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Abstract: Smart farming leverages Artificial Intelligence (AI) to address modern agricultural
sustainability challenges. This study investigates the application of machine learning
(ML), deep learning (DL), and time series analysis in agriculture through a systematic
literature review following the PRISMA methodology. The review highlights the critical
roles of ML and DL techniques in optimizing agricultural processes, such as crop selection,
yield prediction, soil compatibility classification, and water management. ML algorithms
facilitate tasks like crop selection and soil fertility classification, while DL techniques
contribute to forecasting crop production and commodity prices. Additionally, time series
analysis is employed for demand forecasting of crops, commodity price prediction, and
forecasting crop yield production. The focus of this article is to provide a comprehensive
overview of ML and DL techniques within the farming industry. Utilizing crop datasets,
ML algorithms are instrumental in classifying soil fertility, crop selection, and various
other aspects. DL algorithms, when applied to farming data, enable effective time series
analysis and crop selection. By synthesizing the integration of these technologies, this
review underscores their potential to enhance decision-making in agriculture and mitigate
food scarcity challenges in the future.

Keywords: artificial intelligence; Internet of Things; machine learning; deep learning; smart
farming; smart agriculture; time series analysis; PRISMA

1. Introduction
Despite facing previously unheard-of difficulties, including resource scarcity, popula-

tion expansion, and climate change, agriculture continues to be a vital component of the
world’s prosperity and social stability. To tackle these problems, cutting-edge technologies
like deep learning (DL) and machine learning (ML) are being embraced more and more to
transform farming methods globally. Even though nations like Pakistan have particular
difficulties because of their lack of resources and technological advancements, the concepts
presented here apply to a variety of agricultural environments. Pakistan’s agriculture sector
is experiencing a persistent decline due to its robust economic foundation and crucial role in
several economic schemes. The country’s economy is highly dependent on crops, serving as
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the cornerstone of its farming heritage. Various tasks are included in agricultural activities,
such as crop-relevant decisions, irrigation control, soil health assessment, and fertilizer
selection. Neural networks and random forests are two ML algorithms that are particularly
effective at managing vast amounts of multidimensional data (Niazian and Niedbała [1]).
These techniques improve in vitro breeding optimization, yield prediction, and genotype
categorization. Precision phenotyping is made possible by combining machine learning
and imagery, which advances precision farming and plant breeding studies in the future.

Smart farming relies heavily on ML. ML is applied to crop management and selection.
For example, various crops grow well in different types of soil. Farmers must play their
role in selecting the best possible acreage for their crops. ML classification approaches can
be used to determine if the land is suitable for a given yield. ML regression approaches
can be used to know the water resources required. The manuscript focuses mainly on
several supervised and unsupervised ML techniques for yield selection and management.
Several ML techniques, including Decision Trees (DTs), Random Forest (RF), k-Nearest
Neighbour (KNN), and Support Vector Machines (SVM) [2], have been examined. One of
the tedious tasks in intelligent farming is to determine important parameters for the selection
of crops and their management. ML classification algorithms such as SVM [3], DTs [4], KNN,
RF [5], and several others are used to recommend crops based on soil attributes, ground
composition, and ecological conditions. ML must be used to forecast agricultural yield [6] so
that appropriate measures can be taken to raise crop productivity. One of the crucial steps
in ML is the selection of features, which is assessed using a variety of techniques [7]. Using
statistical approaches to forecast the climate and predict the frequency of rainfall will increase
crop productivity. Research on the choice of crops and recommendation prediction utilizing
a variety of soil and meteorological data was conducted using a Recurrent Neural Network
(RNN) and ML [8]. Figure 1 depicts a visual representation of our study, which aims to aid
farmers with limited literacy in their native language throughout each of these phases.

Figure 1. Benefits of Smart IoT applications in the farming industry.

