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Abstract: Epileptic seizures, a leading cause of global morbidity and mortality, pose sig-
nificant challenges in timely diagnosis and management. Epilepsy, a chronic neurological
disorder characterized by recurrent and unpredictable seizures, affects over 70 million
people worldwide, according to the World Health Organization (WHO). Despite signifi-
cant advances in medical science, accurate and timely diagnosis of epileptic seizures re-
mains a challenge, with misdiagnosis rates reported to be as high as 30%. The conse-
quences of misdiagnosis or delayed diagnosis can be severe, leading to increased morbid-
ity, mortality, and reduced quality of life for patients. Therefore, this paper presents a
novel approach to enhancing epileptic seizure detection through the integration of Syn-
thetic Minority Over-Sampling Technique (SMOTE) for data balancing and a Hybrid Fea-
ture Selection Technique—Principal Component Analysis (PCA) and Discrete Wavelet
Transform (DWT). The proposed model aims to improve the accuracy and reliability of
seizure detection systems by addressing data imbalance and extracting discriminative fea-
tures from electroencephalograms (EEG) signals. Experimental results demonstrate sub-
stantial performance gains, with the Support Vector Machine (SVM) classifier achieving
97.30% accuracy, 99.62% Area Under the Curve (AUC), and 93.08% F1 score, which out-
perform the results of the existing studies from the literature. The results highlight the
effectiveness of the proposed model in advancing seizure detection systems, highlighting
the potential to improve diagnostic capabilities and patient outcomes.

Keywords: epilepsy; machine learning; epileptic seizures; EEG; seizure detection;
SMOTE; PCA; DWT

1. Introduction

Epilepsy, a chronic neurological disorder that affects the Central Nervous System
(CNS), presents a formidable challenge due to its spontaneous recurrent seizures and the
absence of a known cure [1,2]. These seizures not only pose immediate risks such as falls,
fractures, and fatalities but also contribute to long-term neurological harm. Symptoms
such as disorientation, unusual behaviour, and loss of consciousness often accompany
seizures, further compounding the challenges faced by individuals with epilepsy [3].
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Detecting impending seizures remains a daunting task due to their unpredictable nature,
and most seizures occur without warning. Consequently, researchers have focused on de-
veloping methods for predicting seizures, leveraging classification algorithms as a viable
approach [1].

Research in epilepsy detection has explored diverse paths, including the application
of differential equations to model the dynamic behaviour of the brain’s electrical activities
[3]. Nonlinear Time Series Analysis (NTSA) has been instrumental in characterizing elec-
troencephalograms (EEGs) based on brain activities [2]. Studies examining EEGs of pa-
tients with various conditions, including Parkinson’s, depression, Alzheimer’s, and epi-
lepsy, have contributed significantly to understanding the complex dynamics of the hu-
man brain [4,5]. Epileptic seizures and EEGs of healthy individuals have played crucial
roles in categorizing findings in related articles, aiding in identifying and modelling the
non-linearity of human brain behaviour [5]. Even minor alterations to the dynamic system
parameters of the brain can lead to diverse physiological states, potentially resulting in
brain dysfunction or other disorders [5]. Consequently, predicting and understanding ep-
ileptic seizures continues to challenge researchers [6].

Improving the quality of life for individuals with epilepsy hinges on accurately de-
tecting and predicting seizures. EEG-based seizure detection remains fundamental in un-
derstanding neuronal brain activity [7]. However, the complexity of EEG seizure detec-
tion, characterized by dynamic motion and perspective fluctuations, presents a significant
challenge [3]. Moreover, the impact of epilepsy on affected individuals is substantial [8].
Seizures, which occur from abnormal electrical discharges of the brain, manifest in various
forms, ranging from momentary lapses in attention to severe convulsions [9]. Further-
more, the effects of epilepsy on the CNS result in symptoms such as loss of awareness,
unusual behaviour, and confusion, further increasing the risk of injuries [9]. The impera-
tive to predict impending seizures arises from their sudden and unexpected onset [9]. Re-
searchers have grappled with developing methods to anticipate seizures, driven by the
potential for physical harm and, in extreme cases, fatality. According to recent data from
the World Health Organization (WHO), epilepsy affects approximately 50 million people
worldwide, emphasizing the urgent need for effective seizure detection and prediction
methods to mitigate its impact [10].

Traditional approaches to seizure detection have relied heavily on visual analysis of
EEG recordings by healthcare professionals. However, these methods suffer from subjec-
tivity and time-intensive processes, often leading to delayed responses and missed early
seizure indicators [11]. To address these challenges and enhance the efficiency and accu-
racy of seizure detection, researchers have turned to Machine Learning (ML). ML algo-
rithms offer a promising target for automating seizure detection through EEG data anal-
ysis. They excel in processing the vast information contained within EEG recordings and
learning to recognize patterns associated with seizures [12]. The integration of ML tech-
niques aims to enable early and precise detection of epileptic seizures to reduce associated
risks and minimize false positives [11].

This paper aims to propose a novel approach for epileptic seizure detection by inte-
grating the Synthetic Minority Over-Sampling Technique (SMOTE) for data balancing and
a hybrid feature selection method combining Principal Component Analysis (PCA) and
Discrete Wavelet Transform (DWT). Unlike previous models that typically use either tem-
poral or spectral features in isolation, our approach fuses both domains to enhance dis-
criminative power. Also, existing models do not reflect real-world clinical data distribu-
tions. This leads to overfitting and poor generalization. Moreover, existing approaches
often overlook feature redundancies and noise. Therefore, using either single-step feature
extraction or limited dimensionality reduction is effective. Additionally, unlike traditional
methods, our approach addresses the issue of data imbalance and leverages advanced
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feature extraction techniques to enhance the accuracy and reliability of seizure detection
systems. This layered pipeline is designed to improve both robustness and minority class
sensitivity. Compared to existing literature, our method demonstrates significant perfor-
mance improvements, achieving higher accuracy and robustness in detecting seizures
from electroencephalogram (EEG) signals. The primary contributions outlined in this pa-
per include the following:

e  Proposing a novel approach consisting of a holistic pipeline for epileptic seizure de-
tection using ML techniques;

e  Addressing dataimbalance through the integration of SMOTE to improve model per-
formance;

e Proposing a hybrid feature selection technique combining PCA and DWT to extract
discriminative features from EEG signals;

e  Providing a comprehensive evaluation of the proposed approach, demonstrating sig-
nificant performance gains and validating its effectiveness in enhancing seizure de-
tection systems.

The rest of this paper is organized as follows: Section 2 provides the necessary back-
ground about the topic, Section 3 presents related work, Section 4 introduces the proposed
epileptic seizure detection model followed by experimental results in Section 5, Section 6
presents the discussion and evaluation, and finally, Section 7 concludes the paper.

2. Background

Epileptic seizures represent a diverse array of neurological events characterized by
abnormal electrical activity in the brain, often discernible through electroencephalogram
(EEG) recordings [8]. These seizures manifest in various forms, ranging from tonic—clonic
convulsions to absence spells (Petit Mal), each presenting unique EEG signatures and clin-
ical manifestations. Understanding the complex interplay between epileptic seizures and
EEG signals is paramount for developing effective diagnostic and therapeutic strategies
in epilepsy management.

2.1. Types and Characteristics of Epileptic Seizures

Epileptic seizures encompass a spectrum of events with distinct clinical and electro-
graphic features. Tonic—clonic seizures, the most recognizable type of seizures, are
marked by sudden loss of consciousness, tonic muscle contractions, and clonic jerking
movements. EEG recordings during tonic—clonic seizures typically reveal high-amplitude,
generalized rhythmic oscillations known as spike-wave complexes. In contrast, absence
seizures manifest as brief lapses in consciousness, often accompanied by generalized 3 Hz
spike-and-wave discharges on the EEG, indicative of synchronous neuronal activity in
thalamocortical networks.

