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 A B S T R A C T

Accurate diagnosis and early prediction of Alzheimer’s disease (AD) often require multiple neuroimageing 
modalities, but in many cases, only one or two modalities are available. This missing modality hinders 
the accuracy of diagnosis and is a critical challenge in clinical practice. Multimodal knowledge distillation 
(KD) offers a promising solution by aligning complete knowledge from multimodal data with that of partial 
modalities. However, current methods focus on aligning high-level features, which limit their effectiveness 
due to insufficient transfer of reliable knowledge. In this work, we propose a novel Consistency Refinement-
driven Multi-level Self-Attention Distillation framework (CRAD) for Early Alzheimer’s Progression Prediction, 
which enables the cross-modal transfer of more robust shallow knowledge with self-attention to refine features. 
We develop a multi-level distillation module to progressively distill cross-modal discriminating knowledge, 
enabling lightweight yet reliable knowledge transfer. Moreover, we design a novel self-attention distillation 
module (PF-CMAD) to transfer disease-relevant intermediate knowledge, which leverages feature self-similarity 
to capture cross-modal correlations without introducing trainable parameters, enabling interpretable and 
efficient distillation. We incorporate a consistency-evaluation-driven confidence regularization strategy within 
the distillation process. This strategy dynamically refines knowledge using adaptive distillation controllers that 
assess teacher confidence. Comprehensive experiments demonstrate that our method achieves superior accuracy 
and robust cross-dataset generalization performance using only MRI for AD diagnosis and early progression 
prediction. The code is available at https://github.com/LiuFei-AHU/CRAD.
1. Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, 
is clinically characterized by a gradual decline in cognitive functions 
that ultimately leads to complete dementia. Mild Cognitive Impairment 
(MCI) represents an intermediate stage between normal cognitive aging 
and AD, with approximately 50% of individuals diagnosed with MCI 
progressing to AD within five years (Petersen et al., 2018). Early 
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and accurate diagnosis and prediction of AD are crucial in delay-
ing the progression of dementia (Yiannopoulou and Papageorgiou, 
2020; Bouts et al., 2019). Multimodal neuroimaging, such as magnetic 
resonance imaging (MRI) and positron emission tomography (PET), 
provides complementary insights for the early diagnosis of AD (Dubois 
et al., 2023; Rudroff et al., 2024). However, incomplete or missing 
modalities in clinical settings remain a significant barrier to reliable 
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diagnosis. Although multimodal knowledge distillation (KD) offers a 
promising solution by transferring knowledge from teacher models 
(trained on complete modalities) to student models (handling par-
tial modalities) (Guan et al., 2021; Yang et al., 2023; Chen et al., 
2023; Van Sonsbeek et al., 2021; Wang et al., 2023b; Song et al., 
2023), existing methods suffer from two critical limitations: (1) insuf-
ficient utilization of discriminative intermediate features that encode 
early Alzheimer’s disease (AD) biomarkers (e.g., hippocampus atrophy, 
changes in gray matter density) (Weber et al., 2021; Deng et al., 2024), 
and (2) vulnerability to imperfect supervision (the teacher model may 
not consistently provide reliable knowledge). Current knowledge distil-
lation (KD) frameworks focus primarily on high-level features or soft 
labels (Yang et al., 2023; Van Sonsbeek et al., 2021; Wang et al., 
2023b; Song et al., 2023), often neglecting the richness of intermediate 
features that capture localized structural abnormalities critical for early 
detection of Alzheimer’s disease (AD) (Zhai et al., 2024; Hu et al., 
2023; Deng et al., 2024). Recent studies (Zhai et al., 2024; Hu et al., 
2023) have highlighted the importance of transferring robust inter-
mediate features. These features provide richer information about the 
disease, enabling multi-granularity analysis and offering better robust-
ness against noise and overfitting. In addition, they are more effective 
than high-level features in diagnosing early AD, as they have high 
spatial resolution and local sensitivity, which allows accurate detection 
of subtle structural changes (Deng et al., 2024). Specifically, early 
pathological markers of AD, such as hippocampus atrophy, reduced 
gray matter density, and localized brain abnormalities, are typically 
identified through intermediate features (Weber et al., 2021). There-
fore, highlighting intermediate features can enhance the transfer of 
discriminating knowledge and improve the generalization performance 
of student models.

On the other hand, effectively screening task-relevant intermediate 
features remains challenging for traditional feature distillation. Re-
cently, attention distillation methods (Wang et al., 2019, 2020a) have 
shown a promising ability to filter knowledge by learning the attentive 
semantic context of the teacher model. However, existing methods have 
not fully studied the attention transfer of hierarchical discriminating 
knowledge. In particular, attention distillation of hierarchical inter-
mediate features can capture discriminating contextual information at 
different levels that can achieve multi-granularity knowledge transfer.

Meanwhile, to achieve more accurate knowledge transfer, knowl-
edge refinement is critical for KD. Conventional knowledge refinement 
strategies, such as gated regularization (Yang et al., 2023, 2022b), rely 
on teacher certainty while ignoring scenarios where student models 
may outperform teachers. In this regard, we suggest introducing a 
dynamic refinement mechanism, a more flexible regularization consid-
ering the relative gap between the teacher and student models, balanc-
ing teacher confidence and student-teacher consistency. Moreover, a 
flexible paradigm that effectively combines consistency regularization 
with the distillation of hierarchical knowledge attention is crucial to 
robust knowledge transfer.

To address these issues, we propose a Consistency Refinement-
driven Multi-level Self-Attention Distillation framework (CRAD), which 
introduces hierarchical multi-level distillation with dynamic knowledge 
refinement via consistency evaluation. First, we enhance the teacher 
model in two ways: by improving the disease awareness capability of 
its intermediate features through a cognitive awareness feature refine-
ment module (CAFR), improving the quality of knowledge transfer, 
and further reducing redundancy by disentangling modality-specific 
knowledge via orthogonal disentanglement (Chen et al., 2023; Yang 
et al., 2022a). Then, unlike existing works focused on high-level fea-
ture alignment (Yang et al., 2023; Wang et al., 2019), we design a 
special cross-modal self-attention distillation module (PF-CMAD) to 
transfer disease-relevant intermediate knowledge. This module lever-
ages feature similarity-based self-attention to capture cross-modal cor-
relations without introducing trainable parameters (parameter-free), 
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enabling interpretable and efficient distillation. In addition, by hierar-
chically aligning multi-level features from intermediate to high-level, 
we preserve spatial resolution and disease sensitivity crucial for de-
tecting subtle early AD biomarkers (e.g., localized atrophy) (Weber 
et al., 2021; Deng et al., 2024) from local to global perspectives. 
Next, we develop a smooth distillation unit (SDU) within multi-level 
distillation, incorporating a consistency-aware confidence regulariza-
tion strategy that dynamically refines knowledge by evaluating teacher 
certainty and student-teacher prediction divergence, ensuring accurate 
knowledge transfer. Compared to the existing knowledge refinement 
method (Yang et al., 2023) that only takes teacher models’ certainty, we 
penalize inconsistent teacher–student outputs while promoting reliable 
cross-modal correlations.

This study aims to bridge a critical gap in early Alzheimer’s diagno-
sis: accurately predicting disease progression when key neuroimaging 
modalities (e.g., PET) are missing. We propose CRAD, a framework that 
distills essential diagnostic knowledge from complete multimodal data 
into models using only partial inputs (e.g., MRI), while maintaining 
reliability and computational efficiency. Comprehensive experiments 
demonstrate that our method achieves state-of-the-art diagnostic accu-
racy and generalization on benchmark datasets. The main contributions 
are summarized as follows.

∙ We propose a novel hierarchical distillation framework that uti-
lizes multilevel attention alignment and noise suppression to 
enable effective cross-modal knowledge transfer for accurate di-
agnosis and progression prediction of AD.

∙ A lightweight parameter-free attention distillation module is de-
veloped for efficient, robust attentive feature alignment. We uti-
lize the self-similarity of features and incorporate a consistency-
aware confidence regularization to minimize unreliable knowl-
edge transfer by evaluating the confidence level and prediction 
consistency.

∙ Extensive experiments demonstrate that our method outperforms 
the state-of-the-art methods in the early diagnosis of AD, even us-
ing mono-modality, and visualization analysis reveals its potential 
to localize disease-specific biomarkers.

This paper is organized as follows. We introduce and review the 
related work in Section 2. The proposed method is then presented 
in detail in Section 3. The experimental results are presented and 
discussed in Section 4. We summarize this work in Section 5.

2. Related work

2.1. Disease diagnosis with multimodal data

Multimodal models have recently received substantial attention for 
their ability to harness complementary information from diverse data 
sources, significantly improving the performance of Alzheimer’s Disease 
(AD) diagnosis (Shi et al., 2018, 2022; Qiu et al., 2022; Zhang et al., 
2021; Qiu et al., 2024). For example, Shi et al. (2018) proposed 
a multimodal fragmented deep polynomial network (MM-SDPN) to 
integrate features extracted from neuroimaging data for the diagnosis 
of AD. Similarly, Shi et al. (2022) and Zhang et al. (2021) developed 
advanced feature selection strategies to identify and fuse the most 
discriminating information from multimodal data, allowing for more 
effective utilization of complementary features. Despite that, they are 
often plagued by computational complexity and susceptibility to inter-
ference from redundant information. Recent studies (Chen et al., 2023; 
Lu et al., 2020; Yang et al., 2022a; Wang et al., 2023a) suggest that 
focusing on modality-specific information can reduce interference from 
irrelevant or redundant information, thus enhancing the robustness 
of multimodal models. However, these methods often require signifi-
cant computational and storage resources, rendering them impractical 
for resource-constrained real-world applications. Hence, we suggest 
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introducing an orthogonal loss in the training stage to disentangle 
modal-specific knowledge without requiring additional computation 
and memory costs at inference.

The lack of sufficient multimodal data is another key challenge. Liu 
et al. (2015) introduced a zero-masking strategy, replacing missing 
modalities with zero values to preserve model functionality. Subspace 
projection methods (Zhou et al., 2019b,a, 2020) extracted features 
from existing modalities and then averaged in a latent space to replace 
missing data. Alternatively, imputation methods aim to reconstruct 
missing modalities based on available data (Wang et al., 2024; Gao 
et al., 2021). In addition, feature-sensitive imputation techniques (Pan 
et al., 2022; Gao et al., 2023) emphasize extracting disease-related 
information from existing modalities during the imputation process. To 
address the challenge of incomplete multimodal longitudinal data, Xu 
et al. (2022) proposed a deep latent representation collaborated se-
quence learning framework that handles arbitrary modality-missing 
patterns and variable-length sequences through degradation networks 
and RNN-based progression modeling. Building upon this, Dao et al. 
(2024) introduced LMDP-Net with a variational autoencoder-based 
fusion module to handle modality uncertainty and an improved LSTM 
mechanism (IRLSTM) to optimize information flow in longitudinal 
data. However, these methods often suffer from high computational 
complexity, resulting in increased training and inference costs, and 
may introduce biased information, ultimately leading to suboptimal 
performance. Hence, transferring knowledge from complete modalities 
to primary modalities is a potential way to avoid the impact of missing 
modalities and reduce computational complexity, and knowledge dis-
tillation is a popular framework for efficiently transferring knowledge 
from complex teacher models to simple student models.