This paper examined various deep learning methods that can be used for the selection
of crops, with a particular emphasis on the Radial Basis Function Network (RBFN) and Ex-
treme Learning Machine (ELM). Theoretically, the ELM algorithm is best suited to learning
the pattern in a short time duration [9]. There is no need to perform training iteratively, as
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all the parameters are updated once. Compared with traditional learning algorithms, ELM
often achieves the smallest weight norm and the least amount of training error. Another
approach called RBFN learns more efficiently and quickly than other conventional neural
networks [10]. RBFN can be used in a more efficient way for crop selection. This article
addresses the possibility of implementing smart farming practices and offers an assessment
of RBFN. Several time series approaches have been reviewed, including RNN [11] and
Autoregressive Integrated Moving Average (ARIMA), as covered by Asy’ari et al. [12]. The
article provides novel perspectives and avenues for inquiry into creative approaches to
creating new models that can aid in improved crop management decision-making. Time
series models can benefit from using multi-head attention enabled by transformers [13],
which can handle long-term dependencies better than existing methods. Time series anal-
ysis plays a crucial role, especially considering the growing need for precise crop yield
forecasting. The authors also explore the benefits of using RNN and ARIMA for time series
prediction of agricultural data.

Predictive analytics and real-time decision-making made possible by the integration of
ML, DL, and time series analysis (TSA) approaches in smart farming have the potential to
completely transform agricultural processes. However, putting these cutting-edge technolo-
gies into practice presents several difficulties, including integrating disparate data sources,
guaranteeing robustness to environmental unpredictability, and optimizing resource alloca-
tion. In the context of smart farming, this manuscript attempts to explore how well ML,
DL, and TSA may improve crop output prediction, disease detection, and irrigation man-
agement while considering the unique challenges and limitations of agricultural contexts.

The inspiration for this article came from the difficulties farmers were facing at the
time of implementing smart farming. Some of the problems were rigorously analyzed and
solved by utilizing deep learning and sophisticated machine learning techniques. Various
technologies have been showcased, including DL, ML, and TSA. The goal of this evaluation
is to strengthen algorithms in terms of performance and learning rate. The benefits of
the reviewed algorithm over conventional methods are covered in the following sections.
Several regions of Pakistan are lagging in agricultural output because of farmer ignorance,
delayed retrieval of vital data, and proactive decision formulation [14].

In these areas, Information and Communication Technologies (ICTs), AI, ML, and DL
play a significant role in making access to data available to farmers [9]. Food insecurity
is a result of poor agricultural performance brought on by climate change and a lack of
agricultural resources [15]. This enables farmers to degrade soil with stronger pesticides,
which negatively impacts agricultural methods [16]. These include disease-related reduced
production, unpredictably changing environment, and loss of soil fertility [17].

Some of the key contributions of this research manuscript are as follows:

• An extensive overview of ML and DL algorithms in the context of smart farming,
featuring a comprehensive classification of the current data within this field.

• An exploration of applications in smart farming and an overview of the ML and
DL approaches, including Linear Regression, Support Vector Machines (SVMs), and
artificial neural networks (ANNs).

• A rigorous overview of time series models using multi-head attention enabled
by transformers.

2. Related Work
The conventional agricultural era 1.0 was characterized by agricultural practices that

were focused on the creation of food in sophisticated fields for human endurance and the
breeding of animals [18]. Among the fundamental farming tools utilized were sickles and
shovels. Productivity remained low since manual labor accounted for most of the work.
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The farming era 3.0 was introduced because of the 20th century’s tremendous growth
of computing and automation. Agriculture has been improved by robotic techniques,
agricultural machines with programming, and other technologies. With proper distribution,
accurate irrigation, compact chemical use, site-specific fertilizer delivery, effective pest
control technologies, etc., the shortcomings in the smart farming 2.0 era are mitigated, and
several principles were reviewed for the smart farming era 3.0. Modern technology is
harnessed in smart farming to bolster precision agriculture, granting farmers the capacity
to remotely oversee their crops. The utilization of sensors and automated equipment in
smart farming has resulted in enhanced productivity for farming personnel, positively
impacting harvesting and crop yields [19].