2.2. Mechanisms Underlying Epileptic Seizures

Epileptic seizures arise from disruptions in normal neuronal excitability and syn-
chronization, leading to hyperexcitability and hypersynchronous firing of neuronal pop-
ulations. Aberrant network activity can propagate through cortical and subcortical struc-
tures, leading to characteristic EEG patterns associated with seizure onset, propagation,
and termination. These electrographic signatures, ranging from spike-and-wave dis-
charges to rhythmic delta or theta activity, provide valuable insights into the underlying
pathophysiology of epileptic seizures.
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2.3. Challenges in EEG-Based Seizure Detection

Despite the diagnostic utility of EEG signals in seizure detection, several challenges
hamper their clinical application. Distinguishing pathological seizure activity from nor-
mal brain rhythms and artifacts poses a significant challenge, requiring sophisticated sig-
nal processing techniques and pattern recognition algorithms. In addition, artifacts such
as muscle activity, electrode movement, and environmental interference can obscure gen-
uine seizure events, necessitating robust artifact removal and noise reduction strategies.
Additionally, the imbalanced nature of seizure datasets, where the number of seizure and
non-seizure instances is disproportionate, presents challenges for training accurate and
generalizable classification models. To overcome these challenges, researchers have em-
ployed advanced techniques and methodologies in EEG-based seizure detection. Hybrid
feature selection methods, such as PCA combined with DWT, offer enhanced discrimina-
tive power by capturing both temporal and spectral features from EEG signals. Further-
more, techniques such as SMOTE enable the generation of synthetic samples to balance
imbalanced datasets, ensuring robust model training and improved classification perfor-
mance. Leveraging state-of-the-art classifiers, including SVM, DT, RF, and KNN, facili-
tates accurate classification of EEG segments into seizure and non-seizure classes, thereby
enhancing the diagnostic accuracy of seizure detection systems.

Figure 1 depicts the classification of epileptic seizures into generalized and focal
types. Generalized seizures involve widespread brain activity, while focal seizures origi-
nate in a specific brain region. Focal seizures can be simple or complex, with or without
loss of consciousness. Tonic—clonic seizures have distinct phases of muscle stiffening and
jerking, while atonic seizures cause sudden loss of muscle tone. Myoclonic seizures in-
volve brief muscle contractions, clonic seizures feature rhythmic jerking movements, and
tonic seizures involve sustained muscle contraction. Absence seizures (Petit Mal) are char-
acterized by brief lapses in consciousness. This classification aids in diagnosis and treat-
ment planning.

Seizure Types

¥ L 4
Generalised Seizures Focal / Partial Seizure
> Atonic > Simple
> Myoclonic > Complex

> Clonic

> Tonic

»  Tonic-Clonic
> Petit Mal

Figure 1. Types of seizures and subtypes.
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3. Related Work

Several researchers have proposed techniques for seizure detection through EEG sig-
nal analysis. Such studies span advancing ML techniques. This section categorizes the re-
viewed papers into specific themes: early detection, feature engineering, classification
techniques, and comprehensive reviews and methodologies. Several researchers pro-
posed different techniques for early seizure detection. Shoeb [13] introduced a patient-
specific seizure onset detection method leveraging Support Vector Machine (SVM) analy-
sis of scalp EEG signals, achieving an accuracy of 96%. Similarly, Usman et al. [14] pre-
sented a preictal state detection model with promising accuracy but lacked information
on false alarm rates, critical for assessing the model’s reliability in real-world settings. Do-
nos et al. [15] also presented an early seizure detection algorithm for implantable closed-
loop stimulation devices, achieving high sensitivity with minimal detection delay. How-
ever, specific dataset details and implementation challenges were lacking.

Feature extraction and selection play a crucial role in enhancing the performance of
seizure detection models. Anurag and Sisodia [16] proposed an automated method inte-
grating frequency and time domain features with a flexible wavelet selection algorithm,
achieving 97.08% accuracy using Random Forest classifiers. However, their work lacked
significant details regarding computational efficiency and real-time feasibility. Nahzat
and Yaganoglu [17] examined feature selection and classification techniques for epileptic
seizure prediction, emphasizing the trade-off between accuracy and computational time
with the PCA algorithm. While achieving high accuracy without PCA, they noted the need
for further optimization to balance accuracy and computational efficiency. Poorani and
Balasubramanie [18] proposed two deep learning models for patient-specific seizure de-
tection using CHB-MIT data: a 1D CNN and a CNN-LSTM hybrid. The models achieved
94.83% accuracy, 90.18% sensitivity, and 99.48% specificity. Despite improvements, the
variability in performance across different patients highlights challenges in developing a
generalized detection system.

Guo et al. [19] proposed an approach for detecting epileptic seizures in EEG signals
using the line length feature extracted through DWT and a three-layer MLPNN for clas-
sification. Despite high classification accuracies of up to 99.60%, limitations regarding da-
taset preprocessing were acknowledged, necessitating further validation under real clini-
cal conditions. On the other hand, Nicolaou and Georgiou [20] introduced Permutation
Entropy (PE) and SVM for automated epileptic seizure detection, achieving high accuracy
with a reported sensitivity of 94.38% and specificity of 93.23%. However, the focus on
post-event classification without real-time detection challenges posed limitations.

Classification techniques form the backbone of seizure detection models. Wang et al.
[21] proposed a postictal seizure detection method with impressive sensitivity and speci-
ficity, achieving 100% sensitivity and 98.5% specificity. However, its exclusive focus on
postictal detection posed limitations in early intervention scenarios. Similarly, Sharmila
and Geethanjali [7] proposed a framework for detecting epileptic seizures using DWT
coupled with Naive Bayes and KNN classifiers, achieving remarkable accuracy in classi-
fying various epileptic dataset subtypes, with reported accuracies of over 99%. However,
the study lacked exploration of enhancing overall seizure detection or tracking treatment
effectiveness. Further, Hamad et al. [22] introduced a hybrid EEG classification approach
using Grey Wolf Optimizer and SVMs, achieving an accuracy of 99%. However, specific
accuracy and sensitivity metrics were lacking, hindering a comprehensive evaluation of
the model’s performance. Song and Lio6 [23] introduced a novel approach for automated
epileptic seizure detection using sample entropy for feature extraction and an extreme ML
for classification, emphasizing high accuracy and computational speed. However, specific
dataset details were not specified.
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Martis et al. [24] provided a comprehensive review of automated EEG signal classi-
fication methodologies, emphasizing non-linear features like entropy. While achieving
notable classification accuracy, the research gap lies in the necessity for more diverse data
and refined features to enhance accuracy. Similarly, Farooq et al. [25] conducted a system-
atic literature review examining ML techniques for epileptic seizure detection, focusing
on various feature selection and classification techniques. Their taxonomy of state-of-the-
art solutions provides insights into challenges and opportunities in the field, yet gaps in
specific methodology details were noted. Chandel et al. [26] discussed ML-based classifi-
cation models for epileptic EEG signals, comparing RF, DT, and Extra Tree classifiers. De-
spite achieving high accuracy, explicit limitations of the work were not mentioned.

In addition, Shoeb and Guttag [27] proposed an ML approach for constructing pa-
tient-specific classifiers for detecting epileptic seizures using scalp EEG data, showcasing
accurate detection with a 96% detection rate. However, the reliance on patient-specific
classifiers posed limitations. Pinto-Orellana and Cerqueira [28] presented a patient-de-
pendent offline system for seizure detection in epilepsy diagnosis, achieving high speci-
ficity, sensitivity, and low false-positive rates. However, specific dataset details and limi-
tations were not disclosed. Khurshid et al. [29] also proposed an approach for detecting
epileptic seizures in EEG signals achieving a 96.25% detection accuracy. The study high-
lights the potential of deep learning models in improving seizure detection but notes lim-
itations related to generalizability across different patient profiles. Raghu et al. [30] pro-
posed deep-learning models for predicting epileptic seizures using iEEG signals. They
developed a CNN and a CNN-LSTM hybrid model, achieving a maximum accuracy of
95.48%, sensitivity of 92.37%, and specificity of 96.18%. While the models demonstrated
strong performance, challenges remain in handling variations in seizure patterns across
different patients.

