OP module

The OP loss is applied only during the teacher model’s training
phase when both MRI and PET modalities are fully available. It
serves to enhance feature disentanglement and reduce redundancy
between the two modalities, thereby improving the robustness
and representational quality of the teacher model. Since the
student model is trained to operate under missing-modality settings
(e.g., MRI-only), it does not utilize the OP module directly. Instead,
it benefits from the refined feature representations distilled from
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Feature dimensions and knowledge distillation alignment. The teacher network has both MRI and PET branches (marked with “*”), while the student

network has only the MRI branch. “B” indicates batch size.

Stage Description Input shape Output shape KD
MRI scans (B,1,113,137,113)
Input data (X) PET scans (B,1,113,137,113) *

(B,1,113,137,113) (B,64,57,69,57) Attention KD

Layer 1 3D convolution (B,1,113,137,114) * (B,64,57,69,58) *
(B,64,57,69,57) (B,128,28,34,28) Attention KD
Layer 2 3D convolution (B,64,57,69,57) * (B,128,28,34,28) *
Feature extractor ) (B,128,28,34,28) (B,256,14,17,14) Attention KD
Layer 3 3D convolution (B,128,28,34,28) * (B,256,14,17,14) *
(B,256,14,17,14) (B,512,7,8,7) Attention KD
Layer 4 3D convolution (B,256,14,17,14) * (B,512,7,8,7) *
_— zz (B,512,7,8,7) (B,512,392)
Orthogonal projection (Ny) Z;ﬂ (B,512,7,8,7) * (B,512,392) *
Fusion (Np) Z; (B,1024,392) (B,512,392)
Projection (Ng) Zg (B,512,392) (B,512,392)
Global average pool Spatial pooling (B,512,392) (B,512) Feature KD
Classifier Fully-connected layer (B,512) (B,class_number) Logit KD
Table A.2
Ablation analysis of the CAFR module for enhancing the teacher model and the distillation.
Model CAFR ACC AUC SEN SPE F1-score
Yes 0.934 + 0.01 0.924 + 0.02 0.966 + 0.03 0.883 + 0.06 0.944 + 0.01
Teacher No 0.881 + 0.02 0.871 + 0.04 0.909 + 0.03 0.832 + 0.11 0.899 + 0.02
Yes 0.923 + 0.02 0.926 + 0.03 0.903 + 0.04 0.949 + 0.09 0.931 + 0.01
Student No 0.918 + 0.02 0.918 + 0.03 0.913 + 0.04 0.923 + 0.11 0.928 + 0.01
Table A.3

Ablation analysis of the OP module for enhancing the teacher model and the distillation. For student models, the “baseline”
indicates that it was only distilled from the teacher model trained without the OP module, while the “with OP” means it
was distilled from the teacher model trained with the OP module.

Model Ablation ACC AUC SEN SPE F1-score
Baseline 0.881 + 0.02 0.871 + 0.04 0.909 + 0.03 0.832 + 0.11 0.899 + 0.02

Teacher With OP 0.941 + 0.03 0.939 + 0.03 0.930 + 0.05 0.949 + 0.05 0.946 + 0.03
Baseline 0.889 + 0.05 0.870 + 0.06 0.942 + 0.04 0.799 + 0.15 0.908 + 0.04

Student With OP 0.902 + 0.06 0.887 + 0.07 0.931 + 0.05 0.843 + 0.15 0.919 + 0.05

the OP-enhanced teacher. To explicitly demonstrate the contribution
of the OP module, we conducted an ablation study comparing
the performance of both the teacher and student models with and
without the incorporation of OP during teacher training. The results
are summarized in Table A.3. For student models, the “baseline”
indicates that it was only distilled from the teacher model trained
without the OP module, while the “with OP” means it was distilled
from the teacher model trained with the OP module.