A technological revolution in agriculture has been driven by technology that auto-
mates conventional farming practices. The IoT has reinvented long-standing practices
and changed how farming is currently conducted because of technology [20]. Agricul-
ture is pivotal in global efforts to combat climate change and enhance sustainability. This
article explores the emissions and removals of greenhouse gases (GHGs) in agriculture,
examining sources such as rice cultivation, livestock enteric fermentation, and synthetic
fertilizers. SaberiKamarposhti et al. [21] highlighted challenges in reducing emissions and
investigated innovative solutions, including AI-powered monitoring systems and carbon
capture technologies. Advanced techniques like precision agriculture and renewable energy
integration can reduce emissions while boosting productivity. The paper thoroughly as-
sesses agriculture’s role in climate change mitigation, offering insights and future research
directions to enhance understanding and practical solutions for sustainability. The authors
further explore the integration of hydrogen energy and AI within smart infrastructure,
aiming to revolutionize the global energy sector. It discusses the progress, challenges,
and potential breakthroughs in using AI technologies, such as deep learning and machine
learning, to optimize energy generation, distribution, and utilization. Key benefits include
predictive maintenance, real-time decision-making, and efficient demand-side manage-
ment, which enhance energy system resilience and sustainability. Significant challenges
are highlighted, including data privacy and security, interoperability, and the technical
limitations of AI in grid management. The study advocates for standardizing communi-
cation protocols and further research to address these issues. It emphasizes the role of AI
in autonomous energy management, improving flexibility, proactive maintenance, and
decentralized energy generation and storage, which supports rapid decision-making and
enhances grid durability.

SaberiKamarposhti et al. [22] comprehensively examine agriculture’s role in climate
change, focusing on GHG emissions and mitigation strategies. It analyzes emissions from
various agricultural sources, including carbon dioxide, methane, and nitrous oxide, and
explores potential carbon sequestration methods like soil carbon storage, afforestation, and
reforestation. The study emphasizes both the positive and negative impacts of emissions
reduction policies and identifies sustainable agricultural practices, improved livestock
management, and precision agriculture as key mitigation strategies. It also addresses
the challenges of implementing these strategies, including socioeconomic and regulatory
obstacles, and stresses the importance of equitable solutions for smallholder farmers.
The research highlights advancements in measurement, climate-smart technologies, and
the need for cross-sectoral collaboration. It underscores agriculture’s potential to reduce
emissions, enhance sustainability, and ensure food security, advocating for a transformative
approach to achieve a sustainable and resilient agricultural future.

The benefits of smart agriculture encompass real-time crop data collection, precise
assessments of crops and soil, remote monitoring capabilities for farmers, sustainable
management of water and other natural resources, and increased agricultural and livestock
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output. In essence, smart agriculture represents the evolution of precision farming through
modernization and intelligent approaches to collect data across various farm operations,
which are subsequently monitored remotely and supported with relevant real-time mainte-
nance solutions. The evolution of conventional farming towards smart farming is depicted
in Figure 2.

Figure 2. Evolution of conventional farming towards smart farming.

The integration of DL and ML technology has brought about a radical shift in precision
agriculture, also known as smart farming, in recent years. With an emphasis on the use of
ML and DL approaches, this literature review examines the state of research, developments,
and applications in the field of smart farming.

2.1. Overview of Machine Learning Algorithms in the Context of Precision Farming

By analyzing historical and current conditions, it is possible to forecast future crop
yields. This predictive insight extends its benefits to farmers, the food industry, several
agencies regarding food, and individuals relevant to food security [23]. The methods
for predicting yields vary depending on the crop, the types of input data used, and the
specific prediction model. Researchers have been actively engaged in predicting crop
yields using available data. Researchers concentrated on refining their predictions through
the utilization of the Random Forest algorithm, using a sugar cane dataset that included
macroclimatic data. Existing research employed both ANN and Multiple Linear Regression
(MLR) techniques to forecast maize yields in response to climate variations, incorporating
climatic, crop, soil, and fertilizer data as inputs.