In addition, Zabihi et al. [31] proposed a patient-specific seizure detection method
using phase space representation and time-delay embedding to analyze EEG dynamics.
PCA was applied for dimensionality reduction, and key features were classified using
LDA and Naive Bayesian classifiers. The results achieved 88.27% sensitivity and 93.21%
specificity. However, its reliance on patient-specific models may limit broader applicabil-
ity. Also, Krishnan and Balasubramanian [32] proposed an autonomous epilepsy detec-
tion system using a Time-Frequency (TF) entropy measure to reduce EEG analysis time.
The method computes the TF spectrum via S-transform and extracts entropy features,
classified using an LSSVM classifier. The results achieved 86% accuracy with an AUC of
0.914. However, computational efficiency remains a consideration for real-time applica-
tions.

Moreover, Chen et al. [33] proposed a framework for epileptic focus localization us-
ing DWT and SVM. The method optimizes DWT parameters by analyzing seven wavelet
families and selecting the best decomposition levels for feature extraction. The results
achieved 83.07% accuracy. Also, Aarabi et al. [34] proposed an automatic seizure detection
system for newborns, focusing on feature selection via relevance and redundancy analy-
sis. Using correlation-based and ReliefF methods, key EEG features were ranked and op-
timized for classification with a backpropagation neural network. The results achieved a
93% overall detection rate with a false seizure detection rate of 1.17/h. The approach en-
hances neonatal seizure detection by accounting for age-specific EEG characteristics. Khan
et al. [35] also proposed a wavelet-based seizure detection algorithm using DWT and a
normalized coefficient of variation (NCOV).

This compilation highlights various approaches, techniques, and achievements in the
EEG-based seizure detection domain, shedding light on their potential and limitations in
clinical applications. Upon reviewing the existing literature, it becomes evident that there
are significant limitations in the techniques and methodologies employed. Many studies
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have proposed various approaches, yet several common shortcomings have been identi-
fied. Existing literature reveals limitations in feature extraction, selection methods, classi-
fication algorithms, and validation in clinical settings. Our study aims to bridge these gaps
comprehensively by conducting a thorough feature extraction, implementing rigorous
feature selection techniques, exploring hybrid feature selection methods, and utilizing
SMOTE for data balancing. Table 1 presents a concise overview of the various feature se-
lection techniques utilized in the reviewed studies. These techniques are essential for im-
proving the effectiveness of ML models in detecting epileptic seizures from EEG data by
identifying and extracting the most pertinent features from the signals.

Table 1. Feature Selection Techniques used in related papers.

Citation

SVM PCA

Shoeb [13]

DWT RF MLPNN PE NB

v

Usman et al. [14]

AN

Donos et al. [15]

Anurag and Sisodia [16]

ANERNE

Nahzat and Yaganoglu [17]

NENE
AN

Guo et al. [19]

AN
<

Nicolaou and Georgiou [20]

Wang et al. [21]

Sharmila and Geethanjali [7]
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Hamad et al. [22]
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Song and Lio [23]

Martis et al. [24]

Faroogq et al. [25]

NENE
<
<

Garima et al. [26]

Shoeb and Guttag [27]

\

Pinto-Orellana and Cerqueira [28]

AN

Khurshid et al. [29]

Raghu et al. [30]

Zabihi et al. [31]

Krishnan and Balasubramanian [32]

Chen et al. [33]

NENE

Aarabi et al. [34]

Khan et al. [35]

AN

4. Proposed Epileptic Seizures Detection Model

Existing approaches relying on the visual inspection of EEG recordings by medical
professionals often lead to delayed identification of early seizure indicators. This can re-
sult in subjective assessments and the potential for oversight [11]. Therefore, this paper
aims to revolutionize the detection of epileptic seizures by integrating advanced ML
methodologies. Epileptic seizures, characterized by erratic brain activity, pose a signifi-
cant health concern requiring accurate and timely identification for effective intervention.
To address this challenge, this research develops an automated and objective seizure de-
tection system using sophisticated ML techniques. The goal is to substantially improve
the accuracy and timeliness of seizure detection compared with conventional methods.

The significance of this research lies in its potential to greatly enhance the quality of
life for individuals with epilepsy by reducing the risks associated with delayed or inaccu-
rate seizure detection. Leveraging ML models holds the promise of improving diagnostic
accuracy while streamlining the detection process. The proposed model tackles the issue
of accurate epileptic seizure prediction through the integration of effective feature selec-
tion techniques and classification methods. This involves enhancing prediction accuracy
while minimizing false detections. To achieve this, we employ PCA and DWT as hybrid
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feature selection methods, chosen for their demonstrated effectiveness across various ap-
plications.

The integration of PCA and DWT as a hybrid feature selection technique enhances
the discriminatory power of extracted features for epileptic seizure detection. Unlike tra-
ditional methods that either rely on time domain or frequency domain analysis separately,
this approach effectively captures both spatial and temporal patterns in EEG signals. PCA
reduces dimensionality while preserving essential seizure-related information, whereas
DWT decomposes EEG signals into multiple frequency sub-bands to identify seizure-spe-
cific characteristics. This dual approach ensures that the most relevant features are re-
tained, leading to a more efficient and accurate classification process. By systematically
addressing feature redundancy and computational overhead, the proposed method offers
a scalable and adaptable solution suitable for real-time seizure detection across diverse
patient datasets.

Existing approaches relying on the visual inspection of EEG recordings by medical
professionals often lead to delayed identification of early seizure indicators. This can re-
sult in subjective assessments and the potential for oversight [11]. The significance of this
research lies in its potential to greatly enhance the quality of life for individuals with epi-
lepsy by reducing the risks associated with delayed or inaccurate seizure detection. Lev-
eraging ML models holds the promise of improving diagnostic accuracy while streamlin-
ing the detection process. The proposed model tackles the issue of accurate epileptic sei-
zure prediction through the integration of effective feature selection techniques and clas-
sification methods. This involves enhancing prediction accuracy while minimizing false
detections. To achieve this, we employ PCA and DWT as hybrid feature selection methods
chosen for their demonstrated effectiveness across various applications.

While several studies have reported high classification accuracies using EEG signals,
these results are often achieved under constrained or idealized conditions, such as bal-
anced datasets, patient-specific models, or limited validation protocols. Such settings do
not reflect real-world clinical environments, where seizure data is scarce, highly imbal-
anced, and heterogeneous across patients. Moreover, prior models tend to rely on either
time domain or frequency domain features in isolation, which limits their ability to cap-
ture the full dynamics of EEG signals. This often results in overfitting and poor generali-
zation of new, unseen data. Additionally, the use of imbalanced datasets without robust
oversampling strategies reduces sensitivity to rare seizure events, failing to address the
clinical priority of minimizing missed detection.

In contrast, our proposed approach introduces a novel and holistic pipeline that ad-
dresses these persistent limitations. By integrating SMOTE solely on the training set, we
generate synthetic minority-class instances in a way that avoids data leakage and en-
hances generalization. The hybrid use of PCA and DWT combines dimensionality reduc-
tion with detailed time—frequency feature extraction, enabling the model to capture subtle
and complex patterns associated with seizures. This fusion of feature spaces provides a
more discriminative and noise-resilient representation than either method alone. Finally,
the use of SVM, known for its robustness in high-dimensional spaces, allows for effective
classification even under challenging data conditions. Together, this SMOTE + PCA +
DWT + SVM combination offers a novel, clinically relevant, and generalizable solution to
the unresolved challenges in seizure detection —bridging the gap between research accu-
racy and real-world utility.

Furthermore, this research makes a significant contribution by evaluating multiple
ML classifiers (SVM, RF, DT, and KNN) to determine the optimal model for seizure pre-
diction. Unlike prior studies that focus on patient-specific models, which often lack gen-
eralizability, this work emphasizes the development of a robust, patient-independent de-
tection system. The proposed approach incorporates advanced data preprocessing
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techniques, including outlier removal and dataset balancing, with the Synthetic Minority
Over-Sampling Technique (SMOTE), to mitigate bias in training models. By streamlining
the detection process and improving diagnostic reliability, this work represents a substan-
tial advancement in EEG-based seizure detection, with the potential for real-world clinical
deployment and integration into wearable seizure monitoring systems.