The results indicate that applying the OP module during teacher
training yields significant improvements in the teacher’s performance
across all metrics. More importantly, this gain is effectively
transferred to the student model during distillation, as evidenced
by consistent performance improvements (e.g., ACC increased from
0.889 to 0.902) even when the student receives only MRI input. This
confirms that the OP module plays an essential role in learning
more robust and transferable multimodal representations in the
teacher model, which in turn enhances the student’s capability in
missing-modality scenarios. Therefore, while the OP module is not
applied during student inference, it is critical for strengthening the
teacher’s feature learning, which forms the foundation of an effective
distillation process.
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Data availability

Data will be made available on request.

References

Arbabshirani, M.R., Fornwalt, B.K., Mongelluzzo, G.J., Suever, J.D., Geise, B.D.,
Patel, A.A., Moore, G.J., 2018. Advanced machine learning in action:
identification of intracranial hemorrhage on computed tomography scans of
the head with clinical workflow integration. NPJ Digit. Med. 1 (1), 9.

Bouts, M.J., van der Grond, J., Vernooij, M.W., Koini, M., Schouten, T.M., de
Vos, F., Feis, R.A., Cremers, L.G., Lechner, A., Schmidt, R., et al., 2019.
Detection of mild cognitive impairment in a community-dwelling population
using quantitative, multiparametric MRI-based classification. Hum. Brain Mapp.
40 (9), 2711-2722.

Chen, Y., Pan, Y., Xia, Y., Yuan, Y., 2023. Disentangle first, then distill: A unified
framework for missing modality imputation and Alzheimer’s disease diagnosis.
IEEE Trans. Med. Imaging 42 (12), 3566-3578.

Dao, D.-P., Yang, H.-J., Kim, J., Ho, N.-H., Initiative, AD.N.,, et al,
2024. Longitudinal Alzheimer’s disease progression prediction with modality
uncertainty and optimization of information flow. IEEE J. Biomed. Health
Informatics 29 (1), 259-272.

Deng, R., Cui, C.,, Remedios, L.W., Bao, S., Womick, R.M., Chiron, S., Li, J.,

Roland, J.T., Lau, K.S., Liu, Q., Wilson, K.T., Wang, Y., Coburn, L.A.,


http://refhub.elsevier.com/S0895-6111(25)00173-9/sb1
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb1
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb1
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb1
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb1
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb1
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb1
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb2
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb2
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb2
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb2
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb2
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb2
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb2
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb2
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb2
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb3
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb3
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb3
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb3
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb3
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb4
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb4
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb4
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb4
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb4
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb4
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb4
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb5
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb5
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb5
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb5

F. Liu et al

Landman, B.A.,, Huo, Y., 2024. Cross-scale multi-instance
pathological image diagnosis. Med. Image Anal. 94, 103124.
Dubois, B., von Arnim, C.A., Burnie, N., Bozeat, S., Cummings, J., 2023. Biomarkers
in Alzheimer’s disease: role in early and differential diagnosis and recognition

of atypical variants. Alzheimers Res. Ther. 15 (1), 175.

Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L.,
Group, B.D.C., 2011. Unbiased average age-appropriate atlases for pediatric
studies. Neuroimage 54 (1), 313-327.

Gao, X., Shi, F., Shen, D., Liu, M., 2021. Task-induced pyramid and attention GAN
for multimodal brain image imputation and classification in Alzheimer’s disease.
IEEE J. Biomed. Health Inf. 26 (1), 36-43.

Gao, X., Shi, F., Shen, D., Liu, M., 2023. Multimodal transformer network for
incomplete image generation and diagnosis of Alzheimer’s disease. Comput.
Med. Imaging Graph. 110, 102303.

Gaser, C., Dahnke, R., Thompson, P.M., Kurth, F., Luders, E., the Alzheimer’s
Disease Neuroimaging Initiative, 2024. CAT: a computational anatomy toolbox
for the analysis of structural MRI data. GigaScience 13, giae049.

Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., 2015. Domain generalization for
object recognition with multi-task autoencoders. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 2551-2559.

Gou, J., Yu, B., Maybank, S.J., Tao, D., 2021. Knowledge distillation: A survey. Int.
J. Comput. Vis. 129 (6), 1789-1819.