Recent advancements in multimodal integration have also empha-
sized the importance of capturing both shared and modality-specific 
information to improve diagnostic robustness. For instance, low-rank 
tensor fusion techniques and shared-specific feature modeling frame-
works have been proposed to exploit complementary information while 
reducing redundancy across modalities (Wang et al., 2023a; Qiu et al., 
2024). These methods aim to learn a common latent space where 
multimodal data can be effectively combined, even in the presence 
of missing or incomplete modalities. Moreover, several studies have 
begun to incorporate clinical metadata, such as cognitive scores, ge-
netic markers, and demographic information, alongside neuroimaging 
data to create more holistic and clinically actionable models (Qiu 
et al., 2022; Wang et al., 2024; Wu et al., 2025). This trend toward 
integrative and clinically informed multimodal learning highlights a 
growing recognition that combining imaging with non-imaging data 
can significantly enhance early diagnosis and progression prediction in 
Alzheimer’s disease, achieving more personalized and precise clinical 
applications.

2.2. Knowledge distillation

Knowledge distillation (KD) (Gou et al., 2021) is widely adopted 
to transfer knowledge from teacher models to student models (Yang 
et al., 2023; Wang et al., 2023b; Song et al., 2023). Yang et al. (2023) 
and Song et al. (2023) introduced knowledge distillation to improve the 
diagnostic performance of AD based on MRI.Van Sonsbeek et al. (2021) 
employed variational knowledge distillation to transfer disease-related 
knowledge from Electronic Health Records (EHR) to X-ray images.

However, traditional knowledge distillation methods often focus on 
knowledge transfer while overlooking the ability to discern the impor-
tance of knowledge. In contrast, attention distillation offers a more 
comprehensive approach by transferring the representational power 
of teacher models, particularly in capturing contextual dependencies. 
For example, Wang et al. (2020a) proposed a novel distillation frame-
work that emphasizes the transfer of self-attention scores from the 
teacher model. By distilling attention maps, the student model can 
more effectively mimic the behavior of the teacher model. Wang et al. 
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(2019) demonstrated significant improvements in transfer learning ef-
ficiency and performance through attention distillation. Nevertheless, 
the distillation of intermediate features has not been fully explored. 
In particular, due to the robust characteristics of intermediate features 
compared to high-level features and soft labels, the distillation of at-
tention on intermediate features can transfer more shallow knowledge, 
improving the generalization performance of student models.

In addition, Yang et al. (2023) introduced a gated regularized 
distillation mechanism, enabling the student model to learn reliable 
knowledge from the teacher model. Similarly, (Yang et al., 2022b) 
refined the distillation through a confidence regularization distillation 
mechanism. However, the output of the teacher model may be inaccu-
rate because of noise, leading to inconsistent knowledge transfer and 
thus affecting the distillation effect. We suggest dynamically applying 
confidence scores for flexible gated distillation to enhance accurate 
knowledge transfer by comparing the outputs between the teacher and 
student models. Moreover, although attention distillation (Wang et al., 
2019, 2020a) and gated regularization (Yang et al., 2023) partially 
mitigate the issue of insufficient transfer of discriminating knowledge 
and reliable distillation, their static designs (e.g., fixed attention mod-
ules (Hu et al., 2018), error-based uncertainty (Yang et al., 2022b)) 
limit adaptability to dynamic missing-modality scenarios.

To this end, we propose a Consistency Refinement-driven Multi-
level Self-Attention Distillation framework, which integrates confidence 
regularization and attention mechanisms to improve the distillation 
efficiency and the generalization performance of student models. In 
particular, we design a parameter-free attention module to align mul-
tiscale intermediate features, and then dual confidence regularization 
strategies ensure accurate knowledge transfer.

2.3. Challenges in clinical deployment

Beyond the technical limitations of existing multimodal and dis-
tillation methods, several broader challenges impede the widespread 
adoption of multimodal AI systems in clinical practice. A significant 
hurdle is the inherent heterogeneity of medical data, which varies in 
resolution, acquisition protocols, and quality across institutions. This 
variability can lead to domain shift, reducing model generalization 
when deployed in real-world settings (Ghifary et al., 2015). Further-
more, missing modalities are not merely a technical inconvenience 
but a systemic issue in healthcare, influenced by factors such as cost, 
patient compliance, and clinical guidelines (Haque et al., 2017). While 
imputation and distillation offer partial solutions, they often assume 
a static missingness pattern, which rarely holds in dynamic clinical 
environments. Finally, computational and infrastructural constraints in 
hospitals, such as limited GPU resources and data privacy requirements, 
favor lightweight, efficient models that can operate near real-time 
without compromising patient data security (Arbabshirani et al., 2018). 
These practical considerations underscore the need for robust, efficient, 
and interpretable multimodal learning frameworks that are not only 
accurate but also deployable in diverse clinical contexts.

3. Method

This section first presents an overview of our proposed frame-
work. Subsequently, each specifically designed module for the proposed 
framework is introduced in detail.

3.1. Problem setting

Let 𝑋 =
{

𝑋𝑖
}𝑁
𝑖=1 represent the training data used in this study, 𝑌 =

{

𝑌𝑖
}𝑁
𝑖=1 are the corresponding diagnostic labels, where 𝑁 is the number 

of data, and (𝑋𝑖, 𝑌𝑖) indicates the 𝑖th data and label, respectively. 
Each data contains multiple modalities, i.e., 𝑋𝑖 =

{

𝑋𝑖,𝑗
}𝑀𝑖
𝑗=1, where 𝑀𝑖

represents the number of available modalities in 𝑋𝑖. In particular, the 
modalities used in this study include MRI, PET, and Mini-Mental State 
Examination (MMSE). In particular, not all subjects have PET; most 
have only MRI. The objective is to predict the disease label 𝑌  based 
on the given 𝑋.
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Fig. 1. Overview of the proposed Consistency Refinement-driven Multi-level Self-Attention Distillation framework. The 𝑇  learns from paired MRI and PET, 
whereas 𝑆 only learns from MRI. First, for 𝑇 , the cognitive awareness feature refinement (CAFR) improves the disease-aware ability of the intermediate 
features by predicting cognitive scores, and the orthogonal projection (OP) disentangles the modality-specific representation to reduce redundancy. Then, the 
cross-modal self-attention distillation module (PF-CMAD) aligns intermediate features between 𝑇  and 𝑆 , achieving efficient shallow knowledge distillation. 
Moreover, the smooth distillation unit (SDU) employs the consistency-aware regularization strategy to refine the distillation on intermediate- and high-level 
features.
3.2. Overall architecture

The proposed CRAD framework is designed to improve AD diagnosis 
under missing modalities through multimodal knowledge distillation. 
As illustrated in Fig.  1, the teacher model 𝑇  learns from multimodal 
data, while the student model 𝑆 learns solely from MRI data. The 
encoder extracts shallow features from the input data 𝑋. These features 
are then projected into a latent space to capture high-level features. 
The classifier outputs the predicted disease label 𝑌 ′. This process can 
be described as follows: 

𝑌 ′ = Classifier(Projection(Encoder(𝑋))). (1)

The teacher model aims to provide high-quality multimodal knowl-
edge that will be transferred to the MRI-only student model. A cognitive 
awareness feature refinement module (CAFR) is integrated into the 
encoder of 𝑇  to identify intermediate discriminating features by 
predicting the clinical cognitive score (i.e., MMSE), while a orthogonal 
disentanglement module (OP) is employed to the output features of 
encoder to reduce feature redundancy (see Section 3.2.1 for details). 
The teacher model is pre-trained based on paired MRI and PET images, 
and it is supervised by the ground truth, namely, the disease label. 
In contrast to the teacher model, the student model is a lightweight 
architecture with only a feature encoder and classifier. We enhance the 
student model by transferring knowledge from the teacher model, in 
addition to being supervised by the ground truth.

During knowledge distillation, we do not train the teacher
model. Instead, we design a parameter-free cross-modal self-attention 
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distillation module (PF-CMAD) to distill intermediate knowledge from 
𝑇  to 𝑆 (see Section 3.3). In addition, in contrast to the traditional 
gated regularization described in Section 3.4, we propose a smooth 
distillation unit (SDU) to implement a consistency-aware confidence 
regularization strategy, improving the reliability of knowledge distilla-
tion (see Section 3.5). The details of these components are presented 
in the following subsections. We provide a train procedure in Appendix 
A.1 and a detailed data flow (input and output) in Appendix  A.2.

3.2.1. Multimodal teacher model
For the teacher model 𝑇 , we use a 3D convolutional neural 

network (CNN) as a feature encoder to extract multimodal features. 
Although our proposed framework supports any 3D CNN, VGG (Si-
monyan and Andrew, 2015) is selected as the primary backbone be-
cause it achieves the best performance with moderate complexity (Ta-
ble  9 illustrates the backbone comparison). First, an auxiliary cog-
nitive awareness feature refinement module (see Fig.  1 (CAFR)) is 
designed to improve disease awareness of intermediate features 𝑍𝑇 =
[𝑍1

𝑇 , 𝑍
2
𝑇 ,… , 𝑍𝐾

𝑇 ] by predicting the MMSE score, where 𝐾 is the number 
of layers of intermediate features. Let 𝑍𝑘

𝑇  be the features of the 𝑘th 
layer. 𝑌 ′

𝑐 = ℎ
(

GAP(𝑍𝑘
𝑇 ;𝑊

𝑘)
) is the predicted value of the true MMSE 

𝑌𝑐 , where ℎ(⋅) is used to calculate 𝑌 ′
𝑐  from 𝑍𝑘

𝑇  with learnable parameters 
𝑊 𝑘, while GAP(⋅) is the Global Average Pooling operation. The Mean 
Squared Error Loss 𝑀𝑆𝐸 is applied to evaluate the prediction error 
between 𝑌 ′ and 𝑌 . As shown in Eq. (2), by minimizing  , the 
𝑐 𝑐 𝑀𝑆𝐸 𝑇
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is encouraged to capture disease-related features. 

𝑀𝑆𝐸 = 1
𝐾

𝐾
∑

𝑘=1
‖𝑌 ′

𝑐 − 𝑌𝑐‖
2
2

= 1
𝐾

𝐾
∑

𝑘=1
‖ℎ

(

GAP
(

𝑍𝑘
𝑇
)

;𝑊 𝑘) − 𝑌𝑐‖22

(2)

Meanwhile, inspired by Ranasinghe et al. (2021), we introduce 
orthogonal projection loss 𝑂𝑅𝑇  to disentangle modality-specific fea-
tures. Specifically, we perform an orthogonal decomposition among 
multimodal features [𝑍𝑚, 𝑍𝑝] of 𝑇 , where the 𝑍𝑚

𝑇  and 𝑍𝑝
𝑇  are the 

features extracted from the paired MRI and PET. 𝑂𝑅𝑇  aims to refine 
the consistent distribution of intra-modal features while increasing the 
distance of inter-modal features: 
𝑂𝑅𝑇 =

∑

(𝑖,𝑗)∈{(𝑚,𝑝),(𝑝,𝑚)}

(

(

1 − 𝑠(𝑍 𝑖
𝑇 , 𝑍

𝑖
𝑇 )
)

+ 𝑑(𝑍𝑖
𝑇 , 𝑍

𝑗
𝑇 )
)

, (3)

where 𝑠 and 𝑑 indicate the feature cosine similarity. We utilize 𝑂𝑅𝑇
to constrain 𝑠 to be close to 1, while 𝑑 is close to 0.