The workflow of the proposed model is depicted in Figure 2. It begins with the col-
lection of EEG data, followed by preprocessing to handle missing values and balance the
dataset. Feature extraction and dimensionality reduction are performed using the hybrid
approach of DWT and PCA. The processed features are then fed into the selected classifi-
cation algorithms (SVM, RF, DT, and KNN) to predict seizure events. This comprehensive
approach ensures the model is well-equipped to handle the complexities of EEG data,
providing accurate and reliable seizure detection. By systematically integrating these ad-
vanced techniques, the proposed model represents a significant advancement in the field
of EEG-based epileptic seizure detection.

Electroencephalogram
(ECG)

Electrode
by

Brain

\ Data Collection

Principal
Component
Analysis (PCA)

Processing missing
and outliers

Discrete Wavelet
Transform (DWT)

Feature Processing

Dataset Balancing using
SMOTE

Data Preprocessing

/

1
]

Dimensionality Reduction

Classification

ﬂ
Hybrid Feature Selection
Evaluation Performance 4— 4 (PCA + DWT)

of epileptic seizure

(=) (=]

Figure 2. Proposed Epileptic Seizures Detection Model.

4.1. Data Collection — EEG Dataset

This research utilized the UCI Epileptic Seizure Recognition Dataset [1], a publicly
available dataset widely acknowledged for its relevance and diversity in EEG recordings.
This dataset served as the cornerstone for both the development and evaluation phases of
our seizure detection models. Its comprehensive collection of EEG signals enabled the ro-
bust experimentation and validation of various ML algorithms tailored for seizure detec-
tion. The UCI Epileptic Seizure Recognition Dataset is structured to facilitate systematic
analysis and interpretation of EEG data. It comprises five distinct folders, each represent-
ing a unique category delineating different physiological states. Within each category,
there are precisely 100 files, each containing the EEG recordings of an individual.

The EEG recordings within these files are standardized to a duration of 23.6 s, provid-
ing a consistent temporal frame for analysis. These recordings are sampled into 4097 data
points, ensuring granularity in capturing EEG patterns. To facilitate analysis at a finer
temporal resolution, these 4097 data points are further segmented into 23 chunks, each
spanning 1 s and containing 178 data points. Overall, the dataset encompasses EEG
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Unnamed X1

X2

recordings from 500 individuals, resulting in a total of 11,500 rows or instances of recorded
data. These instances capture the EEG profile at various moments in time, offering insights
into the dynamic nature of epileptic seizures and serving as the foundation for our study’s
analysis and model development. This dataset’s structured organization and rich infor-
mation content make it an invaluable resource for researchers seeking to investigate epi-
leptic seizure detection using EEG signals. Its utilization in our study enabled rigorous
experimentation and validation, contributing to the advancement of seizure detection
methodologies.

The structure and composition of the UCI Epileptic Seizure Recognition Dataset com-
prises 5 distinct directories, each containing 100 files. Each file represents the recorded
brain activity of a single subject, captured over a precisely timed duration of 23.6 s. The
EEG recordings within each file consist of 4097 data points, capturing brain activity at
discrete moments. These data points collectively represent observations from 500 individ-
uals, where each person’s recording spans 4097 data points corresponding to 23.5 s of EEG
data. To effectively manage the sequential EEG data, the dataset is partitioned into 23
segments, each containing 178 data points, representing precisely 1-s intervals. Each data
point within these segments signifies an EEG recording captured at distinct time in-
stances.

As a result, the structured dataset comprises 11,500 rows, with each row consisting
of 178 data points representing 1-s EEG intervals. The final column, positioned as the
179th column, serves as the 'y’ label, indicating values 1, 2, 3, 4, 5. Here, 'y’ represents the
response variable, while the explanatory variables range from X1 to X178, facilitating the
training and preparation of the dataset for subsequent modelling and analysis stages. In
statistical modelling and ML contexts, the response variable 'y’ is also known as the de-
pendent variable, target variable, or outcome variable. The explanatory variables (X1 to
X178) are commonly referred to as independent variables, predictor variables, features, or
attributes in the dataset. The random illustration depicting a sample view of the Epileptic
Seizure Recognition Dataset is represented in Figure 3.

X3 X4 X5 X6 X7 X8 X9 .. X170 X171 X172 X173 X174 X176 X176 X177 X178 y

0 X21V1.791 135
X15.v1.924 386

-

2 X8v1i1 32
3 X16.V1.60 -105
4 X20.V1.54 9

5 rows = 180 columns

190
382
-39

-101

229 223 192 125 95 9 =33 -17 15 -3 77 103 127 -116 83 -51 4
356 331 320 315 307 272 244 .. 164 150 146 152 157 156 154 143 129 1
-47 37 -32 -3 57 -73 -BS 57 64 48 189 12 30 -3 35 -36 5
9% 92 -89 -95 -102 -100 -87 .. -82 -81 -80 -77 85 -7 -72 69 65 5
-98 -102 -78 -48 -16 0 -21 .. 4 2 -12 -32 -41 65 83 89 73 5

Figure 3. A sample of the Epileptic Seizure Recognition Dataset [1].

The structured organization of the dataset ensures that each instance captures the
EEG profile at various moments in time, offering insights into the dynamic nature of epi-
leptic seizures. The use of this dataset enabled rigorous experimentation and validation,
contributing to the advancement of seizure detection methodologies. Preprocessing steps,
including Binarization and the application of SMOTE, were applied to enhance data qual-
ity and rectify imbalances within the dataset, ensuring robustness in the models devel-
oped. This step was critical in ensuring that the classifier did not develop a bias toward
the majority classes.

SMOTE was used to synthetically generate new instances only for the training set
after the data had been split by subject to preserve patient independence and prevent data
leakage into the test set. This approach ensured that no artificially generated samples in-
fluenced the model’s evaluation on unseen data.
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The EEG waveforms illustrated in Figure 4 are not specific to a single electrode or
channel. Instead, they represent the average signal of all EEG data points across all sam-
ples within each class, computed using the average of the EEG vectors (X1 to X178) along
the time axis. This approach highlights general waveform patterns typical of each class
(e.g., ictal vs. healthy). The aim is to visually contrast the distinct temporal characteristics
of the five EEG signal classes. These signals were originally captured using a single elec-
trode, likely from the Fpz-Cz or Pz-Oz positions, although the exact montage is not spec-
ified in the dataset documentation. Therefore, multichannel data is not available in this
version of the dataset; rather, each file contains one-dimensional EEG signals representing
one channel. The five classes represent distinct brain states:

1. Class 1 (ictal) —EEG signals recorded during active epileptic seizures;

Class 2 (pre-ictal) —EEG signals recorded shortly before the onset of a seizure;

Class 3 (inter-ictal) — EEG signals between seizures (non-seizure periods);

Class 4 (healthy with eyes closed) —Baseline EEG from healthy individuals;

Class 5 (healthy with eyes open) —Baseline EEG from healthy individuals under nor-

ISEEE

mal alert conditions.

No behavioural tasks were conducted during EEG acquisition for the healthy partic-
ipants. The healthy datasets were collected under resting-state conditions with eyes either
open or closed. For seizure-related recordings, the original dataset documentation does
not specify whether participants were under medication, the exact seizure type, or the
environment during recording. As such, while this dataset supports classification tasks
effectively, it has limitations in clinical metadata and channel diversity.

Each class represents distinct EEG signal patterns associated with specific physiolog-
ical states or seizure types, as shown in Table 2. By visualizing these waveforms, we can
observe the characteristic electrographic features of epileptic seizures and differentiate
them from normal EEG patterns. This comparison aids in identifying unique signatures
of epileptic activity, facilitating accurate seizure detection and classification.