Guan, H., Wang, C., Tao, D., 2021. MRI-based Alzheimer’s disease prediction via
distilling the knowledge in multi-modal data. Neurolmage 244, 118586.

Han, K., Pan, H., Gao, R, Yu, J., Yang, B., 2019. Multimodal 3D convolutional
neural networks for classification of brain disease using structural MR and
FDG-PET images. In: Proc. ICPCSEE. Guilin, China, pp. 658-668.

Haque, A., Guo, M., Alahi, A., Yeung, S., Luo, Z., Rege, A., Jopling, J.,
Downing, L., Beninati, W., Singh, A., et al., 2017. Towards vision-based smart
hospitals: a system for tracking and monitoring hand hygiene compliance. In:
Machine Learning for Healthcare Conference. PMLR, pp. 75-87.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.. CVPR, Las
Vegas, NV, USA, pp. 770-778.

Hu, Y., Huang, Y., Zhang, K., 2023. Multi-scale information distillation network for

efficient image super-resolution. Knowl.-Based Syst. 275, 110718.

J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit.. CVPR, Salt Lake City, UT,

USA, pp. 7132-7141.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely
connected convolutional networks. In: Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit.. CVPR, Honolulu, HI, USA, pp. 2261-2269.

Korber, N., 2022. Parameter-free average attention improves convolutional neural
network performance (almost) free of charge. arXiv preprint arXiv:2210.07828.

Korolev, S., Safiullin, A., Belyaev, M., Dodonova, Y., 2017. Residual and plain
convolutional neural networks for 3D brain MRI classification. In: Proc. Int.
Symp. Biomed. Imaging. ISBI, Melbourne, VIC, Australia, pp. 835-838.

Kullback, S., Leibler, R.A., 1951. On information and sufficiency. Ann. Math. Stat.
22 (1), 79-86.

Kwak, M.G., Mao, L., Zheng, Z., Su, Y., Lure, F., Li, J., 2025. A cross-modal mutual
knowledge distillation framework for Alzheimer’s disease diagnosis: Addressing
incomplete modalities. IEEE Trans. Autom. Sci. Eng. 22, 14218-14233.

Liu, S., Liu, S., Cai, W., Che, H., Pujol, S., Kikinis, R., Feng, D., Fulham, M.J.,

2015. Multimodal neuroimaging feature learning for multiclass diagnosis of

Alzheimer’s disease. IEEE Trans. Biomed. Eng. 62 (4), 1132-1140.

Y., Wu, Y., Liu, B., Zhang, T. Li, B, Chu, Q., Yu, N., 2020. Cross-

modality person re-identification with shared-specific feature transfer. In: Proc.

IEEE/CVF Conf. Comput. Vis. Pattern Recognit.. CVPR, Seattle, WA, USA, pp.

13379-13389.

Pan, Y., Liu, M., Xia, Y., Shen, D., 2022. Disease-image-specific learning for
diagnosis-oriented neuroimage synthesis with incomplete multi-modality data.
IEEE Trans. Pattern Anal. Mach. Intell. 44 (10), 6839-6853.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. Pytorch: An imperative style,
high-performance deep learning library. In: Proc. NeurIPS. Vol. 32, Vancouver,
BC, Canada.

Petersen, R.C., Lopez, O., Armstrong, M.J., Getchius, T.S., Ganguli, M., Gloss, D.,
Gronseth, G.S., Marson, D., Pringsheim, T., Day, G.S., et al.,, 2018. Practice
guideline update summary: Mild cognitive impairment. Neurology 90 (3),
126-135.

Qiu, S., Miller, M.L, Joshi, P.S., Lee, J.C., Xue, C., Ni, Y., Wang, Y., De Anda-
Duran, 1., Hwang, P.H., Cramer, J.A,, et al., 2022. Multimodal deep learning
for Alzheimer’s disease dementia assessment. Nat. Commun. 13 (1), 3404.