The focus of yield prediction research has been on using the data to produce precise
projections. For example, ref. [24] used RF to apply feature selection and model fine-tuning to
a sugarcane dataset that includes macroclimatic data, emphasizing the significance of these
processes. To project maize yield in response to climatic fluctuations, existing research uses
both ANN and MLR approaches, combining crop, soil, and fertilizer data as input variables
to predict soybean yield, Deep Gaussian Process modeling, and remote sensing data.

ANN and SVM are mostly used to estimate the quantity of berries per cluster in grapes.
Several factors are included in growth analysis, and one of the most basic measurements is
plant height. Plant breadth and the quantity of leaves per plant are other frequently used
measurements. The goal of farming is yield, and a plentiful harvest can only be obtained
if the crop is allowed to grow under the right conditions. A Knowledge and Data-Driven
Model (KDDM) was presented as a descriptive tool for plants. It includes data on climate,
growth media (e.g., fertilizer usage), and plant development metrics (e.g., biomass output
and fruit setting).

An extended version of RF was proposed by Geng et al. [25] to predict food safety.
Feng et al. [26] used time series data and an SVM to detect crop types. 9 crop kinds
were classified using the SVM model with an accuracy of more than 86%. Authors in [2]
illustrate crop and resource management automation using a range of classifiers, such as
KNN, SVM, and Back Propagation Neural Network (BPNN). Further in [27], Loresco et al.
showed how to use KNN for image segmentation to determine the plant’s growth stages.
Abbas et al. [28] extracted relevant data for agricultural yield using a variety of ML algo-
rithms, including LR and SVM. In the study in [29], Hamza et al. use ML algorithms to
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compare different agricultural yield parameters, such as temperature, humidity, and so
forth. Table 1 outlines several applications of yield expectation and expansion analysis.

Abbas et al. [28] extracted relevant data for agricultural yield using a variety of ML
algorithms, including LR and SVM. In another article [30], authors use ML algorithms to
compare different agricultural yield parameters, such as temperature, humidity, and so
forth. The Advanced Decision Tree (ADT) classification technique is described by [31] as
a means of designing mobile applications and turning on the global positioning system.
Babu et al. [32] describe feature selection using PSO-SVM followed by fuzzy-based decision
tree classification. Using RF analysis, authors in [33] examined agricultural yield prediction,
assisting farmers in implementing best management strategies. A tree algorithm is used
in [34] to show how agricultural land might be transformed into urban areas and adjusted
accordingly. To boost agricultural productivity, Nagasubramanian et al. [35] demonstrated
the use of the SVM algorithm to identify the disease at early stages. ML techniques are a
major component of modern farming data processing. This section explores some of the
most used ML models in this field. The analysis of data from smart farming has led to
a broad use of these machine-learning techniques. The ML methods employed for this
purpose can be broadly categorized into three groups: ANN-based models, which include
deep learning models; tree or kernel-based models; and conventional regression. Prediction,
detection, and optimization are the three basic purposes of smart farming applications.
Although there are many other ML approaches, we have chosen three of the most popular
ones—linear regression, SVMs, and ANNs—for a closer look. Most farm management
activities, including controlling fertilizer use [36] and maximizing water use [37], have
been the focus of linear regression models. SVMs have generally been used in quality
maintenance applications, as demonstrated by studies [38,39]. The widely used ANNs and
their variants have been applied in many fields, such as quality maintenance [40].

Table 1. Precision, recall, and specificity scores for different algorithms.

Research Area Data Type ML Algorithm Modeling Records
in Dataset Precision Recall

Instantaneous
Yield Formation

Macro Climate,
Soil (fertilizer),

Crop Data
ANN and MLR Classification 152 Images 0.8705 0.9572

Instantaneous
Yield Formation

Remote
Sensing Data

CNN with Deep
Gaussian Process

Proposed the
crop model NA NA NA

Crop Yield
Gap Analysis

Remote
Sensing Data

(Satellite Data)

Linear
Regression LSTM NA NA NA

Prediction of Oil
Extraction

Macro Climate,
Soil, Crop Data,
Other (Oil yield)