The minority classes in the dataset were identified based on their original class dis-
tribution. Specifically, after segmentation and before balancing, the five classes—ictal, pre-
ictal, inter-ictal, healthy (eyes closed), and healthy (eyes open)—were observed to have
equal counts in the raw dataset. However, due to stratified subject-level train-test split-
ting, imbalances emerged in the training subset, particularly affecting seizure-related clas-
ses. SMOTE was therefore selectively applied to these underrepresented classes.

This targeted application of SMOTE improved the model’s sensitivity to minority
seizure classes while maintaining data integrity and reproducibility. The use of SMOTE
only on the training set ensures that evaluation metrics reflect the model’s true generali-
zability to real-world, imbalanced data scenarios.
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Figure 4. Average EEG waveforms for each signal class in the dataset: ictal, pre-ictal, inter-ictal,

healthy (closed eyes), and healthy (open eyes). The plotted signals are the average of 178-sample

EEG vectors across all instances in each class, providing a visual comparison of their distinct tem-

poral features.

Table 2. Summary of EEG Signal classes and their descriptions [1].

Classes Name No of Samples Outgz;fi:)sses Description of Classes
1 Ictal 2300 1 Signals recorded during seizures
2 Pre-ictal 2300 2 Signals recorded before the occurrence of a single seizure
3 Inter-ictal 2300 3 Signals recorded during the occurrence of consecutive seizures
4  Healthy (closed eyes) 2300 4 A healthy subject with closed eyes
5  Healthy (open eyes) 2300 5 A healthy subject with open eyes

4.2. Data Preprocessing

In this study, the following EEG preprocessing steps were applied in chronological

order to prepare the dataset for ML analysis:

Data Import and Inspection: The UCI Epileptic Seizure Recognition Dataset was
loaded using Python (Pandas 2.2.3) and examined using “.head()’, “.tail()’, ‘.de-
scribe()’, and “.info()’ to ensure data integrity;

Feature Selection: The 178 EEG signal features (X1 to X178) were extracted while
excluding the subject identifier column. The label column (‘y’) was retained as the
target variable;

Segmentation Review: EEG signals in the dataset are already segmented into 1-s in-
tervals of 178 points, offering consistency in sample size and reducing preprocessing
needs;

Basic Data Cleaning: No missing values or corrupted rows were found during in-
spection; hence no imputation was necessary;

SMOTE Balancing: To address class imbalance, the Synthetic Minority Over-Sam-
pling Technique (SMOTE) was applied to balance the number of instances in each
class before training.

It is important to note that the UCI dataset used in this study consists of pre-pro-

cessed, artifact-free EEG recordings as confirmed in the dataset documentation. Therefore,

additional steps, such as re-referencing, bandpass filtering, artifact rejection, and channel

interpolation, were not required or applied. This decision aligns with evaluating
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classifiers on clean, controlled EEG samples to establish baseline performance. However,
future work will include experiments on raw EEG with full clinical preprocessing pipe-
lines.

4.3. Feature Selection Techniques

Feature selection is pivotal in identifying informative EEG features while reducing
dimensionality, which is crucial for improving the performance and interpretability of ML
models. Our approach started with preprocessing steps, including Binarization and
SMOTE to address class imbalance, followed by splitting the dataset into training and
testing sets. PCA and DWT emerged as effective feature selection methods from our ex-
tensive review of previous studies. Each technique offers distinct advantages, which in-
fluenced our decision to incorporate them into our proposed model.

4.3.1. Principal Component Analysis (PCA)

PCA is a statistical procedure that transforms a set of correlated variables into a set
of uncorrelated components ranked by the amount of variance they explain in the data.
This technique is widely used for dimensionality reduction because it simplifies the com-
plexity of the dataset while retaining the most critical information. We applied PCA for
dimensionality reduction, selecting 50 components based on cumulative explained vari-
ance analysis. This approach ensures that the majority of the dataset’s variance is captured
with fewer features, thus simplifying the model and enhancing its computational effi-
ciency. The decision to use PCA is rooted in its ability to mitigate the curse of dimension-
ality and improve model performance by reducing overfitting and enhancing generaliza-
tion.

The selection of 50 principal components in PCA was guided by a cumulative ex-
plained variance analysis, which revealed that these components captured approximately
95% of the total variance present in the dataset. This threshold was chosen to ensure that
most of the meaningful information in the original 178 EEG features was retained while
reducing dimensionality to improve computational efficiency and model performance.
This 95% cut-off is widely accepted in EEG-based machine learning studies, as it balances
the trade-off between retaining discriminative signal features and eliminating redundant
or noisy dimensions.

4.3.2. Discrete Wavelet Transform (DWT)

DWT is a powerful signal processing technique that decomposes EEG signals into
different frequency components, allowing for the analysis of both time and frequency
characteristics. This method is particularly effective in capturing the transient features of
EEG signals, which are essential for detecting epileptic seizures. DWT generates coeffi-
cients that serve as significant features, capturing the nuances of EEG signal variations.
The choice of DWT is motivated by its proven efficacy in retaining the most relevant fea-
tures of non-stationary signals like EEG, which exhibit complex patterns and require so-
phisticated techniques to extract meaningful information.

4.3.3. Hybrid Feature Selection Approach (PCA + DWT)

To leverage the strengths of both PCA and DWT, we introduced a hybrid feature
selection approach by merging PCA-transformed features with selected DWT coefficients.
This hybrid approach aims to harness the dimensionality reduction capabilities of PCA
and the detailed signal feature extraction of DWT. By combining these methods, we aim
to create a robust feature set that maximizes the informative content while minimizing
redundancy and noise. This dual strategy is designed to enhance the predictive accuracy
and efficiency of the seizure detection model.
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The selection of PCA and DWT, both individually and in combination, is based on
their complementary strengths and established effectiveness in previous research. PCA’s
ability to reduce dimensionality and focus on the most significant components comple-
ments DWT’s capability to capture essential time—frequency features of EEG signals. This
synergy is crucial for creating a model that is not only accurate but also efficient and scal-
able. Moreover, the hybrid approach addresses the limitations of using either technique
in isolation, providing a comprehensive feature set that improves model robustness. In
summary, the application of PCA and DWT in our feature selection process is a strategic
choice aimed at optimizing the performance of our ML models. By systematically reduc-
ing dimensionality and extracting key signal features, we enhance the model’s ability to
accurately detect epileptic seizures, ultimately contributing to better clinical outcomes and
improved quality of life for individuals with epilepsy. This is shown in Figure 5.

ft Step reprocessing Steps

# Binarization of target variable
Binarize target variable 'y'
Apply SMOTE for class balancing

# Step 2: Splitting the Dataset

# Split pre-processed dataset into training and
testing sets (80:20 ratio)

Split data (8@:20)

# Step 3: Feature Selection Techniques

# Perform PCA for Dimensionality Reduction:

Perform PCA for dimensionality reduction

Determine the optimal number of components using
cumulative explained variance analysis

Set the number of components to 5@ for both
training and testing datasets

# Utilize DWT for Signal Feature Extraction:

Extract signal features from EEG data using
Discrete Wavelet Transform

# Step 4: Hybrid Feature Selection (PCA + DWT)

# Merge PCA-transformed features and selected DWT
coefficients:

Merge PCA-transformed features with DWT
coefficients

Create a hybrid feature set combining PCA-
transformed features and DWT coefficients

# End

Figure 5. Pseudocode for preprocessing, dataset splitting, and feature selection techniques.

The DWT was applied to each 1-s EEG segment (178 data points) to extract meaning-
ful time—frequency domain features that capture transient patterns characteristic of epi-
leptic activity. The DB4 wavelet was selected due to its effectiveness in EEG signal analy-
sis, particularly in identifying seizure-related features. DWT was implemented using
three levels of decomposition, which allowed the signal to be separated into
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approximation and detail coefficients at different frequency bands. The decomposition
levels were chosen based on the length of the signal and the sampling frequency (173.61
Hz), ensuring that the frequency bands covered typical EEG rhythms (delta to beta); de-
tails are shown in Table 3.

Table 3. Parameters and settings used for DWT algorithm.