Qiu, Z., Yang, P., Xiao, C.,, Wang, S., Xiao, X., Qin, J., Liu, C.-M., Wang, T.,
Lei, B., 2024. 3D multimodal fusion network with disease-induced joint learning
for early Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging 43 (9),
3161-3175.

Ranasinghe, K., Naseer, M., Hayat, M., Khan, S., Khan, F.S., 2021. Orthogonal
projection loss. In: Proc. IEEE/CVF Int. Conf. Comput. Vis.. ICCV, pp.
12333-12343.

learning for

Hu,

Lu,

16

Computerized Medical Imaging and Graphics 126 (2025) 102664

Rudroff, T., Rainio, O., Klén, R., 2024. Al for the prediction of early stages
of Alzheimer’s disease from neuroimaging biomarkers-A narrative review of a
growing field. Neurol. Sci. 1-11.

Y., Yang, L., An, W. Zhen, X., Wang, L., 2023. Parameter-free
channel attention for image classification and super-resolution. arXiv preprint
arXiv:2303.11055.

Shi, J., Zheng, X., Li, Y., Zhang, Q., Ying, S., 2018. Multimodal neuroimaging
feature learning with multimodal stacked deep polynomial networks for
diagnosis of Alzheimer’s disease. IEEE J. Biomed. Health Inf. 22 (1), 173-183.

Shi, Y., Zu, C., Hong, M., Zhou, L., Wang, L., Wu, X., Zhou, J., Zhang, D.,

Shi,

Wang, Y., 2022. ASMFS: Adaptive-similarity-based multi-modality feature
selection for classification of Alzheimer’s disease. Pattern Recognit. 126,
108566.

Simonyan, K., Andrew, Z., 2015. Very deep convolutional networks for large-scale
image recognition. In: Proc. Int. Conf. Learn. Represent.. ICLR, pp. 1-14.

Song, T., Cao, G., Xiong, X., Kang, G., 2023. SDATNet: Self-Distillation Adversarial
Training Network for AD classification. In: Proc. IEEE Int. Conf. Bioinform.
Biomed.. BIBM, Istanbul, Turkey, pp. 2671-2678.

Van Sonsbeek, T., Zhen, X., Worring, M., Shao, L., 2021. Variational knowledge
distillation for disease classification in chest x-rays. In: Inform. Proc. Med.
Imaging. IPMI, Denmark, pp. 334-345.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf.
Process. Syst. 30.

Wang, H., Chen, Y., Ma, C., Avery, J., Hull, L., Carneiro, G., 2023a. Multi-modal
learning with missing modality via shared-specific feature modelling. In: Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit.. CVPR, Vancouver, BC, Canada,
pp. 15878-15887.

Wang, L., Dai, W., Jin, M., Ou, C., Li, X., 2023b. Fundus-enhanced disease-aware
distillation model for retinal disease classification from OCT images. In: Proc.
Int. Conf. Med. Image Comput. Comput. Assist. Intervent.. MICCAI, Vancouver,
BC, Canada, pp. 639-648.

Wang, K., Gao, X., Zhao, Y., Li, X., Dou, D., Xu, C.-Z., 2019. Pay attention to
features, transfer learn faster CNNs. In: Proc. Int. Conf. Learn. Represent.. ICLR,
Addis Ababa, Ethiopia.

Wang, C., Piao, S., Huang, Z., Gao, Q., Zhang, J., Li, Y., Shan, H., 2024. Joint
learning framework of cross-modal synthesis and diagnosis for Alzheimer’s
disease by mining underlying shared modality information. Med. Image Anal.
91, 103032.

Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M., 2020a. Minilm:
Deep self-attention distillation for task-agnostic compression of pre-trained
transformers. Adv. Neural Inf. Process. Syst. 33, 5776-5788.

Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q., 2020b. ECA-Net: Efficient
channel attention for deep convolutional neural networks. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
11534-11542.

Weber, C.J., Carrillo, M.C., Jagust, W., Jack, Jr, C.R., Shaw, LM,
Trojanowski, J.Q., Saykin, A.J., Beckett, L.A., Sur, C., Rao, N.P., et al., 2021.
The worldwide Alzheimer’s disease neuroimaging initiative: ADNI-3 updates
and global perspectives. Alzheimer’s Dement.: Transl. Res. Clin. Interv. 7 (1),
e12226.