ANN Statistical
approach NA NA NA

Instantaneous
Yield Formation

Macro Climate,
Soil, Crop Data Random Forest DNN 10,196 Images AUC weed = 0.782 NA

Interpreting
Yield Predictions

with Factors

detection of
diseases in plants Deep CNN NA NA NA NA

ANN models are now used in most detective and predictive applications. Smart
agricultural data, particularly time series farming data, now has forecasts that are no-
ticeably more accurate because of developments in ANN and deep learning. These new
advancements have made previously impossible tasks, such as diagnosing and forecasting
diseases, insects, and the best times to harvest, more doable. This has proven to be crucial
in resolving the difficulties brought forth by complex data. On the other hand, LR has
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shown usefulness in applications related to both detection and optimization. Even though
it is a fundamental method in predictive modeling, its use for prediction in smart farming
applications has not been as common. This is because most linear regression models are
less effective in real-world scenarios because they have difficulty capturing complex and
non-linear correlations among many parameters relevant to smart farming. SVMs have
been useful in detection tasks and have shown a high degree of accuracy in anomaly
identification, particularly in situations where there are several non-linearly connected
predictor features. This is mostly because the quantity of input predictor characteristics has
no bearing on the SVM parameters. Therefore, regardless of the magnitude and complexity
of the input features, SVMs are highly suited for identifying weeds or damages (which are
comparable to anomalies) in the farming setting. Additionally, they function well even
when there are non-linearities in the data. When it comes to smart farming regression
forecasting models, time series-based regression approaches are the most used method for
predicting crop yield. This technique predicts future yield values by using historical yield
data at predetermined periods of time, or “lag values”.

Yi = β0 + β1Xi + ϵi (1)

The relationship between the independent and dependent variables is the fundamental
component of a regression model. The coefficient β1 reflects the linear relationship between
Xi and Yi [41]. Let us take an example where we want to estimate the yield for a given
farm, and we know that the environmental elements of the farm are represented by Xi, and
the yield values are designated by Yi. Since the yield values we are forecasting depend
on the values of the environmental factors Xi, which are the independent variables, the
yield values themselves become the dependent variable. The linear relationship between Xi

and Yi is represented by the coefficient β1. For both classification and regression problems,
SVM analysis is a popular machine learning approach. Significant non-linear correlations
between dependent and independent variables make it impossible for a linear model to
adequately address some regression problems. In these situations, the Lagrange dual
formulation allows the previously outlined technique to be extended to handle non-linear
functions. Since non-linear kernel functions aid in the more precise resolution of non-linear
regression problems, which in turn results in accurate anomaly detection, this is very
helpful for fruit grading.

Furthermore, SVMs were used to identify fruit that was damaged and to recognize
fruit and work in tandem with a harvesting robot. Equations (2) and (3) provide a positive
result; the SVM technique predicts the presence of the positive class; conversely, it produces
a negative result, as it predicts the presence of the negative class [41,42].

3wTx + b = 1 (2)

4wTx + b = −1 (3)

where w is a weight vector, x is input vector, and b is bias.
The SVM technique tries to solve the dual problem by using the Lagrangian dual

equation [41].

max : f (c1, ..., cn) =
n

∑
i=1

Ci −
1
2

n

∑
i=1

n

∑
j=1

yici(xi · xj)yjcj

subject to
n

∑
i=1

ciyi = 0

(4)

where Ci ≥ 0 and Ci ≤ 1
2nL for all i.
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The Lagrangian function uses a new ‘slack variable’ denoted by Ci. In the field of yield
forecasting, the SVM kernel functions can help solve non-linear regression problems more
successfully with accurate forecasting performance. However, there are times when the
SVM regression approach matches the training set too closely, which is referred to as the
“over-fitting problem”. Under these conditions, the forecasting performance of testing data
is lower than that of training data. Another issue with SVMs is that, when compared with
more interpretable methods like linear or logistic regression, SVM regression is significantly
more challenging for farming domain specialists to understand. However, due to their
improved performance, deep learning techniques are being used more and more in recent
research on smart farming. Because CNNs are more effective instruments for image analysis
and recognition, they have been used for these kinds of analyses.