Parameter Value Description
Wavelet Type Daubechies 4 (dbd) Selected for its sultablhlty in analy.zmg EEG signals with
transient behaviour.
Number of Decomposition Allows decomposition into relevant EEG frequency
3
Levels bands (delta to beta).
Signal Length 178 data points per 1-s segment  Based on UCI dataset sampling rate (173.61 Hz).
Sampling Frequency 173.61 Hz Defines the effective frequency resolution for DWT.

Features Used

high-f ignal ch linked to sei-
Detail coefficients (D1, D2, D3) Captures hig requezrlllcr};3 s;g:re:tsc anges linked to sei

Implementation Library

Python (Pandas 2.2.3) library used for wavelet transfor-

PyWavelets (PyWT
yWavelets (PyWT) mation and feature extraction.

To support the hybrid use of PCA and DWT, we emphasize that each technique cap-
tures complementary aspects of EEG signals. DWT is well-suited for analyzing non-sta-
tionary signals by decomposing them into time-frequency components, enabling the ex-
traction of transient features associated with seizure onset and progression. However, the
resulting coefficient set may contain redundancy and noise, especially when multiple de-
composition levels are used. PCA, as a linear dimensionality reduction method, is then
applied not to extract new features but to refine the DWT-derived features by removing
collinear and low-variance components. This enhances the discriminative quality of the
feature space while retaining dominant seizure-related patterns.

Although PCA is a global transformation and does not preserve time-localized struc-
ture in raw signals, its application after DWT is beneficial because the DWT step has al-
ready captured localized features across different frequency bands. The PCA transfor-
mation then acts as a post-processing filter that emphasizes variance-rich patterns while
reducing dimensionality and noise. Empirically, our results show that the hybrid ap-
proach outperforms either method alone in terms of classification accuracy, precision, and
recall. This indicates that PCA and DWT are synergistic rather than conflicting in this con-
text, where PCA acts as a feature refiner rather than a suppressor of time—frequency in-
formation.

4.4. Classification Techniques

Classification techniques are instrumental in categorizing EEG data into seizure and
non-seizure classes, which is a critical step in the development of accurate and reliable
seizure detection systems. We adopted four commonly used algorithms—SVM, DT, RF,
and KNN—based on their demonstrated effectiveness and prevalence in related studies.
Each of these algorithms brings unique strengths to the table, making them well-suited
for our analysis.
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4.4.1. Support Vector Machine (SVM)

SVM is a powerful supervised learning algorithm known for its effectiveness in high-
dimensional spaces and its robustness against overfitting, especially in cases where the
number of dimensions exceeds the number of samples. SVM works by finding the optimal
hyperplane that separates the data into different classes with the maximum margin. This
property is particularly useful in EEG data classification, where the distinction between
seizure and non-seizure events can be subtle. SVM's ability to handle complex, non-linear
boundaries through kernel functions further enhances its suitability for our task. There-
fore, SVM stands out for its margin-maximizing decision boundaries, and kernel-based
flexibility makes it highly suitable for sparse and imbalanced datasets. Additionally, SVM-
based methods have demonstrated reliable performance across a variety of EEG domains
[36]. For instance, in decoding motor intentions for predicting movement directions from
EEG signals, SVM is employed to tackle noisy data while maintaining robustness. Similar
to this, in brain-machine interfaces [37] SVM has been successfully applied to classify mo-
ment intention. The choice of SVM is driven by its high accuracy and ability to generalize
from training data to unseen data.

4.4.2. Decision Tree (DT)

Decision Trees are intuitive and easy-to-interpret models that split the data into sub-
sets based on the value of input features. Each node in the tree represents a feature, each
branch represents a decision rule, and each leaf node represents an outcome. DTs are cho-
sen for their simplicity and ease of visualization, which makes them an excellent tool for
understanding the decision-making process of the model. Additionally, DTs are compu-
tationally efficient and can handle both numerical and categorical data, making them ver-
satile for various types of EEG features. The interpretability of DTs is a significant ad-
vantage, as it allows for better insights into the factors contributing to seizure detection.

4.4.3. Random Forest (RF)

Random Forest is an ensemble learning method that constructs multiple decision
trees during training and outputs the mode of the classes (classification) or mean predic-
tion (regression) of the individual trees. This technique mitigates the overfitting problem
associated with single decision trees by averaging multiple trees, thus improving gener-
alization. RF’s robustness and high accuracy make it a popular choice for EEG classifica-
tion tasks. Its ability to handle large datasets with higher dimensionality, along with its
built-in feature importance estimation, helps in identifying the most relevant features for
seizure detection. The ensemble nature of RF ensures stable and reliable predictions, en-
hancing the overall performance of the model.

4.4.4. K-Nearest Neighbours (KNN)

KNN is a simple yet effective algorithm that classifies a data point based on how its
neighbours are classified. It is a non-parametric method, meaning it makes no explicit as-
sumptions about the form of the function mapping the inputs to the outputs. This makes
KNN particularly flexible and easy to implement. The effectiveness of KNN in our context
comes from its reliance on the local structure of the data, which can be advantageous in
detecting patterns within EEG signals. The simplicity of KNN allows for quick and
straightforward implementation, providing a baseline against which more complex mod-
els can be compared.

The selection of these four classification techniques is grounded in their proven track
record and complementary strengths. SVM is chosen for its ability to handle high-dimen-
sional data and its robustness against overfitting, making it suitable for complex EEG data.
DT and RF are selected for their interpretability and ensemble capabilities, respectively,
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which enhance model reliability and provide deeper insights into the feature importance.
KNN is included for its simplicity and effectiveness in leveraging local data patterns. By
presenting a visual depiction of the algorithmic process with flowcharts and pseudocode,
particularly for SVM, we offer a clear, step-by-step illustration of how these techniques
are implemented in our model. Similar approaches are applied to the other classification
techniques, ensuring a comprehensive understanding of their application in seizure de-
tection.

In summary, our choice of SVM, DT, RF, and KNN is driven by their individual
strengths and their collective ability to provide a robust, accurate, and interpretable mod-
els for EEG-based epileptic seizure detection. This strategic selection aims to maximize
detection accuracy while maintaining model simplicity and interpretability, ultimately
contributing to more effective and reliable seizure detection systems. Our approach inte-
grates advanced feature selection techniques and classification algorithms to develop a
robust epileptic seizure detection model. Through careful implementation and evaluation,
the aim is to enhance the accuracy and efficiency of seizure detection systems, ultimately
improving patient outcomes in epilepsy management.

The classifiers used in this study were implemented using Scikit-learn (1.6.1). SVM
was configured with a Radial Basis Function (RBF) kernel and enabled probability esti-
mates. For DT, hyperparameter tuning was conducted using GridSearchCV with 10-fold
cross-validation, exploring max_depth values of None, 5, 10, 15, and 20. The RF model
was applied using Scikit-learn’s default settings, including 100 estimators. The KNN clas-
sifier was optimized using GridSearchCV over the hyperparameters n_neighbors = [3, 5,
7,9] and weights = [‘uniform’, ‘distance’], with the best configuration found to be n_neigh-
bors =3 and weights =“distance’. These configurations were selected to provide a balanced
assessment of classifier performance. Although a full grid search across all models was
not the primary goal of this study, fairness and consistency were ensured in preprocessing
and evaluation protocols.

5. Experiment Setup and Metrics

This section describes the experimental setup, including the computing environment
and patient-independent data splitting. It also defines the evaluation metrics used to as-
sess the seizure detection model’s performance.

5.1. Experiment Settings

Experiments were conducted on a high-performance desktop workstation running
Windows 10 Professional, equipped with an Intel Core i7 processor, 16 GB of RAM, and
a dedicated GPU, providing reliable performance for computational tasks, with Python as
the primary programming language. Python libraries, such as NumPy (2.2.4), Pandas
(2.2.3), Matplotlib (3.10.1), ScikitLearn (1.6.1), TensorFlow (2.19.0), and Keras (3.9.2), were
utilized for data manipulation, model development, and evaluation.