Woo, S., Park, J., Lee, J.-Y., Kweon, LS., 2018. CBAM: Convolutional block
attention module. In: Proceedings of the European Conference on Computer
Vision. ECCV, pp. 3-19.

Wu, C., Zhang, X., Zhang, Y., Hui, H., Wang, Y., Xie, W., 2025. Towards generalist
foundation model for radiology by leveraging web-scale 2d&3D medical data.
Nat. Commun. 16 (1), 7866.

Xia, M., Wang, J., He, Y., 2013. BrainNet Viewer: a network visualization tool for
human brain connectomics. PloS One 8 (7), e68910.

Xu, L., Wu, H., He, C., Wang, J., Zhang, C., Nie, F., Chen, L., 2022. Multi-
modal sequence learning for Alzheimer’s disease progression prediction with
incomplete variable-length longitudinal data. Med. Image Anal. 82, 102643.

Yang, Q., Guo, X., Chen, Z., Woo, P.Y.M., Yuan, Y. 2022a. D2-Net: Dual
disentanglement network for brain tumor segmentation with missing modalities.
IEEE Trans. Med. Imaging 41 (10), 2953-2964.

Yang, Y., Guo, X., Ye, C., Xiang, Y., Ma, T., 2023. CReg-KD: Model refinement
via confidence regularized knowledge distillation for brain imaging. Med. Image
Anal. 89, 102916.

Yang, Y., Xutao, G., Ye, C., Xiang, Y., Ma, T. 2022b. Regularizing Brain Age
Prediction via Gated Knowledge Distillation. In: Proc. MIDL. Vol. 172, Zurich,
Switzerland, pp. 1430-1443.

Yang, L., Zhang, R.-Y., Li, L, Xie, X.,, 2021. SimAM: A simple, parameter-free
attention module for convolutional neural networks. In: Proc. ICML. Vol. 139,
pp. 11863-11874.

Yiannopoulou, K.G., Papageorgiou, S.G., 2020. Current and future treatments in
Alzheimer disease: An update. J. Cent. Nerv. Syst. Dis. 12, 1179573520907397.

Zhai, Z., Liang, J., Cheng, B., Zhao, L., Qian, J., 2024. Strengthening attention:
knowledge distillation via cross-layer feature fusion for image classification. Int.
J. Multimed. Inf. Retr. 13 (2), 23.

Zhang, Y., Wang, S., Xia, K., Jiang, Y., Qian, P., 2021. Alzheimer’s disease
multiclass diagnosis via multimodal neuroimaging embedding feature selection
and fusion. Inf. Fusion 66, 170-183.