Subsequently, the disentangled 𝑍𝑚
𝑇  and 𝑍𝑝

𝑇  are fused as 𝑍𝑢
𝑇  and 

then input into the classifier to predict the disease label 𝑌 ′
𝑇 . We use 

the Cross-Entropy function to calculate classification loss: 
𝐶𝐸 = −

∑
(

𝑌 log 𝑌 ′
𝑇 + (1 − 𝑌 ) log(1 − 𝑌 ′

𝑇 )
)

. (4)

Therefore, the optimization objective of the teacher model can be 
formulated as: 
𝑁𝑇 = 𝐶𝐸 + 𝛾1𝑀𝑆𝐸 + 𝛾2𝑂𝑅𝑇 , (5)

where 𝛾1 and 𝛾2 are weight factors to balance the contribution of 𝑀𝑆𝐸
and 𝑂𝑅𝑇 .

3.2.2. Distillation between teacher and student models
Similarly to 𝑇 , we use a simple 3D convolutional neural network 

to extract the features 𝑍𝑚
𝑆  from the MRI. The 𝑍𝑚

𝑆  is then projected into 
the latent space to learn the high-level semantic features 𝑍𝑢

𝑆 for the 
classifier to output the predicted disease label 𝑌 ′

𝑆 .
Following previous studies (Guan et al., 2021; Chen et al., 2023; 

Van Sonsbeek et al., 2021), we align the high-level features between 
𝑇  and 𝑆 by knowledge distillation, i.e., feature distillation (FD). 
This process can be described as: 

𝑈𝐾𝐷 =
∑

𝐾𝐿
(

𝑍̃𝑢
𝑇 ⊗

(

𝑍̃𝑢
𝑇
)𝑇 ∥ 𝑍̃𝑢

𝑆 ⊗
(

𝑍̃𝑢
𝑆
)𝑇

)

, (6)

where the ⊗ represents matrix multiplication and the 𝐾𝐿 is Kullback–
Leibler divergence (Kullback and Leibler, 1951). In particular, 𝑍𝑢

𝑇
and 𝑍𝑢

𝑆 are normalized along the channel dimension, i.e., 𝑍̃𝑢
𝑇 =

𝑍𝑢
𝑇 ∕(max(‖𝑍𝑢

𝑇 ‖2, 𝜖)), and 𝜖 is a small positive real number used to avoid 
division by zero.

Knowledge distillation is also applied to align the
soft labels, i.e., soft label distillation (SD). The loss of distillation 𝑃𝐾𝐷
is calculated on the soft labels 𝑌 ′

𝑇  and 𝑌 ′
𝑆 , defined in formula (7). 

Therefore, the distillation loss between 𝑆 and 𝑇  can be summarized 
as 𝐾𝐷 = 𝑈𝐾𝐷 + 𝑃𝐾𝐷. 

𝑃𝐾𝐷 =
∑

𝐾𝐿
(

𝑌 ′
𝑇 , 𝑌

′
𝑆
)

(7)

Moreover, as shown in Fig.  2, we not only focus on high-level fea-
ture alignment (Yang et al., 2023; Wang et al., 2019), but also design a 
special cross-modal self-attention distillation module (PF-CMAD) to dis-
till the attentive intermediate features (refer to Section 3.3 for details). 
This module leverages feature similarity-based self-attention to capture 
cross-modal correlations. In addition, we develop a smooth distillation 
unit (SDU) that employs a consistency-aware confidence regularization 
strategy to dynamically control the distillation process by evaluating 
prediction divergence between student and teacher models, ensuring 
reliable knowledge transfer. Please refer to Sections 3.4 and 3.5 for 
details of this confidence regularization strategy.
5 
(a) 

(b) 

Fig. 2. (a) Previous knowledge distillation focuses on aligning high-level 
features. (b) Our proposed ‘‘Consistency Refinement-driven Multi-level Self-
Attention Distillation’’ aligns attentive features (PF-CMAD) with consistency 
evaluation (SDU) within multiple layers of the student-teacher model.

For the student model 𝑆 , it is not only supervised by the teacher 
model’s output, but also learns from the disease label 𝑌 . Thus, the 
objective function for optimizing 𝑆 is defined as: 
𝑁𝑆 = 𝐶𝐸 + 𝜆𝐾𝐷, (8)

where 𝜆 is a weight factor to balance the contribution of 𝐾𝐷.

3.3. Parameter-free cross-modal self-attention distillation

Apart from distilling knowledge by aligning high-level features, 
we propose the cross-modal transfer of more robust shallow knowl-
edge with self-attention and refinement. We develop a self-attention 
distillation module (PF-CMAD) to hierarchically transfer cross-modal 
discriminating knowledge and incorporate a consistency-driven con-
fidence regularization strategy (SDU) to refine knowledge. As shown 
in Fig.  3, the PF-CMAD utilizes hierarchical attention distillation of 
intermediate features to capture contextual information at different 
levels for multi-granularity knowledge transfer. For each self-attention 
block, we design a simple yet effective parameter-free attention con-
verter (PFAC) based on features’ self-similarity to identify the feature’s 
importance and then transfer discriminating shallow knowledge by 
fusing the intermediate attentive features, i.e., attention distillation 
(ATD). In contrast to traditional attention modules (e.g., SENet (Hu 
et al., 2018)) that calculate the attention weights with learnable pa-
rameters, our proposed PFAC adaptively infers attention maps without 
introducing trainable parameters. As shown in Fig.  4, the PFAC first 
normalizes the features along the channel dimension, then performs 
Global Average Pooling (GAP) and Global Max Pooling (GMP), followed 
by concatenation and reshaping to 𝑍′ with 𝑐 × 1 dimension, where 𝑐 is 
the channel number. The attention matrix 𝑀 is obtained by: 
𝑀 = Sigmoid(diag(𝑍′ ⊗ (𝑍′)𝑇 )), (9)

where diag(⋅) takes the diagonal elements and Sigmoid(⋅) is the ac-
tivation function. Subsequently, the 𝑀 is used to highlight the key 
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Fig. 3. Detailed design of the proposed Parameter-Free Cross-Modal Self-Attention Distillation (PF-CMAD).
Fig. 4. Diagram of the proposed Parameter-Free Attention Converter (PFAC) module. The PFAC first normalizes the features 𝑍 along the channel dimension, 
then performs Global Average Pooling (GAP) and Global Max Pooling (GMP), followed by concatenation and reshaping to 𝑍′. Then, the attention matrix 𝑀 is 
used to screen discriminating features that are aligned between 𝑆 and 𝑇 , as defined in Eq. (10).
intermediate features. Then we use 𝐹𝐾𝐷 to align attentive features 
between 𝑆 and 𝑇 : 

𝐹𝐾𝐷 = 1
𝐾

𝐾
∑

𝑘=1
‖𝑀𝑘

𝑆𝑍
𝑘,𝑚
𝑆 −𝑀𝑘

𝑇𝑍
𝑘,𝑚
𝑇 ‖

2
2, (10)

where [𝑀𝑘
𝑆 , 𝑍

𝑘,𝑚
𝑆 ] and [𝑀𝑘

𝑇 , 𝑍
𝑘,𝑚
𝑇 ] are the attention matrix and feature 

maps (MRI) of 𝑘th intermediate layer of 𝑆 and 𝑇  respectively, and 
𝐾 is the number of layers.

3.4. Gated regularization distillation

Traditional gated regularization calculates the confidence score 𝑆𝐶 , 
and applies it to distillation loss 𝐾𝐷, refining the knowledge of the 
teacher model. Usually, 𝑆𝐶 is obtained by measuring the distance 
between the output of 𝑇  and the ground truth. For example, 𝑆𝐶
can be calculated by the Euclidean distance function dis(⋅), and then 
a clip(⋅) is employed to limit the upper bound of 𝑆𝐶 . Subsequently, the 
6 
distance is converted to a confidence score limited to [0, 1]. This can be 
formulated as: 
𝑆𝐶 = 1 − clip

(

dis
(

𝑌 ′
𝑇 , 𝑌

))

, (11)

where 𝑌 ′
𝑇  and 𝑌  are the output of 𝑇  and the ground truth, respec-

tively.
However, the confidence score obtained by Eq. (11) ignores the rel-

ative errors between 𝑆 and 𝑇 , a penalty should be applied to 𝑆𝐶 if 
the prediction error of 𝑇  is greater than that of 𝑆 , namely, learning 
from 𝑇  should be softened. Intuitively, 𝑆𝐶 can be constrained by an 
additional regularization term 𝜓 , where 𝜓 = 0 indicates dis

(

𝑌𝑆
′ , 𝑌

)

≤
dis

(

𝑌 ′
𝑇 , 𝑌

)

, otherwise 𝜓 = 1. Setting the confidence score to 0 may 
result in suboptimal results. Therefore, we employ a higher penalty for 
larger errors and a lower penalty for smaller errors. The 𝜓 is defined 
as: 

𝜓 =

(

dis
(

𝑌 ′
𝑆 , 𝑌

)

( ′ ) ( ′ )

)2

, (12)

dis 𝑌𝑇 , 𝑌 + dis 𝑌𝑆 , 𝑌 + 𝜖
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Table 1
Demographic information and data distribution of the studied subjects.
 Dataset Group Modality Sex Age MMSE  
 Paired MRI-only Male Female (Mean ± Std) (Mean ± Std) 
 
ADNI

AD 183 89 146 126 75.03 ± 7.65 23.14 ± 2.09 
 pMCI 86 171 149 108 73.78 ± 7.12 26.94 ± 1.81 
 sMCI 131 400 305 226 72.42 ± 7.73 27.88 ± 1.73 
 NC 232 121 175 178 74.97 ± 5.78 29.11 ± 1.09 
 
AIBL

AD – 74 30 44 73.35 ± 7.93 20.18 ± 5.44 
 pMCI – 11 7 4 74.90 ± 5.97 26.27 ± 1.60 
 sMCI – 69 33 36 75.36 ± 7.54 27.04 ± 2.13 
 NC – 85 30 55 75.52 ± 6.63 28.71 ± 1.35 

where 𝜖 is a small positive real number used to avoid division by zero.
Then, the objective function for optimizing the 𝑆 can be further 

reformulated as: 
𝑁𝑆 = 𝜆𝐶𝐸 + (1 − 𝜆)𝜓𝑆𝐶𝐾𝐷. (13)

In addition, we design a flexible regularization strategy to ensure 
accurate knowledge transfer from a global perspective. Specifically, the 
confidence scores for regularization are calculated by predicting cogni-
tive scores (from intermediate features) and disease labels (from global 
features), respectively. Then, these two types of confidence scores are 
used as independent regularization penalties to distill shallow and high-
level knowledge, respectively (see Dual Smooth Distillation Units (SDU) 
in Section 3.5).