2.2. Overview of Deep Learning Algorithms in the Context of Precision Farming

ANNs, a deep learning technique, have become a popular technology in yield fore-
casting. Deep learning techniques are superior to classical regression and SVM regression
because of their complex computing capabilities and non-linear features, which enable
them to handle large datasets. DL has been used in recent research to forecast yield and
achieve state-of-the-art predictive performance. To understand the link between dependent
and independent variables, these techniques iteratively use training data over numerous
epochs. They are built utilizing basic neural network components, such as neurons and
activation functions. The handling of big datasets and non-linearity are two notable issues
that deep learning successfully tackles [42]. However, in many cases, learning could take
longer than using more straightforward methods like SVMs.

One subclass of deep neural networks called CNNs is primarily used for the analysis
of image or video data in the context of smart farming. CNNs have a wide range of
applications in yield prediction. They are made up of three fundamental components:
completely connected layers, pooling, and convolution. The convolutional layer reduces
the number of parameters by dividing the weight parameters between two dimensions of
neurons (or inputs) in the previous layer (also known as 2D convolution). After the input
image (x) with a linear filter is passed through the pooling layer, a bias term (b) is added,
and then a non-linear function—typically a Rectified Linear Unit (ReLU)—is applied. This
is the computation of the output O. The weights W and bias b determine the filters of the
pooling function, represented by the symbol p(·).

0 = p
(∫

(W∗x + b)
)

(5)

Deep CNNs were used for yield prediction by [38], while CNNs were used for fruit
detection by [43]. In addition to CNNs, Xiong et al. [44] included spatial and temporal
attention, which improved the interpretation of how farm factors affect tomato productivity.
As an illustration, ref. [45] may provide yield projections that are more accurate since
they make use of remote sensing data along with CNNs and Gaussian processes. CNNs
were used to maximize workforce utilization. Although CNNs are frequently employed
for feature extraction in detection tasks, further research into their accuracy and perfor-
mance is necessary. Furthermore, to estimate maize yield in response to climate changes,
De Alwis et al. [46] used a non-linear ANN model with a single hidden layer.

y = ∑
j

wj tanh

(
∑

i
wjixi + bj

)
+ b̃ (6)
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In the above Equation (6), the function tanh acts to move the input into a non-linear
space, confirming the degree of complexity needed from the ANN model and ultimately
producing forecasts that are more accurate. ANN models were used for weed detection
by [44] and yield prediction by [47]. A lot of DL methods can overfit, and finding a way to
combine model generalization with training accuracy is still a problem in this area of study.
An overview of all ML and DL approaches and their applications is given in Table 2, which
produces several important findings.

Table 2. Machine learning models and big data applications in smart farming.

Ref. ML Algorithm Data Category Findings Limitations

[24] Random forest Prediction yield

A yield potential prediction model was
created and assessed. Estimated soil

parameters and remote sensing
vegetation indices were the primary

inputs used to determine crop potential.

SKN model can be used to predict wheat
yield and to classify field area into

different yield potential zones
more efficiently.

[48] ANN and MLR Prediction yield

The manuscript accurately examines
photos captured with an inexpensive

camera. A novel attribute for identifying
berries was created. Strong correlations

in determining the overall quantity
of grapes.

Assessment of the berry set of plants,
which is impossible with

these approaches.

[49] ANN Prediction yield

WSN networks are used to construct a
control system between node sensors in
a crop field for the purpose of optimizing

agriculture through crop irrigation.

Accuracy in terms of precision, recall,
and AUC is not explored.

[50] ANN and SVM Prediction yield

Authors investigated how wavelet
texture features might be used to

distinguish between weeds and crops.
Extract 52 texture features from wavelet

multi-resolution photos.

The main limitation is a notable variation
in the textural frequencies of the

plant canopies.

[38] ANN and CNN Detection Weed
The goal of this article is to give an

overview of the updated technologies
utilized in agricultural systems.