To ensure the validity and generalizability of the proposed seizure detection model,
a patient-independent classification protocol was adopted. This means that data segments
from the same subject were not used in both the training and testing sets, thereby prevent-
ing data leakage and overly optimistic performance estimates.

As mentioned in Section 4.1, the dataset comprises 500 subjects, with each class con-
taining EEG recordings from 100 distinct individuals. During preprocessing, each 23.6-s
EEG recording was segmented into 23 1-s epochs, resulting in a total of 11,500 segments.
To preserve patient independence, the data was split at the subject level rather than at the
segment level. Specifically, 80% of the subjects were used for training, and the remaining
20% were reserved for testing. For example, if a subject’s EEG file contributed 23 seg-
ments, all 23 segments were either in the training set or in the test set—never both. This
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ensured that the classifier learned from EEG patterns of distinct individuals and was
tested on completely unseen subjects.

This protocol better reflects real-world clinical scenarios, where seizure detection sys-
tems must generalize to new patients not seen during training. It also supports the claim
of developing a patient-independent detection system as opposed to patient-specific mod-
els that often suffer from poor generalizability.

5.2. Evaluation Metrics

In assessing the models” performance, an array of metrics was employed to precisely
measure the effectiveness and accuracy of the algorithms. These metrics encompass fun-
damental measures including accuracy, precision, recall, F1 score, and the Area Under the
Curve (AUC) derived from the Receiver Operating Characteristic (ROC) curve.

1. Accuracy: is a fundamental metric that measures the ratio of correctly predicted in-
stances to the total number of instances in the dataset. A high accuracy score indicates
the model’s effectiveness in making correct predictions across all classes. It is com-
puted using Equation (1):

TP+ TN 1
Accuracy = Tp TN + FP + FN W

2. Area Under the ROC Curve (AUC): The AUC metric is a valuable tool for assessing
a model’s ability to distinguish between classes. It is calculated by plotting the Re-
ceiver Operating Characteristic (ROC) curve and computing the area under this
curve. A higher AUC value (ranging from 0 to 1) signifies better discrimination

power of the model;

3. Confusion Matrix: offers a comprehensive tabular layout displaying True Positive
(TP), True Negative (TN), False Positive (FP), and False Negative (FN) values. It aids
in visualizing the model’s performance across different classes, identifying misclas-
sifications, and understanding the model’s behaviour. These metrics collectively pro-
vide a thorough understanding of a classification model’s performance, allowing for
informed decisions and enhancements in model training and optimization strategies;

e  True Positive (TP): This represents the number of instances where the model
correctly predicted the positive class (or the condition being tested) as positive.
In medical terms, this could be the number of correctly identified patients with
a disease;

e  True Negative (TN): This represents the number of instances where the model
correctly predicted the negative class (or the absence of the condition being
tested) as negative. In medical scenarios, this could indicate the number of cor-
rectly identified healthy individuals who do not have the disease;

e  False Positive (FP): This indicates the number of instances where the model in-
correctly predicted the positive class when it was actually negative. In medical
scenarios, it could signify the number of healthy individuals incorrectly identi-
fied as having the disease;

e False Negative (FN): This refers to the number of instances where the model
incorrectly predicted the negative class when it was actually positive. In medical
contexts, this might represent the number of individuals with the disease incor-
rectly identified as healthy by the model.

4.  F1 Score: The F1 score represents the harmonic mean of precision and recall. The F1

score provides a balanced evaluation of a model’s precision and recall, making it a
robust metric for binary classification tasks. It is computed using Equation (2):
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Precision X Recall )
F1Score =2x

Precision + Recall

5. Precision: It measures the ratio of correctly predicted positive instances to the total
instances predicted as positive. A high precision score indicates the model’s ability
to minimize false positives, ensuring that most of the predicted positive instances are
relevant. It is computed using Equation (3):

p .. -
recision TP + FP

6. Recall: It measures the ratio of correctly predicted positive instances to the actual
total positive instances in the dataset. A high recall score indicates the model’s effec-
tiveness in capturing most of the relevant instances while minimizing false negatives.
It is computed using Equation (4).

TP
- 4)
Recall TP+ FN

6. Experimental Results

The outcomes derived from employing four separate algorithms, SVM, DT, RF, and
KNN, have been meticulously recorded. The performance metrics include accuracy, AUC,
F1 score, and the average of these metrics. The results are summarized in Tables 4 and 5.

The application of data balancing and hybrid feature selection (PCA + DWT) tech-
niques generally improved the performance of all four classifiers. The most notable im-
provements were observed in the SVM and RF models. Before the application of data bal-
ancing and hybrid feature selection techniques, the SVM and RF models already demon-
strated strong classification capabilities, with SVM achieving an accuracy of 97.00% and
an AUC of 99.40%, while RF followed closely with an accuracy of 96.30% and an AUC of
99.20%. In contrast, the DT and KNN models exhibited relatively lower performance, with
DT showing an accuracy of 93.40% and an AUC of 81.50%, and KNN achieving an accu-
racy of 93.60% with an AUC of 90.30%. These initial results suggest that, while DT and
KNN can serve as viable classifiers, they are less robust compared to SVM and RF.

Table 4. Initial Model Performance Without Application of Data Balancing.

Model Accuracy AUC F1 Score
SVM 97% 99.4% 92.3%
DT 93.4% 81.50% 82.5%
RF 96.3% 99.2% 90.2%
KNN 93.6% 90.3% 80.6%

Table 5. Model Performance After Application of Data Balancing and Hybrid.

Model Accuracy AUC F1 Score
SVM 97.3% 99.62% 93.08%
DT 94.48% 83.24% 85.87%
RF 97.17% 99.56% 92.72%
KNN 92.13% 88.48% 76.03%

After implementing data balancing and feature selection techniques, noticeable im-
provements were observed across most models. The SVM classifier experienced a mar-
ginal enhancement in all metrics, with accuracy increasing to 97.30%, AUC rising to
99.62%, and the F1 score improving from 92.30% to 93.08%. This indicates the model’s
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high reliability in distinguishing between seizure and no seizure events. Similarly, RF
showed significant gains, achieving an accuracy of 97.17%, an AUC of 99.56%, and an F1
score of 92.72%, reinforcing its strong predictive capability.

The DT model demonstrated moderate improvements, with accuracy increasing
from 93.40% to 94.48%, the AUC improving from 81.50% to 83.24%, and the F1 score rising
from 82.50% to 85.87%. Despite these enhancements, DT continued to lag behind SVM
and RF, suggesting potential overfitting issues and limitations in handling complex pat-
terns. On the other hand, KNN displayed mixed results, with its accuracy declining from
93.60% to 92.13%, the AUC decreasing from 90.30% to 88.48%, and the F1 score dropping
from 80.60% to 76.03%. This reduction in performance indicates that KNN may not be
well-suited to high-dimensional data or imbalanced class distributions, highlighting its
sensitivity to changes in feature selection and data balancing.

Further evaluation was conducted through confusion matrices, providing insights
into each model'’s classification errors and overall predictive accuracy. The confusion ma-
trices, as illustrated in Figure 6, reveal that SVM and RF exhibit the lowest misclassifica-
tion rates, further validating their superiority in seizure detection. The DT and KNN mod-
els, however, displayed a higher rate of false positives and false negatives, suggesting
their relative inefficiency in precise classification. Additionally, the ROC curve analysis,
as shown in Figure 7, further substantiates the findings. The SVM classifier exhibited an
outstanding AUC of 0.996, positioning it as the best-performing model alongside RF,
which also achieved an AUC of 0.996. The DT classifier displayed moderate performance
with an AUC of 0.832, while KNN achieved an AUC of 0.885, indicating reasonable but
comparatively weaker discrimination ability. A comparative ROC curve analysis of all
classifiers (Figure 8) underscores the dominance of SVM and RF over DT and KNN in
distinguishing between seizure and non-seizure events.