3.5. Smooth Distillation Units (SDU)

In contrast to the conventional knowledge refinement strategy
(Yang et al., 2023) that only evaluates the teacher model’s certainty 
based on soft probabilities, we propose the smooth distillation unit 
(SDU) to obtain flexible and reliable knowledge transfer. Specifically, 
different regularization terms are employed to refine knowledge at 
different levels. Moreover, we further evaluated the consistency of 
the output of the student-teacher model at different levels to avoid 
transferring noisy signals (see Section 3.4). Let 𝑍 =

[

𝑍1, 𝑍2,… , 𝑍𝐾 ]

denote the multiscale intermediate features. Confidence score 𝑆𝑘 of the 
𝑘th layer is obtained by measuring the distance between the predicted 
MMSE score 𝑌 ′

𝑐  and the ground truth 𝑌𝑐 : 

𝑆𝑘 = 1 − clip
(

‖

(

𝑌 ′
𝑐 − 𝑌𝑐

)

‖

2
2
)

. (14)

The confidence scores for all intermediate layers can be denoted as 
𝑆𝑀 =

[

𝑆1, 𝑆2,… , 𝑆𝐾
]

, then 𝑆𝑀  is used to regularize the distillation 
on intermediate features.

Moreover, we apply dual confidence scores 𝑆𝑀  and 𝑆𝐶 , and extend 
the 𝐾𝐷 to further refine the knowledge transfer between 𝑆 and 𝑇 :

𝐾𝐷 = 𝑆𝑀𝐹𝐾𝐷 + 𝑆𝐶
(

𝑃𝐾𝐷 + 𝑈𝐾𝐷
)

, (15)

where 𝑆𝑀  and 𝑆𝐶 (see Eq. (11)) are two confidence scores for distil-
lation on shallow and high-level knowledge, respectively.

4. Results and discussion

In this section, we first introduce the data preprocessing and perfor-
mance evaluation metrics. Then, we briefly review the competing meth-
ods and compare our proposed method with them on two AD-related 
tasks based on extensive analysis.

4.1. Experimental setting

4.1.1. Dataset
Our study utilizes two databases, including the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarker 
7 
and Lifestyle Flagship Study of Aging (AIBL). We acquired 1.5T/3T T1-
weighted structural MRI scans and 18F-FDG Positron Emission Tomog-
raphy scans from the ADNI database. Moreover, we retrieved 1.5T/3T 
T1-weighted MRI scans from the AIBL database. All of the scans are 
taken at their baseline/screening visits. The data are categorized into 
three groups: Alzheimer’s disease (AD), Mild Cognitive Impairment 
(MCI), and Normal Control (NC), following their diagnosis labels. The 
MCI can be divided into progressive MCI (pMCI) and stable MCI (sMCI). 
The pMCI means MCI subjects would convert to AD within 36 months 
after the baseline visit, while sMCI means MCI subjects would remain 
stable after the baseline visit. The demographic details of the studied 
subjects are shown in Table  1. The subjects labeled ‘AD’ and ‘NC’ 
were selected for the AD diagnosis task. For predicting MCI conversion 
(pMCI v.s. sMCI), the subjects labeled ‘MCI’ at the baseline screen were 
selected. Note that subjects in this study were selected based on their 
diagnostic label, without considering other detailed criteria such as sex, 
age, slice thickness, or device manufacturer. The data from the ADNI 
database are used to train and test the models, while the data in AIBL 
are used only for testing the models’ generalization.

We evaluated the CRAD framework on two tasks: diagnosing
Alzheimer’s disease (AD-NC classification) and predicting the conver-
sion of Mild Cognitive Impairment (MCI) to AD (pMCI-sMCI classifi-
cation) using five-fold cross-validation. The data was divided into five 
folds at the subject level, ensuring a balanced distribution of classes: 
AD, NC, sMCI, and pMCI. During each of the five training sessions, one 
fold was reserved for testing, and the remaining four folds were used 
for training. The ratio of training data to test data is 8:2, and 10% of 
the training data was randomly selected as a validation set, ensuring 
no overlap with the test set.

4.1.2. Preprocessing
Following common practice, we performed a preprocessing pipeline 

on the original images, including spatial registration and tissue seg-
mentation. We performed registration to transform MRI and PET to the 
MNI152 template (Fonov et al., 2011) based on the Statistical Paramet-
ric Mapping and Computational Anatomy Toolbox (Gaser et al., 2024). 
Besides, the PET scans are aligned to the space of the corresponding 
MRI. After the preprocessing, MRI and PET are resized to 113 × 113 ×
137 voxels.

4.2. Implementation

The proposed CRAD framework is implemented with the PyTorch 
framework (Paszke et al., 2019) and trained with an NVIDIA GTX 3090 
GPU for 300 epochs. We used Adam as the optimizer with a learning 
rate fixed to 0.0001 and a batch size of 8. The hyperparameter 𝜆 is set to 
0.8 while 𝛾1 and 𝛾2 are set to 1.0 in our experiments. Following the com-
mon practice, we applied multiple metrics, including Accuracy (ACC), 
Sensitivity (SEN), Specificity (SPE), the weighted F1-score, and the area 
under the receiver operating characteristic curve (AUC), to evaluate the 
performance of the proposed method and competing methods.

4.3. Comparison with competing methods

We conducted comprehensive comparisons between the proposed 
CRAD framework and eight existing methods, including two baseline 
models and six state-of-the-art approaches: (1) a single-modal baseline 
(SM-BL) (Korolev et al., 2017) using only MRI; (2) a multimodal 
baseline (MM-BL) (Han et al., 2019) with both MRI and PET; (3) a mul-
timodal disease-induced network (MDL-Net) (Qiu et al., 2024); (4) an 
imputation-based model (TPA-GAN) (Gao et al., 2021) that synthesizes 
PET from MRI; (5) a gated regularization knowledge distillation method 
(CReg-KD) (Yang et al., 2023); (6) an attentive feature distillation 
scheme (AFDS) (Wang et al., 2019); and (7) two recent cross-modal 
distillation techniques (DFTD (Chen et al., 2023) and IC-MKD (Kwak 
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Table 2
Performance comparison of different methods on the ADNI dataset. The best results are highlighted. The results are shown with mean and standard deviation 
(Mean ± Std) across five folds. 
 Methods AD vs. NC pMCI vs. sMCI
 ACC↑ AUC↑ SEN↑ SPE↑ F1-score↑ ACC↑ AUC↑ SEN↑ SPE↑ F1-score↑  
 SM-BL (Korolev et al., 2017) 0.894 ± 0.04a 0.881 ± 0.05a 0.934 ± 0.04a 0.827 ± 0.11a 0.911 ± 0.04a 0.850 ± 0.04a 0.853 ± 0.03a 0.924 ± 0.10 0.781 ± 0.14a 0.854 ± 0.02a  MM-BL (Han et al., 2019) 0.915 ± 0.06a 0.914 ± 0.06a 0.934 ± 0.06 0.894 ± 0.09a 0.927 ± 0.05a 0.906 ± 0.04 0.906 ± 0.05 0.933 ± 0.06 0.880 ± 0.08 0.903 ± 0.05   MDL-Net (Qiu et al., 2024) 0.953 ± 0.04 0.956 ± 0.04 0.954 ± 0.06 0.958 ± 0.06a 0.957 ± 0.04 0.911 ± 0.04 0.906 ± 0.05 0.918 ± 0.05 0.893 ± 0.08 0.907 ± 0.04   TPA-GAN (Gao et al., 2021) 0.861 ± 0.02a 0.924 ± 0.01a 0.860 ± 0.02a 0.861 ± 0.05a 0.887 ± 0.01a 0.846 ± 0.01a 0.885 ± 0.01a 0.749 ± 0.03a 0.912 ± 0.02 0.782 ± 0.04a  CReg-KD (Yang et al., 2023) 0.934 ± 0.02a 0.937 ± 0.02a 0.935 ± 0.06 0.940 ± 0.06a 0.943 ± 0.02a 0.906 ± 0.03 0.913 ± 0.03 0.956 ± 0.04 0.871 ± 0.06 0.904 ± 0.03   AFDS (Wang et al., 2019) 0.945 ± 0.02a 0.930 ± 0.04a 0.981 ± 0.03 0.878 ± 0.09a 0.956 ± 0.01a 0.874 ± 0.03a 0.863 ± 0.03a 0.901 ± 0.08 0.824 ± 0.12 0.871 ± 0.03a  DFTD (Chen et al., 2023) 0.934 ± 0.05a 0.945 ± 0.04a 0.906 ± 0.09a 0.983 ± 0.03 0.941 ± 0.04a 0.872 ± 0.02a 0.875 ± 0.01a 0.858 ± 0.02a 0.892 ± 0.04a 0.884 ± 0.01a  IC-MKD (Kwak et al., 2025) 0.935 ± 0.03a 0.932 ± 0.02a 0.926 ± 0.06 0.937 ± 0.06a 0.944 ± 0.03a 0.853 ± 0.04a 0.847 ± 0.04a 0.816 ± 0.14a 0.878 ± 0.08a 0.848 ± 0.07a 
 CRAD 0.959 ± 0.02 0.966 ± 0.01 0.947 ± 0.04 0.983 ± 0.03 0.965 ± 0.01 0.911 ± 0.04 0.919 ± 0.03 0.937 ± 0.04 0.900 ± 0.08 0.907 ± 0.04  
a Denotes that the performance improvements of our proposed method have statistical significance (𝑝 < 0.05) based on a paired t-test.
Table 3
Generalization performance comparison of different methods on the AIBL dataset. The best results are highlighted. The results are shown with mean and standard 
deviation (Mean ± Std) across five folds. 
 Methods AD vs. NC pMCI vs. sMCI
 ACC↑ AUC↑ SEN↑ SPE↑ F1-score↑ ACC↑ AUC↑ SEN↑ SPE↑ F1-score↑  
 SM-BL (Korolev et al., 2017) 0.870 ± 0.01 0.874 ± 0.01 0.919 ± 0.05 0.866 ± 0.05 0.866 ± 0.01 0.804 ± 0.07a 0.860 ± 0.06a 0.937 ± 0.09a 0.782 ± 0.09a 0.685 ± 0.12a  MM-BL (Han et al., 2019) 0.812 ± 0.07a 0.822 ± 0.06 0.932 ± 0.05 0.711 ± 0.15a 0.823 ± 0.05a 0.800 ± 0.14a 0.860 ± 0.08a 0.955 ± 0.10a 0.765 ± 0.18 0.662 ± 0.12a  MDL-Net (Qiu et al., 2024) 0.826 ± 0.04a 0.834 ± 0.03a 0.926 ± 0.05 0.742 ± 0.11a 0.831 ± 0.02a 0.865 ± 0.10 0.865 ± 0.06a 0.866 ± 0.14 0.865 ± 0.14 0.724 ± 0.11   TPA-GAN (Gao et al., 2021) 0.851 ± 0.03a 0.921 ± 0.01 0.840 ± 0.06a 0.871 ± 0.06a 0.877 ± 0.03 0.834 ± 0.03a 0.889 ± 0.01a 0.749 ± 0.08a 0.893 ± 0.04 0.783 ± 0.05   CReg-KD (Yang et al., 2023) 0.807 ± 0.03a 0.811 ± 0.03a 0.862 ± 0.04a 0.760 ± 0.07a 0.806 ± 0.02a 0.767 ± 0.11a 0.805 ± 0.09a 0.866 ± 0.09a 0.745 ± 0.13a 0.596 ± 0.14a  AFDS (Wang et al., 2019) 0.780 ± 0.06a 0.786 ± 0.05a 0.874 ± 0.07a 0.698 ± 0.15a 0.789 ± 0.03a 0.849 ± 0.08 0.864 ± 0.06a 0.889 ± 0.08a 0.840 ± 0.10 0.698 ± 0.11   DFTD (Chen et al., 2023) 0.873 ± 0.01 0.874 ± 0.01a 0.885 ± 0.03a 0.864 ± 0.01 0.865 ± 0.01a 0.844 ± 0.07 0.847 ± 0.09 0.852 ± 0.13a 0.842 ± 0.06 0.672 ± 0.13a  IC-MKD (Kwak et al., 2025) 0.870 ± 0.04a 0.871 ± 0.02a 0.881 ± 0.03a 0.857 ± 0.04 0.861 ± 0.01a 0.789 ± 0.02a 0.813 ± 0.03a 0.852 ± 0.06a 0.775 ± 0.03a 0.598 ± 0.04a 
 CRAD 0.874 ± 0.03 0.879 ± 0.02 0.938 ± 0.04 0.820 ± 0.07 0.873 ± 0.02 0.886 ± 0.06 0.921 ± 0.05 0.978 ± 0.05 0.865 ± 0.07 0.768 ± 0.11  
a Denotes that the performance improvements of our proposed method have statistical significance (𝑝 < 0.05) based on a paired t-test.
Table 4
Component ablation results of the teacher model on the AD diagnosis task.
 OP CAFR ACC↑ AUC↑ SEN↑ SPE↑ F1-score↑  
 1 0.881 ± 0.02 0.871 ± 0.04 0.909 ± 0.03 0.832 ± 0.11 0.899 ± 0.02  
 2 � 0.941 ± 0.03 0.939 ± 0.03 0.930 ± 0.05 0.949 ± 0.05 0.946 ± 0.03  
 3 � 0.934 ± 0.01 0.924 ± 0.02 0.966 ± 0.03 0.883 ± 0.06 0.944 ± 0.01  
 4 � � 0.965 ± 0.02 0.969 ± 0.02 0.980 ± 0.03 0.958 ± 0.06 0.964 ± 0.02 
et al., 2025)). All methods were trained and evaluated under the same 
dataset settings to ensure a fair comparison.