http://refhub.elsevier.com/S0895-6111(25)00173-9/sb5
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb5
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb5
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb6
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb6
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb6
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb6
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb6
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb7
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb7
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb7
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb7
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb7
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb8
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb8
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb8
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb8
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb8
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb9
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb9
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb9
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb9
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb9
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb10
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb10
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb10
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb10
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb10
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb11
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb11
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb11
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb11
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb11
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb12
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb12
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb12
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb13
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb13
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb13
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb14
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb14
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb14
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb14
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb14
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb15
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb15
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb15
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb15
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb15
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb15
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb15
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb16
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb16
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb16
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb16
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb16
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb17
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb17
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb17
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb18
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb18
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb18
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb18
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb18
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb19
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb19
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb19
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb19
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb19
http://arxiv.org/abs/2210.07828
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb21
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb21
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb21
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb21
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb21
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb22
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb22
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb22
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb23
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb23
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb23
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb23
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb23
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb24
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb24
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb24
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb24
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb24
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb25
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb25
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb25
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb25
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb25
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb25
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb25
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb26
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb26
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb26
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb26
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb26
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb27
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb27
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb27
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb27
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb27
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb27
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb27
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb28
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb28
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb28
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb28
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb28
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb28
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb28
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb29
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb29
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb29
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb29
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb29
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb30
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb30
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb30
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb30
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb30
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb30
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb30
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb31
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb31
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb31
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb31
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb31
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb32
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb32
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb32
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb32
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb32
http://arxiv.org/abs/2303.11055
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb34
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb34
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb34
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb34
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb34
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb35
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb35
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb35
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb35
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb35
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb35
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb35
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb36
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb36
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb36
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb37
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb37
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb37
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb37
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb37
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb38
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb38
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb38
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb38
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb38
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb39
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb39
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb39
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb39
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb39
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb40
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb40
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb40
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb40
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb40
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb40
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb40
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb41
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb41
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb41
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb41
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb41
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb41
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb41
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb42
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb42
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb42
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb42
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb42
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb43
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb43
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb43
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb43
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb43
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb43
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb43
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb44
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb44
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb44
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb44
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb44
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb45
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb45
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb45
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb45
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb45
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb45
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb45
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb46
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb46
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb46
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb46
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb46
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb46
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb46
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb46
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb46
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb47
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb47
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb47
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb47
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb47
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb48
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb48
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb48
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb48
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb48
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb49
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb49
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb49
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb50
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb50
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb50
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb50
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb50
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb51
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb51
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb51
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb51
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb51
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb52
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb52
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb52
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb52
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb52
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb53
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb53
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb53
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb53
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb53
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb54
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb54
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb54
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb54
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb54
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb55
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb55
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb55
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb56
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb56
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb56
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb56
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb56
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb57
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb57
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb57
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb57
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb57

F. Liu et al Computerized Medical Imaging and Graphics 126 (2025) 102664

Zhou, T., Liu, M., Fu, H., Wang, J., Shen, J., Shao, L., Shen, D., 2019a. Deep Zhou, T., Thung, K.-H., Liu, M., Shi, F., Zhang, C., Shen, D., 2020. Multi-modal
multi-modal latent representation learning for automated dementia diagnosis. latent space inducing ensemble SVM classifier for early dementia diagnosis with
In: Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent.. MICCAIL neuroimaging data. Med. Image Anal. 60, 101630.

Shenzhen, China, pp. 629-638.

Zhou, T., Liu, M., Thung, K.-H., Shen, D., 2019b. Latent representation learning for
Alzheimer’s disease diagnosis with incomplete multi-modality neuroimaging and
genetic data. IEEE Trans. Med. Imaging 38 (10), 2411-2422.

17


http://refhub.elsevier.com/S0895-6111(25)00173-9/sb58
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb58
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb58
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb58
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb58
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb58
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb58
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb59
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb59
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb59
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb59
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb59
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb60
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb60
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb60
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb60
http://refhub.elsevier.com/S0895-6111(25)00173-9/sb60

	CRAD: Cognitive Aware Feature Refinement with Missing Modalities for Early Alzheimer's Progression Prediction
	Introduction
	Related Work
	Disease Diagnosis With Multimodal Data
	Knowledge Distillation
	Challenges in Clinical Deployment

	Method
	Problem Setting
	Overall Architecture
	Multimodal Teacher Model
	Distillation Between Teacher and Student Models

	Parameter-Free Cross-Modal Self-Attention Distillation
	Gated Regularization Distillation
	Smooth Distillation Units (SDU)

	Results and Discussion
	Experimental Setting
	Dataset
	Preprocessing

	Implementation
	Comparison with Competing Methods
	Ablation study
	Component Ablation Experiments
	Influence of Attention Distillation
	Effectiveness of Confidence Regularization
	Impact of Orthogonal Projection
	Modality Ablation Analysis

	Impact of Backbone Architectures
	Layer Selection for Knowledge Distillation
	Influence of Hyperparameter
	Model Performance Evaluation
	Visualization and Failure Case Analysis
	Discussion

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	Training Procedure
	Feature Dimensions and Alignment
	Supplementary Experiments
	Ablation Analysis of CAFR Module
	Ablation Analysis of OP Module


	Data availability
	References