The final performance comparison, visualized in Figure 9, consolidates these obser-
vations by illustrating the models” accuracy, AUC, and F1 score. The SVM and RF models
consistently outperformed DT and KNN across all metrics. The superior performance of
SVM can be attributed to its ability to find an optimal hyperplane that maximizes class
separation, making it particularly effective for high-dimensional data such as EEG signals.
RF, benefiting from its ensemble learning approach, successfully reduces overfitting and
captures complex patterns, contributing to its high predictive power.

In summary, the application of data balancing and hybrid feature selection tech-
niques resulted in overall performance improvements, with SVM and RF emerging as the
most effective models for seizure detection. DT showed moderate gains but remained less
reliable, while KNN exhibited performance degradation, highlighting its limitations in
handling high-dimensional, imbalanced data. These findings provide valuable insights
into the selection of ML models for EEG-based seizure detection, with SVM and RF prov-
ing to be the most robust and efficient classifiers in this context.
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Figure 6. Confusion matrices for the evaluated classifiers (SVM, Random Forest, Decision Tree, and

KNN). Rows represent true classes, and columns represent predicted classes. Class 0 corresponds

to non-seizure activity, and Class 1 represents seizure events.
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Figure 8. Comparison of ROC Curves for all Classifiers.

The evaluation of our proposed model reveals substantial advancements in seizure
detection accuracy through EEG signal analysis. By integrating the SMOTE for data bal-
ancing and employing a hybrid feature selection approach combining PCA and DWT, our
model demonstrates remarkable improvements across several algorithms, including
SVM, RF, DT, and KNN.

Our proposed model demonstrates significant performance improvements in seizure
detection through the integration of SMOTE and hybrid feature selection techniques. The
SVM and Random Forest models achieved the highest accuracy (97.30% and 97.17%, re-
spectively) and near-perfect AUC scores (0.996), showcasing their superior classification
capabilities. The Decision Tree model exhibited moderate improvements, while the KNN
model experienced slight declines in accuracy and F1 score, indicating challenges with
high-dimensional data. The ROC curve analysis confirmed the robustness of SVM and
Random Forest, with high true positive rates and minimal false positives. These findings
highlight the effectiveness of our approach in enhancing EEG signal analysis and seizure
detection, setting a new benchmark for future research and clinical applications.

Our proposed model’s performance has been benchmarked against a range of recent
studies using the Bonn (UCI) EEG dataset, as shown in Table 6. The results demonstrate
meaningful improvements in both classification accuracy and recall, validating the effec-
tiveness of our hybrid approach. Krishnan and Balasubramanian [32] developed an EEG
seizure detection method based on time-frequency entropy and an LSSVM classifier,
achieving 86% accuracy and 68% recall. Similarly, Chen et al. [33] employed optimized
DWT-based features for seizure localization, reporting 88% accuracy and 91.52% recall. In
contrast, our model integrates both DWT and PCA for a richer feature representation, im-
proving overall accuracy to 97.3%.

More recent studies have aimed to improve performance using various classifiers
and preprocessing strategies. Wang et al. [38] presented a hardware-oriented multiclass
SVM system, achieving 93.9% accuracy and 94.7% recall, whereas Kabir et al. [39] utilized
logistic model trees, with a performance of 95.33% accuracy and 95% recall. Wang et al.
[40] proposed a symlet wavelet-based pipeline combined with gradient boosting, reaching
96.5% accuracy and 95.8% recall. While these studies show strong performance, our model



Appl. Sci. 2025, 15, 4690 23 of 27

exceeds all in classification accuracy, while maintaining competitive recall. Our model
outperforms this by leveraging a more comprehensive hybrid feature selection process
and multiple classifiers (SVM, RF, DT, KNN), ultimately enhancing predictive perfor-
mance. These comparisons collectively highlight the advancements introduced by our
methodology, particularly through effective feature selection, dimensionality reduction,
and data balancing techniques, leading to a more reliable and accurate seizure detection

system.
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Figure 9. Performance Metrics Comparison Across Models.

Our findings contribute to the ongoing advancements in EEG signal analysis and sei-
zure detection technologies. The integration of SMOTE and hybrid feature selection tech-
niques offers a robust framework for improving seizure detection accuracy. By enhancing
model performance and reliability, our approach sets a new benchmark for future re-
search and clinical applications in this field, as shown in Table 6. The improvements in
accuracy and performance metrics have significant implications for clinical practice. En-
hanced seizure detection systems can lead to more reliable and timely identification of
seizures, contributing to better patient management and treatment outcomes. The robust-
ness of SVM and RF in our study suggests that these models could be effectively deployed
in clinical settings to assist in real-time seizure monitoring and diagnosis.
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Table 6. Evaluation of the proposed work against existing work from the literature.

Citation Accuracy Recall

Krishnan and Balasubramanian [32] 86% 68%
Chen et al. [33] 88% 91.52%
Wang et al. [38] 93.9% 94.7%

Kabir et al. [39] 95.33% 95%
Wang et al. [40] 96.5% 95.8%
Proposed Model 97.3% 93.08%

While our study demonstrates promising results, there are some limitations. First,
the proposed model was evaluated on a single, publicly available dataset, which contains
pre-segmented and artifact-free EEG signals recorded under controlled conditions. This
limits the ecological validity of the findings, as the model may not perform equally well
on raw, noisy, or multi-channel EEG data collected in clinical settings. Additionally, the
use of a single-channel signal restricts the ability to capture spatial features across brain
regions, which are often informative in seizure detection. These constraints may affect the
model’s generalizability across different patient demographics, hardware configurations,
and seizure types. Also, the current model does not yet support real-time processing or
adaptive learning, which are essential for integration into wearable or bedside monitoring
systems. Moreover, although the hybrid feature selection method improves accuracy, it
may introduce computational overhead that limits scalability in low-power or embedded
environments. Future work will address these concerns by validating the model on multi-
centre, real-world EEG datasets, incorporating online learning or transfer learning strate-
gies, and optimizing the pipeline for real-time, resource-constrained applications. Explor-
ing hybrid architectures that integrate deep temporal models with traditional classifiers
may also enhance robustness and interpretability in dynamic seizure detection scenarios.
Future research will also focus on incorporating stratified k-fold cross-validation to en-
hance the robustness of model evaluation. This will allow us to assess performance vari-
ability across different data partitions and provide statistically grounded metrics.

Another key challenge for real-world clinical deployment is robustness to artifacts
such as muscle movements, eye blinks, and electrical interference, which are common in
clinical EEG recordings. Since the UCI dataset is pre-cleaned, our current model has not
been tested under such noisy conditions. Furthermore, the model has not yet been evalu-
ated in a patient-specific or longitudinal context, where intra-subject variability over time
can impact performance. Future studies will focus on testing the model with raw, multi-
channel clinical EEG and assessing performance consistency across individual patients to
support personalized seizure monitoring.

7. Conclusions

Epileptic seizure detection is crucial for providing timely intervention, improving
patient safety, and enhancing the quality of life for individuals living with epilepsy. This
paper introduced an advanced epileptic seizure detection model that addresses key chal-
lenges in existing methodologies, including data imbalance and feature selection. Tradi-
tional approaches often suffer from misdiagnosis and delayed detection, affecting patient
outcomes. By integrating SMOTE for dataset balancing and a hybrid feature selection
technique (PCA + DWT), our proposed model enhances the reliability of seizure classifi-
cation using EEG signals. Experimental results demonstrated significant performance
gains, with the SVM classifier achieving 97.30% accuracy, 99.62% AUC, and 93.08% F1
score, surpassing existing methods. The proposed approach can serve as a robust deci-
sion-support tool for neurologists, reducing the risk of delayed or inaccurate diagnoses.
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A comparative evaluation with prior studies highlights the model’s effectiveness in opti-
mizing feature extraction, dimensionality reduction, and classification performance. Un-
like patient-specific approaches, our proposed model enhances generalization while mit-
igating computational inefficiencies. While the results are promising, future work will fo-
cus on enhancing real-time implementation, optimizing computational efficiency, and ex-
ploring deep learning architectures to improve generalization across diverse datasets.
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