As summarized in Table  2, our CRAD method consistently achieves 
superior performance in both AD vs. NC classification and pMCI vs. 
sMCI prediction tasks. Specifically, CRAD attains the highest scores 
in ACC, AUC, and F1-Score, demonstrating its effectiveness and ro-
bustness. It is noteworthy that multimodal methods (Qiu et al., 2024; 
Han et al., 2019) generally outperform the single-modal baseline (Ko-
rolev et al., 2017), underscoring the benefit of integrating complemen-
tary information from multiple modalities. Furthermore, knowledge 
distillation-based approaches (Yang et al., 2023; Chen et al., 2023; 
Wang et al., 2019; Kwak et al., 2025) yield noticeably better results 
than the imputation-based TPA-GAN (Gao et al., 2021), affirming the 
advantage of distillation over synthesis in handling missing modalities.

To assess generalization capability, we evaluated all models on the 
AIBL dataset, which is not used for training. As shown in Table  3, 
although all methods exhibit performance degradation due to domain 
shift, CRAD maintains the highest accuracy and robustness, further 
validating its strong generalization across datasets. Among distillation 
techniques, AFDS (Wang et al., 2019) and CReg-KD (Yang et al., 2023) 
show competitive results in the ADNI dataset, while DFTD (Chen et al., 
2023) and IC-MKD (Kwak et al., 2025) show more robust performance.

In summary, these results highlight that CRAD not only effectively 
integrates multimodal information but also achieves competing per-
formance through our proposed cognitive-aware attention distillation 
mechanism, even in the presence of missing data.

4.4. Ablation study

In this subsection, we evaluated the effectiveness of different com-
ponents and analyzed attention distillation, confidence regularization, 
orthogonal projection, and modality gaps in various settings.
8 
4.4.1. Component ablation experiments
To validate the contribution of each proposed module within the 

CRAD framework, we conducted extensive ablation studies on both the 
teacher and student networks. All experiments were performed on the 
ADNI dataset for the AD vs. NC classification task.

The teacher model’s ablation results are presented in Table  4. 
The baseline teacher (Row 1) achieves an ACC of 0.881. Adding the 
Orthogonal Projection (OP) module (Row 2) significantly improves 
performance (ACC: 0.941), confirming its effectiveness in disentan-
gling multimodal features. Introducing the Cognitive Awareness Fea-
ture Refinement (CAFR) module (Row 3) also provides a substantial 
boost (ACC: 0.934), demonstrating that the auxiliary task of MMSE 
prediction successfully enhances the learning of disease-relevant fea-
tures. The combination of both OP and CAFR modules (Row 4) yields 
the best teacher performance (ACC: 0.965), indicating that feature 
disentanglement and disease-aware refinement are complementary.

The student model’s ablation results are presented in Table  5. The 
MRI-only baseline (Row 1) serves as the starting point. Adding standard 
soft-label and feature distillation (SD+FD) with the SDU unit (Row 
2) provides a strong baseline. Incorporating our proposed PF-CMAD 
module (Rows 4, 5, 6) consistently improves performance over the 
SD+FD baseline, with the most significant gains in specificity (SPE), 
highlighting its strength in refining feature distillation. The SDU unit 
also shows a clear positive impact by comparing rows with and without 
it. The complete CRAD framework (Row 7), integrating SDU, SD, 
FD, and PF-CMAD, achieves the best performance across almost all 
metrics (ACC: 0.959, AUC: 0.966), validating the synergistic effect of 
all components.

We found that there is a subtle performance fluctuation when 
combining Feature Distillation (FD) or Attention Distillation (ATD) with 
Soft-Label Distillation (SD); this phenomenon arises from distillation 
target conflicts, which we resolve via our proposed Smooth Distillation 
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Table 5
Component ablation results of the student model on the AD diagnosis task. The ‘‘SD’’ and ‘‘FD’’ represent soft-label distillation 
and feature distillation.
 SDU SD FD PF-CMAD ACC↑ AUC↑ SEN↑ SPE↑ F1-score↑  
 1 0.889 ± 0.05 0.870 ± 0.06 0.942 ± 0.04 0.799 ± 0.15 0.908 ± 0.04  
 2 � � 0.928 ± 0.05 0.926 ± 0.05 0.933 ± 0.07 0.918 ± 0.06 0.951 ± 0.04  
 3 � � � 0.928 ± 0.04 0.936 ± 0.04 0.900 ± 0.07 0.971 ± 0.04 0.935 ± 0.04  
 4 � � � 0.922 ± 0.05 0.914 ± 0.06 0.956 ± 0.05 0.872 ± 0.15 0.936 ± 0.03  
 5 � � � 0.935 ± 0.05 0.933 ± 0.05 0.934 ± 0.06 0.932 ± 0.07 0.945 ± 0.05  
 6 � � � 0.934 ± 0.03 0.931 ± 0.03 0.945 ± 0.04 0.918 ± 0.06 0.944 ± 0.03  
 7 � � � � 0.959 ± 0.02 0.966 ± 0.01 0.947 ± 0.04 0.983 ± 0.03 0.965 ± 0.01 
Unit (SDU). FD forces high-level feature alignment between the teacher 
(MRI+PET) and the student (MRI-only), ignoring distribution shifts. 
ATD transfers attention maps of multimodal features, which may cause 
incompatibility with the MRI-only student’s feature space. In other 
words, the FD and ATD attempt to align distributionally incompatible 
features, introducing noise that degrades performance. We mitigate 
this conflict via dual confidence regularization (SDU), which evaluates 
the teacher’s certainty for intermediate and high-level features. By 
adaptively reweighting distillation losses, SDU suppresses conflicting 
distillation (FD/ATD), preserving only reliable knowledge transfer.

In summary, the ablation studies show that each module contributes 
to performance gains, and their combination is essential for achieving 
the optimal result.

4.4.2. Influence of attention distillation
To further validate the design of our proposed Parameter-Free Cross-

Modality Attention Distillation (PF-CMAD) module, which utilizes an 
attention converter (PFAC) to calculate attention maps, we conducted 
a comprehensive comparative analysis with multiple widely used at-
tention mechanisms: a baseline method without attention (w/o), four 
conventional attention methods with learnable parameters (SENet (Hu 
et al., 2018), ECA (Wang et al., 2020b), CBAM (Woo et al., 2018), 
SA (Vaswani et al., 2017)), and three parameter-free attention methods 
(AFDS (Wang et al., 2019), SimAM (Yang et al., 2021), and PFAA (Kör-
ber, 2022). In addition, we evaluated several variants: PFAC-w/o (a 
pooling operation without normalization), PFAC-w (a pooling opera-
tion with traditional normalization), and PFAC-w+ (a pooling operation 
with normalization from the PFCA (Shi et al., 2023), namely, our full 
PF-CMAD). We aim to verify whether introducing learnable parameters 
leads to better performance in our knowledge distillation framework 
for medical image analysis. As shown in Table  6, all attention modules 
bring improvements over the baseline (first row). Among the learnable 
modules, SENet and CBAM achieve competitive performance. However, 
our parameter-free PF-CMAD (PFAC-w+) consistently achieves the best 
balance across metrics, especially in accuracy (ACC) and specificity 
(SPE). It outperforms all parameterized attention modules without 
adding any learnable parameters. This indicates that carefully designed 
parameter-free attention can effectively highlight critical cross-modal 
features while avoiding overfitting and enhancing generalization, prov-
ing especially suitable for clinical applications with limited and noisy 
data. PF-CMAD offers a superior alternative to learnable attention 
modules in the context of cross-modality distillation, by reducing model 
complexity while increasing robustness and performance.

4.4.3. Effectiveness of confidence regularization
To evaluate the effectiveness of the SDU, we compared it with the 

traditional gating regularization methods (Yang et al., 2023, 2022b). 
As shown in Table  7, employing gating regularization improves the 
overall performance by approximately 1%, suggesting that knowledge 
refinement is useful. In addition, if we directly set the 𝜓 to zero when 
the student’s output is more confident, the AUC further improves by 
about 2%, implying that soft regularization (Soften) is better than sim-
ple gating regularization because it considers the consistency of results. 
The proposed soft regularization (Soften+) by considering relative error 
achieves the best performance, which suggests that applying a soft 
regularization strategy can enhance the reliability of distillation.
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Fig. 5. Performance analysis under different modality inputs.

4.4.4. Impact of orthogonal projection
The orthogonal projection (OP) loss (Eq. (3)) aims to maximize 

intra-modal self-similarity by preserving critical information while min-
imizing inter-modal feature similarity to suppress redundancy. In con-
trast to Chen et al. (2023) and Kwak et al. (2025), our proposed orthog-
onal projection reduces computational cost and the risk of over-fitting 
on limited medical data because it has no extra parameters.

We evaluated various projection settings, such as orthogonal projec-
tion, shared projection, and fusion projection. As shown in Table  8, the 
orthogonal projection is better than the shared and fusion projections 
because it reduces redundant information. Combining orthogonal and 
shared projection on modality-specific and modality-shared features 
(Orthogonal+) achieves the best AUC.

4.4.5. Modality ablation analysis
A comprehensive ablation study was conducted to evaluate the 

performance of the proposed method under different modal inputs. 
As shown in Fig.  5, our teacher model achieved optimal performance 
when complete modalities (MRI+PET) were available (ACC: 0.965, 
AUC: 0.969), validating the effectiveness of multimodal information 
fusion. The proposed single-modal models (MRI-only and PET-only) 
significantly outperformed their corresponding baselines; the MRI-only 
model improved ACC from 0.889 to 0.959 and AUC from 0.870 to 
0.965, while the PET-only model increased ACC from 0.875 to 0.956 
and AUC from 0.863 to 0.952. These results confirm that the knowl-
edge distillation framework successfully transferred knowledge from 
the multimodal teacher to the single-modal students, substantially en-
hancing the representation capability of individual modalities. Be-
tween the two single-modal variants, the MRI-only model slightly 
outperformed on most metrics, whereas the PET-only model showed 
marginally higher sensitivity, indicating the method’s strong adaptabil-
ity to different input modalities. Importantly, the performance of the 
single-modal models closely approximated that of the complete mul-
timodal model, demonstrating that the proposed approach minimizes 
performance degradation while maximizing clinical practicality with 
limited resources.
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Table 6
Performances of various attention modules.
 Attention ACC↑ AUC↑ SEN↑ SPE↑ F1-score↑

 w/o 0.928 ± 0.04 0.936 ± 0.04 0.900 ± 0.07 0.971 ± 0.04 0.935 ± 0.04  
 SENeta 0.941 ± 0.03 0.944 ± 0.03 0.933 ± 0.05 0.955 ± 0.04 0.947 ± 0.02  
 ECAa 0.935 ± 0.04 0.942 ± 0.04 0.917 ± 0.12 0.967 ± 0.05 0.938 ± 0.04  
 CBAMa 0.935 ± 0.05 0.939 ± 0.05 0.917 ± 0.04 0.962 ± 0.05 0.943 ± 0.04  
 SAa 0.934 ± 0.03 0.931 ± 0.03 0.947 ± 0.06 0.915 ± 0.02 0.945 ± 0.03  
 AFDS 0.945 ± 0.02 0.930 ± 0.04 0.981 ± 0.03 0.878 ± 0.09 0.956 ± 0.01  
 SimAM 0.951 ± 0.02 0.939 ± 0.01 0.972 ± 0.04 0.906 ± 0.02 0.960 ± 0.02  
 PFAA 0.947 ± 0.03 0.953 ± 0.03 0.935 ± 0.04 0.971 ± 0.04 0.954 ± 0.02  
 PFAC-w/o 0.950 ± 0.02 0.950 ± 0.02 0.944 ± 0.05 0.955 ± 0.05 0.957 ± 0.02  
 PFAC-w 0.958 ± 0.02 0.962 ± 0.02 0.959 ± 0.03 0.964 ± 0.04 0.964 ± 0.01  
 PFAC-w+ 0.959 ± 0.02 0.966 ± 0.01 0.947 ± 0.04 0.983 ± 0.03 0.965 ± 0.01 
a Indicates that the attention modules have learnable parameters.
Table 7
Comparison of different confidence regularization methods.
 Gating ACC↑ AUC↑ SEN↑ SPE↑ F1-score↑

 w/o 0.934 ± 0.03 0.931 ± 0.03 0.945 ± 0.04 0.918 ± 0.06 0.944 ± 0.03  
 Gating 0.942 ± 0.03 0.941 ± 0.03 0.945 ± 0.05 0.936 ± 0.05 0.951 ± 0.03  
 Soften 0.956 ± 0.02 0.964 ± 0.01 0.949 ± 0.05 0.978 ± 0.04 0.963 ± 0.01  
 Soften+ 0.959 ± 0.02 0.966 ± 0.01 0.947 ± 0.04 0.983 ± 0.03 0.965 ± 0.01 
Table 8
Comparison of different projection methods. ‘‘(w/o)’’ as a baseline represents a fusion projection that only 
concatenates features. ‘‘Ort’’ means Orthogonal.
 Projection ACC↑ AUC↑ SEN↑ SPE↑ F1-score↑

 w/o 0.902 ± 0.06 0.887 ± 0.07 0.931 ± 0.05 0.843 ± 0.15 0.919 ± 0.05  
 Shared 0.928 ± 0.02 0.924 ± 0.02 0.931 ± 0.05 0.918 ± 0.06 0.936 ± 0.02  
 Ort 0.934 ± 0.02 0.926 ± 0.03 0.953 ± 0.05 0.898 ± 0.10 0.943 ± 0.03 
 Ort+ 0.934 ± 0.03 0.934 ± 0.03 0.913 ± 0.04 0.956 ± 0.05 0.940 ± 0.03  
Table 9
Performances of the proposed CRAD framework with different backbones.
 Backbone ACC↑ AUC↑ SEN↑ SPE↑ F1-score↑

 VGG-16 0.959 ± 0.02 0.966 ± 0.01 0.947 ± 0.04 0.983 ± 0.03 0.965 ± 0.01 
 ResNet-18 0.950 ± 0.02 0.952 ± 0.02 0.959 ± 0.03 0.944 ± 0.04 0.957 ± 0.02  
 ResNet-50 0.933 ± 0.01 0.942 ± 0.01 0.923 ± 0.03 0.961 ± 0.05 0.945 ± 0.01  
 Densenet-121 0.944 ± 0.02 0.943 ± 0.02 0.945 ± 0.06 0.941 ± 0.06 0.953 ± 0.02  
Table 10
Distillation comparison of different intermediate layers, where the layer num-
bers varying from 1 to 4 represent distillation from shallow to deep layers.
 Layers ACC AUC SEN SPE F1-score  
 1 0.926 ± 0.05 0.925 ± 0.05 0.934 ± 0.05 0.917 ± 0.07 0.938 ± 0.04 
 2 0.922 ± 0.04 0.928 ± 0.04 0.900 ± 0.07 0.956 ± 0.07 0.929 ± 0.04 
 3 0.908 ± 0.04 0.916 ± 0.04 0.892 ± 0.06 0.941 ± 0.06 0.920 ± 0.04 
 4 0.909 ± 0.04 0.911 ± 0.04 0.887 ± 0.05 0.936 ± 0.05 0.919 ± 0.04 
 3,4 0.915 ± 0.04 0.917 ± 0.05 0.925 ± 0.05 0.910 ± 0.07 0.927 ± 0.04 
 1,2 0.951 ± 0.03 0.955 ± 0.03 0.946 ± 0.05 0.964 ± 0.04 0.957 ± 0.03 
 All 0.959 ± 0.02 0.965 ± 0.01 0.948 ± 0.04 0.983 ± 0.03 0.965 ± 0.01 

4.5. Impact of backbone architectures

To evaluate the influence of different backbones, we used 3D 
VGG (Simonyan and Andrew, 2015), 3D ResNet (He et al., 2016), and 
3D Densenet (Huang et al., 2017) as encoders, respectively. As shown in 
Table  9, the performance of AD diagnosis only shows minor differences, 
indicating that the proposed CRAD is robust with different backbones. 
Interestingly, compared to the simple backbones (i.e., VGG (Simonyan 
and Andrew, 2015) and ResNet-18 (He et al., 2016)), the more complex 
backbones (i.e., ResNet-50 (He et al., 2016) and Densenet-121 (Huang 
et al., 2017)) seem to have a minor performance decrease. This may be 
due to the insufficient training data, which can lead to overfitting for 
larger models.
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4.6. Layer selection for knowledge distillation

A key design consideration in our distillation framework is the 
selection of intermediate layers from which knowledge is transferred. 
Different layers in a deep network capture different levels of fea-
ture abstraction. Shallow layers typically retain structural and detailed 
information, while deeper layers encode semantic and high-level repre-
sentations. Relying on a single layer may lead to incomplete knowledge 
transfer, limiting the student model’s ability to mimic the teacher’s full 
behavioral spectrum.

To determine the optimal layer combination, we conducted an 
extensive ablation study. We evaluated various layer configurations, 
including single-layer and multi-layer distillation settings. As shown 
in Table  10, while single-layer distillation (e.g., Layer 1 or 2) already 
provides competitive results, the best performance was achieved when 
features from all four layers were used jointly (ACC = 0.959, AUC 
= 0.965). This suggests that both low-level and high-level features 
offer complementary knowledge that collectively enhances the stu-
dent’s learning. Notably, the combination of early layers (1 and 2) also 
performed strongly, indicating the importance of shallow-level features 
for this task.

These results affirm that multi-layer feature integration is essential 
for effective knowledge distillation. Hence, in our proposed CRAD 
framework, we distill knowledge from all intermediate layers to max-
imize the student model’s representational capacity and diagnostic 
accuracy.
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Table 11
Hyperparameters sensitivity evaluation of the teacher and student models.
 Parameter ACC AUC SEN SPE F1-score  
 

𝜆

0.2 0.942 ± 0.02 0.946 ± 0.02 0.928 ± 0.03 0.964 ± 0.04 0.948 ± 0.02 
 0.4 0.944 ± 0.02 0.950 ± 0.02 0.949 ± 0.05 0.952 ± 0.04 0.953 ± 0.01 
 0.5 0.955 ± 0.03 0.963 ± 0.02 0.948 ± 0.03 0.981 ± 0.01 0.966 ± 0.02 
 0.6 0.945 ± 0.02 0.949 ± 0.02 0.943 ± 0.06 0.956 ± 0.08 0.949 ± 0.02 
 0.8 0.959 ± 0.02 0.965 ± 0.01 0.948 ± 0.04 0.983 ± 0.03 0.965 ± 0.01 
 1.0 0.959 ± 0.02 0.962 ± 0.01 0.960 ± 0.02 0.964 ± 0.02 0.964 ± 0.01 
 

𝛾1 , 𝛾2

0.0,1.0 0.941 ± 0.03 0.939 ± 0.03 0.930 ± 0.05 0.949 ± 0.05 0.946 ± 0.03 
 1.0,0.0 0.934 ± 0.01 0.924 ± 0.02 0.966 ± 0.03 0.883 ± 0.06 0.944 ± 0.01 
 0.2,0.8 0.945 ± 0.02 0.944 ± 0.02 0.962 ± 0.03 0.927 ± 0.01 0.951 ± 0.01 
 0.4,0.6 0.935 ± 0.03 0.935 ± 0.04 0.922 ± 0.03 0.949 ± 0.09 0.942 ± 0.02 
 0.6,0.4 0.943 ± 0.03 0.949 ± 0.03 0.935 ± 0.05 0.964 ± 0.04 0.951 ± 0.03 
 0.8,0.2 0.934 ± 0.03 0.927 ± 0.06 0.929 ± 0.03 0.926 ± 0.13 0.948 ± 0.02 
Fig. 6. Plots on the learning curves of different knowledge distillation models (left: train accuracy, middle: validation accuracy, right: differences of train and 
validation accuracy). The orange represents our model, the blue represents the attention distillation model (Wang et al., 2019), and the green represents the 
regularized distillation model (Yang et al., 2023). The difference curves between the training and validation accuracy are also displayed. Our models show faster 
convergence with less variation between the train and validation datasets.
Table 12
Evaluation of model complexity of different methods.
 Methods Params. (M)↓ Flops (G)↓ 𝑇𝑖𝑛𝑓 . (ms) ↓ 
 SM-BL (Korolev et al., 2017) 56.8 77.5 4.2  
 MM-BL (Han et al., 2019) 74.8 132.6 13.1  
 MDL-Net (Qiu et al., 2024) 2.8 27.4 8.9  
 TPA-GAN (Gao et al., 2021) 20.6 289.1 33.8  
 CReg-KD (Yang et al., 2023) 46.7 221.9 5.9  
 AFDS (Wang et al., 2019) 33.3 155.6 4.9  
 DFTD (Chen et al., 2023) 1.5 10.8 6.9  
 IC-MKD (Kwak et al., 2025) 8.3 8.7 3.9  
 CRAD 46.6 73.9 4.1  

4.7. Influence of hyperparameter

To ensure the robustness and reproducibility of our proposed CRAD 
framework, we conducted a comprehensive sensitivity analysis on its 
key hyperparameters: the distillation loss coefficient 𝜆 and the loss 
weighting coefficients 𝛾1 and 𝛾2. The coefficient 𝜆 controls the relative 
importance of the knowledge distillation loss versus the task-specific 
classification loss. We tested 𝜆 across a wide range of values [0.2, 
0.4, 0.5, 0.6, 0.8, 1.0]. As shown in Table  11, the model performance 
is robust across values from 0.5 to 1.0, with the optimal balance of 
accuracy (ACC), robustness (AUC), and specificity (SPE) achieved at 
𝜆 = 0.8. This indicates that emphasizing knowledge transfer from 
the teacher is beneficial, but requires balancing with the student’s 
own task learning. The weights 𝛾1 and 𝛾2 balance the contribution 
of feature-level refinement and disentanglement. Ablations show that 
using either loss alone (𝛾1 = 1.0, 𝛾2 = 0.0 or 𝛾1 = 0.0, 𝛾2 = 1.0) leads to 
imbalanced performance, e.g., high SEN but low SPE, or vice versa. The 
optimal performance across most metrics was achieved with 𝛾1 = 0.6
and 𝛾2 = 0.4, confirming that both intermediate feature alignment 
and final output matching are essential for effective distillation. These 
results demonstrate that CRAD is stable under a reasonable range of 
hyperparameters, and our chosen values are well-justified to maximize 
generalization and performance.
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4.8. Model performance evaluation

Our proposed model exhibits a trade-off in efficiency and complex-
ity compared to competing methods, as detailed in Table  12. It achieves 
the lowest inference time of 4.2 ms per sample on one RTX 3090 
GPU, owing to its optimized architecture that minimizes redundant 
computations. In addition, our model requires only 73.9G FLOPs and 
46.6M parameters, fewer than most competing methods, underscor-
ing its computational efficiency. These advantages make our model 
highly suitable for real-world applications with strict computational 
constraints.

While our method, CRAD, does not offer the lowest computational 
complexity, it is specifically designed to excel in generalization, ro-
bustness, and real-world applicability, which are critical in clinical 
settings and justify its complexity. For example, CRAD significantly 
reduces cross-dataset performance degradation (8.5% vs. 12.7% for 
MDL-Net (Qiu et al., 2024)), demonstrating stronger generalization ca-
pability. Moreover, unlike (Gao et al., 2021; Qiu et al., 2024; Han et al., 
2019), which require both MRI and PET modalities during inference, 
CRAD’s student model operates robustly using only MRI, improving 
practicality in environments where PET is scarce or unavailable. Thus, 
while CRAD introduces additional complexity, it offers essential ad-
vantages in terms of real-world usability, cross-domain stability, and 
resilience to missing data, making it a more suitable solution for clinical 
scenarios.

Fig.  6 shows the accuracies obtained for our proposed model (or-
ange), the attention distillation model (Wang et al., 2019) (blue), and 
the regularized distillation model (Yang et al., 2023) (green), and all 
of them are averaged across all cross-validations. As Fig.  6 (left and 
middle) shows, the CRAD reaches a stable state after 100 epochs and 
achieves the highest accuracy. In addition, the accuracy gap between 
train and validation datasets suggests the stability of the model, as 
shown in Fig.  6 (right). Our model shows faster convergence and a 
smaller accuracy gap. This demonstrates its enhanced stability and 
efficiency during both training and validation.
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Fig. 7. Comparison of performance between teacher and student models. Top: 
Training accuracy, validation accuracy, and their difference curves highlight 
the superior performance of the student model in accuracy. Bottom: Training 
loss, validation loss, and their difference curves demonstrate the stability of 
the student model. Note that the difference curves of the student model are 
close to the zero axis, indicating better stability.

As illustrated in Fig.  7, the learning curves (solid lines) and differ-
ence curves (dashed lines) are plotted for the teacher and the student 
models of the proposed CRAD in terms of loss and accuracy. In the 
learning curves, the accuracy and loss of the teacher model are rep-
resented in orange, while those of the student model are depicted in 
blue. It can be observed that the student model converges faster than 
the teacher model, as evidenced by the training and validation accu-
racy curves after 100 epochs. This indicates that attention distillation 
facilitates faster learning of the student model from the teacher model. 
Furthermore, the smaller average accuracy discrepancies (student: 0.12 
vs. teacher: 0.26) between training and validation data suggest the 
effectiveness of attention distillation in reducing overfitting, and the 
smaller average loss discrepancies (student: 0.06 vs. teacher: 0.19) 
between training and validation datasets demonstrate the enhanced 
stability of the student model during training.

4.9. Visualization and failure case analysis

We computed the mutual information between brain regions and 
diagnostic labels to identify brain regions critical for AD diagnosis. 
The spatial distribution of these regions is visualized in Fig.  8, while 
their original mutual information values with disease labels are detailed 
in Table  13. These brain regions are the left Hippocampus (lHIP), 
left Parahippocampal Gyrus (lPHG), right Hippocampus (rHIP), right 
Middle Occipital Gyrus (rMOG), left Inferior Temporal Gyrus (lITG), 
left Amygdala (lAMY), right Parahippocampal Gyrus (rPHG), right 
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Fig. 8. Overview of the brain regions related to AD. Regions with purple and 
blue colors illustrate that they are more important for diagnosing AD. The 
visualization is drawn with the Brain-Net Viewer (Xia et al., 2013). Notably, 
the mutual information is normalized to 0–1.

Fig. 9. Visualization of the feature maps, which are obtained by averaging 
all the data of the same groups. For each dataset, the first row is the original 
brain images, and the following rows represent shallow intermediate feature 
maps.

Fig. 10. Visualizations of case analysis. The left column shows cases of incor-
rect classification, and the right column shows cases of correct classification. 
The upper row is progressive MCI (pMCI), and the lower row is stable MCI 
(sMCI).

Amygdala (rAMY), right Superior Temporal Gyrus (rSTG), and right 
Inferior Parietal Gyrus (rIPG), encompassing the supramarginal and 
angular gyri, respectively. These regions are prominently associated 
with AD pathology, underscoring their diagnostic contribution.

As illustrated in Fig.  9, the visualized feature maps highlight regions 
of high importance, denoted by deeper color intensities. These regions 
exhibit strong correspondence with the critical brain areas identified in 
Fig.  8, further validating the disease-aware capability of our proposed 
method. Visualization analysis also reveals that most brain regions 
contribute minimally to AD diagnosis, indicating the need for the model 
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Table 13
Top 10 brain regions with the greatest mutual information with disease
labels.
 lHIP lPHG rHIP rMOG lITG lAMY rPHG rAMY rSTG rIPG

 0.1953 0.1203 0.1129 0.1079 0.1041 0.1012 0.0977 0.0901 0.0881 0.0740 

to focus more intensively on extracting and leveraging discriminating 
features.

Despite the strong overall performance of CRAD, we observed that 
the majority of misclassifications occurred between pMCI and sMCI 
groups, a challenge in AD research due to the subtlety of early neurode-
generative changes (Petersen et al., 2018; Weber et al., 2021). These 
misclassifications may be due to atypical presentations or very early 
disease stages. To better understand these errors, we visualized feature 
distributions for misclassified samples. The cases are categorized into 
two groups (correctly classified and misclassified), and the average 
features captured by the proposed model are displayed (the features are 
scaled up to the original shape). As shown in Fig.  10, the up left (pMCI 
misclassified as sMCI) shows the model attended broadly to temporal 
and parietal regions, but failed to highlight the left Hippocampus 
strongly enough, the region for predicting progression, while the down 
left (sMCI misclassified as pMCI) indicates the model overemphasized 
the occipital region, which is less specific to AD pathology, while 
under-weighting atrophy in the Parahippocampal Gyrus. For correctly 
classified samples, the proposed model focuses on key subtle areas, such 
as the Middle Frontal Gyrus and Precuneus.

These visualizations suggest that while CRAD generally focuses on 
clinically relevant regions, it can sometimes be distracted by non-
specific structural changes or fail to capture very subtle atrophy pat-
terns. This may be due to the inherent heterogeneity within MCI 
subgroups. Future directions include integrating additional biomarkers 
and designing more sensitive feature extractors for early structural 
changes.

4.10. Discussion

This study proposes a Consistency Refinement-driven Multi-level 
Self-Attention Distillation framework to improve multimodal knowl-
edge transfer for disease diagnosis and address the challenge of miss-
ing modalities in clinical practice. Compared with existing knowledge 
distillation methods, the CRAD has several unique advantages.

First, existing knowledge distillation methods (Yang et al., 2023; 
Van Sonsbeek et al., 2021; Song et al., 2023) ignore the ability to 
identify discriminating intermediate features. Our proposed CRAD can 
adaptively distill attentive features through a simple yet effective at-
tention converter module, which can be viewed as a regularization 
term that refines knowledge. Moreover, we align multi-level features 
to distill cross-modal discriminating knowledge. Second, the existing 
knowledge refinement ignores the relative error between the output 
of the teacher and student models. We develop a consistency-driven 
confidence regularization that smooths distillation by introducing a dy-
namic regularization term 𝜓 to balance knowledge transfer between the 
teacher and student models. We further incorporate this regularization 
within the hierarchical self-attention distillation process. Third, com-
pared to existing feature disentanglement methods (Chen et al., 2023; 
Lu et al., 2020; Yang et al., 2022a; Wang et al., 2019, 2020a), the pro-
posed orthogonal projection and parameter-free attention distillation 
are light designs without additional parameters, making them partic-
ularly suitable for resource-constrained real-world applications. More-
over, we focus more on transferring robust shallow knowledge, which 
contains subtle disease-related changes, than high-level knowledge.

Despite its strengths, the proposed method shows limitations. First, 
the teacher model can only be trained with paired multimodal data, 
which limits the amount of data it can learn. In addition, from the 
results of Table  3, the disparities among different domains contribute 
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to suboptimal generalization performance. This indicates that it is 
essential to learn domain-invariant features. Thus, we will study a flex-
ible multimodal distillation framework that transfers knowledge under 
random missing modalities. Meanwhile, we will bridge the domain gap 
and incorporate it within the distillation framework.

5. Conclusions

In this study, we introduced the Consistency Refinement-driven 
Multi-level Self-Attention Distillation framework, a novel approach 
designed to address the challenges of Alzheimer’s disease (AD) di-
agnosis and Mild Cognitive Impairment (MCI) conversion prediction 
under incomplete multimodal data. The CRAD framework incorpo-
rates three key innovations: (1) the cross-modal attention distillation 
module (PF-CMAD), which leverages a parameter-free attention con-
verter (PFAC) to distill attentive features efficiently; (2) the smooth 
distillation unit (SDU), which employs consistency-based confidence 
regularization to enhance the reliability and stability of the multi-level 
distillation process; and (3) cross-modal orthogonal projection (OP), 
which disentangles inter-modal features to reduce redundancy with-
out introducing additional learnable parameters. Collectively, these 
components form a lightweight and efficient multimodal distillation 
framework that is highly adaptable to AD diagnosis under missing 
modalities.

Extensive experimental evaluations demonstrate that the proposed 
CRAD framework outperforms state-of-the-art methods in AD diagnosis-
related tasks, achieving superior performance in handling incomplete 
multimodal data. Visualization experiments further validate the frame-
work’s ability to identify discriminating brain regions associated with 
AD, providing interpretable insights into its diagnostic capabilities. 
This study advances the field of multimodal knowledge distillation, 
providing a scalable and efficient solution for early and accurate diag-
nosis of AD, with potential applications in other medical imaging do-
mains. In the future, we will explore cross-modal and domain-invariant 
distillation techniques to enhance the robustness of AD diagnosis. 
Additionally, we plan to fully leverage unpaired multimodal data in 
the distillation process, addressing a critical limitation in current mul-
timodal learning paradigms. We will also validate CRAD in multi-
center studies (e.g., more disease types) and optimize inference under 
resource-limited scenarios to support real-time diagnosis.
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Appendix

A.1. Training procedure

We present an algorithm block that summarizes the training 
procedure of the CRAD framework, as shown in Algorithm 1. The 
training process contains two main phases: teacher training and 
student distillation. The teacher training involves the CAFR module 
for cognitive score prediction and OP for feature disentanglement. 
The student phase uses knowledge distillation with PF-CMAD 
for attention-based feature alignment and SDU for confidence 
regularization.

Algorithm 1 Training Procedure of the Proposed CRAD framework
Input:

Multimodal dataset 𝑋 = 𝑋𝑖, labels 𝑌 , cognitive scores 𝑌𝑐
Teacher model 𝑇 , student model 𝑆
Hyperparameters: 𝛾1, 𝛾2, 𝜆

Output: Trained student model 𝑆
1: Phase 1: Train Teacher Model 𝑇
2: for each batch of paired MRI and PET data do 
3: Extract intermediate features 𝑍𝑇 = {𝑍𝑚

𝑇 , 𝑍
𝑝
𝑇 }

4: Apply Cognitive Awareness Feature Refinement (CAFR): 
5:  Predict MMSE score 𝑌 ′

𝑐
6:  Compute MSE loss: 𝑀𝑆𝐸 Eq.  (2)
7: Apply Orthogonal Projection (OP) 
8:  Disentangle MRI and PET features 𝑍𝑚

𝑇 , 𝑍
𝑝
𝑇

9:  Compute orthogonal loss: 𝑂𝑅𝑇 Eq.  (3)
10: Predict 𝑌 ′

𝑇  and compute classification loss: 𝐶𝐸 Eq.  (4)
11: Update 𝑇  via backpropagation
12: end for
13: Phase 2: Distill Knowledge to Student Model 𝑆
14: Freeze teacher model 𝑇
15: for each batch of MRI-only data do 
16: Extract student features 𝑍𝑆 , predict 𝑌 ′

𝑆
17: Extract teacher features 𝑍𝑇 , predict 𝑌 ′

𝑇
18: Compute distillation losses Eq.  (15)
19: Apply Smooth Distillation Unit (SDU) Eq.  (12)
20: Update 𝑆 via backpropagation
21: end for
14 
A.2. Feature dimensions and alignment

To ensure clarity, we detail the dimensionality of feature 
representations at each stage of the proposed CRAD framework. 
The overall feature flow and dimensionality changes are summarized 
in Table  A.1. The detailed description is presented as follows.

Intermediate Feature Extraction & Distillation: The feature 
encoder, based on a 3D CNN, extracts hierarchical representations 
from the input scans. The output of each convolutional block is 
a tensor (𝐵,𝐶,𝐷,𝐻,𝑊 ), where 𝐶 is the number of channels, and 
(𝐷,𝐻,𝑊 ) are the spatial dimensions. To prepare these features 
for distillation, we reshape them into a 3D tensor (𝐵,𝐶,𝐿), where 
𝐿 = 𝐷 × 𝐻 × 𝑊  is the number of spatial locations. For instance, 
the output of Layer 4 (𝐵, 512, 7, 8, 7) is reshaped to (𝐵, 512, 392). This 
standardized format allows for efficient computation of distillation 
losses between corresponding layers of the teacher and student 
models.

Projection, Fusion, and High-Level Alignment: In the teacher 
model, the modality-specific features 𝑍𝑚

𝑇  and 𝑍𝑝
𝑇  (both (𝐵, 512, 392)) 

are processed by the Orthogonal Projection module. The fused 
feature 𝑍𝑢

𝑇  is obtained by concatenating them along the channel 
dimension, resulting in a tensor of shape (𝐵, 1024, 392), which is 
then projected back to (𝐵, 512, 392) using a 1 × 1 × 1convolution. 
The student model projects its MRI feature 𝑍𝑚

𝑆 (𝐵, 512, 392) to the 
same latent space. The high-level feature distillation loss 𝑈𝐾𝐷
is computed directly between the teacher’s 𝑍𝑢

𝑇  and the student’s 
projected feature, both of dimension (𝐵, 512, 392).

Final Prediction and Output Distillation: Following global 
average pooling (which reduces the features from (𝐵, 512, 392) to 
(𝐵, 512)), the classifier predicts logits of shape (𝐵,𝐶), where 𝐶 is the 
number of classes. The soft-label distillation loss 𝑃𝐾𝐷 aligns these 
output distributions between the teacher and student models.

A.3. Supplementary experiments

A.3.1. Ablation analysis of CAFR module
We have conducted ablation experiments to evaluate the 

effectiveness of the proposed CAFR module. As shown in Table 
A.2, the results demonstrate that CAFR not only enhances the 
intermediate features and overall performance of the teacher model 
but also, more importantly, leads to a stronger student model 
through improved knowledge distillation. The comparative results 
are summarized below. Specifically, we observe an increase in 
ACC from 0.881 to 0.934 and in AUC from 0.871 to 0.924. 
This confirms that CAFR effectively enhances the intermediate 
feature representations of the multimodal teacher, leading to a 
more powerful and robust model. When the student is trained 
with a CAFR-enhanced teacher, it achieves superior performance, 
particularly in ACC (0.923 vs. 0.918) and AUC (0.926 vs. 0.918), 
which are the primary indicators for classification tasks. This 
demonstrates that the improved feature quality of the teacher 
directly translates into more effective knowledge transfer, resulting 
in a better student model. These results validate that the CAFR 
module is integral to our framework. It successfully strengthens 
the teacher’s feature representations, which in turn enables the 
distillation of a more accurate and reliable student model.

A.3.2. Ablation analysis of OP module
The OP loss is applied only during the teacher model’s training 

phase when both MRI and PET modalities are fully available. It 
serves to enhance feature disentanglement and reduce redundancy 
between the two modalities, thereby improving the robustness 
and representational quality of the teacher model. Since the 
student model is trained to operate under missing-modality settings 
(e.g., MRI-only), it does not utilize the OP module directly. Instead, 
it benefits from the refined feature representations distilled from 

http://www.fnih.org
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Table A.1
Feature dimensions and knowledge distillation alignment. The teacher network has both MRI and PET branches (marked with ‘‘*’’), while the student 
network has only the MRI branch. ‘‘B’’ indicates batch size.
 Stage Description Input shape Output shape KD  
 
Input data (𝑋)

MRI scans (B,1,113,137,113)  
 PET scans (B,1,113,137,113) *  
 

Feature extractor

Layer 1 3D convolution
(B,1,113,137,113) (B,64,57,69,57) Attention KD 

 (B,1,113,137,114) * (B,64,57,69,58) *  
 

Layer 2 3D convolution
(B,64,57,69,57) (B,128,28,34,28) Attention KD 

 (B,64,57,69,57) * (B,128,28,34,28) *  
 

Layer 3 3D convolution
(B,128,28,34,28) (B,256,14,17,14) Attention KD 

 (B,128,28,34,28) * (B,256,14,17,14) *  
 

Layer 4 3D convolution
(B,256,14,17,14) (B,512,7,8,7) Attention KD 

 (B,256,14,17,14) * (B,512,7,8,7) *  
 
Orthogonal projection (𝑁𝑇 )

𝑍𝑚𝑇 (B,512,7,8,7) (B,512,392)  
 𝑍𝑝𝑇 (B,512,7,8,7) * (B,512,392) *  
 Fusion (𝑁𝑇 ) 𝑍𝑢𝑇 (B,1024,392) (B,512,392)  
 Projection (𝑁𝑆 ) 𝑍𝑢𝑆 (B,512,392) (B,512,392)  
 Global average pool Spatial pooling (B,512,392) (B,512) Feature KD  
 Classifier Fully-connected layer (B,512) (B,class_number) Logit KD  
Table A.2
Ablation analysis of the CAFR module for enhancing the teacher model and the distillation.
 Model CAFR ACC AUC SEN SPE F1-score  
 
Teacher

Yes 0.934 ± 0.01 0.924 ± 0.02 0.966 ± 0.03 0.883 ± 0.06 0.944 ± 0.01 
 No 0.881 ± 0.02 0.871 ± 0.04 0.909 ± 0.03 0.832 ± 0.11 0.899 ± 0.02 
 
Student

Yes 0.923 ± 0.02 0.926 ± 0.03 0.903 ± 0.04 0.949 ± 0.09 0.931 ± 0.01 
 No 0.918 ± 0.02 0.918 ± 0.03 0.913 ± 0.04 0.923 ± 0.11 0.928 ± 0.01 
Table A.3
Ablation analysis of the OP module for enhancing the teacher model and the distillation. For student models, the ‘‘baseline’’ 
indicates that it was only distilled from the teacher model trained without the OP module, while the ‘‘with OP’’ means it 
was distilled from the teacher model trained with the OP module.
 Model Ablation ACC AUC SEN SPE F1-score

 
Teacher

Baseline 0.881 ± 0.02 0.871 ± 0.04 0.909 ± 0.03 0.832 ± 0.11 0.899 ± 0.02 
 With OP 0.941 ± 0.03 0.939 ± 0.03 0.930 ± 0.05 0.949 ± 0.05 0.946 ± 0.03 
 
Student

Baseline 0.889 ± 0.05 0.870 ± 0.06 0.942 ± 0.04 0.799 ± 0.15 0.908 ± 0.04 
 With OP 0.902 ± 0.06 0.887 ± 0.07 0.931 ± 0.05 0.843 ± 0.15 0.919 ± 0.05 
the OP-enhanced teacher. To explicitly demonstrate the contribution 
of the OP module, we conducted an ablation study comparing 
the performance of both the teacher and student models with and 
without the incorporation of OP during teacher training. The results 
are summarized in Table  A.3. For student models, the ‘‘baseline’’ 
indicates that it was only distilled from the teacher model trained 
without the OP module, while the ‘‘with OP’’ means it was distilled 
from the teacher model trained with the OP module.

The results indicate that applying the OP module during teacher 
training yields significant improvements in the teacher’s performance 
across all metrics. More importantly, this gain is effectively 
transferred to the student model during distillation, as evidenced 
by consistent performance improvements (e.g., ACC increased from 
0.889 to 0.902) even when the student receives only MRI input. This 
confirms that the OP module plays an essential role in learning 
more robust and transferable multimodal representations in the 
teacher model, which in turn enhances the student’s capability in 
missing-modality scenarios. Therefore, while the OP module is not 
applied during student inference, it is critical for strengthening the 
teacher’s feature learning, which forms the foundation of an effective 
distillation process.
15 
Data availability

Data will be made available on request.
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