Overall, the mathematical figures, like
accuracy and time analysis, is

not presented.

Deng et al. [51] introduced ELM; compared with feedforward networks, ELM offers
higher performance and speed. Weights are determined analytically in ELM, and concealed
nodes are selected at random. A deep understanding of ELM and its benefits and drawbacks
is covered in this essay. ELM applications in clustering, classification, and regression tasks
were investigated by [52]. Amirian et al. [53] built a Radial Basis Function (RBF) on top
of convolution networks. Combined with convolution networks, RBF has the benefit of
providing comprehensive insights into the decision-making process. After reviewing RBFN
networks, ref. [54] concluded that RBFN can be applied in a variety of fields and provides
quick training. Rani et al. [55] presented an ML-based crop selection model that considers
both soil factors and weather conditions combined. LSTM RNN is used for weather analysis,
whereas RF classifier is used for crop selection. When it comes to weather prediction, this
model performs better than ANN. The RMSE for the Min. Temperature forecast, Max.
Temperature prediction, and Rainfall prediction using LSTM RNN are 5.023%, 7.28%, and
8.24%, respectively. In the subsequent stage, the Random Forest Classifier demonstrated
97.235% accuracy in crop selection, 96.437% accuracy in resource dependency prediction,
and 97.647 accuracy in determining the crop’s ideal planting timing. Numerous noise-
suppression techniques based on statistics and machine learning have been put forth
in the literature. Compared with Kalman and moving average filters, which are other
common filters, the suggested LSTM filter in [56] performs better in suppressing noise. Our
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threshold-based aquaponics automation system incorporates an LSTM filter to optimize
sustainable food production while minimizing expenses.

Cordeiro et al. [57] discuss many deep neural network topologies for constructing soil
moisture prediction models. We also address the issue of missing values for the features in
the dataset. We employ KNN data imputation for this purpose, which calls for replacing
the values of uncertain (or missing) characteristics with values that guarantee the required
level of trustworthiness. To assess the prediction models’ performance in terms of CPU
and RAM utilization, we also implanted the models on a tiny single-board computer,
which is frequently utilized as a fog node. In [58], a novel intrusion detection system for
agricultural IoT networks is proposed. The NSL KDD dataset is used to assess the proposed
technique, which starts with a number of pre-processing stages on the original feature set.
Recursive feature elimination is used to identify important features, which are subsequently
translated into square color pictures. Currently, input images can be learned by many
CNN architectures, including the Xception, Inception, and VGG16 models. CNN models’
performance is compared with traditional machine learning techniques and assessed using
measures like accuracy, recall, F1 score, and precision.

Offering a novel ML strategy for a heterogeneous data environment with IoT-sensed
data about the environment, agricultural circumstances, plant traits, requests, etc., is the
main goal of this research [59]. The dataset of the following five crops—rice, ragi, gram,
potato, and onion—was sourced from the Kaggle repository for Andhra Pradesh. We used
a variety of deep learning and machine learning algorithms in this work, including expec-
tation–maximization (EM), decision trees, SVM, K-Means, Naive Bayes, and AI techniques
(LSTM, RNN). With a training accuracy of 99.27% for agricultural yield prediction, the
Random Forest method appears to perform better than other machine learning algorithms.
However, when it comes to crop yield prediction, sigmoid outperforms ReLU and tanh
activation, achieving 99.71 percent accuracy with four hidden layers.

2.3. Overview of Time Series Analytical Approaches in the Context of Precision Farming

Time series analytical techniques are essential for offering insights into many facets
of agricultural operations in the context of precision farming. Time series models that
consider variables like weather, irrigation, and fertilization can be used to analyze historical
data on agricultural yields. Future crop yields can be predicted with the use of predictive
modeling approaches such as Autoregressive Integrated Moving Average (ARIMA) and
machine learning algorithms. To forecast future weather conditions, time series analysis is
used to examine historical weather data. With this information, farmers can organize their
operations and lessen the effect of unfavorable weather events on crop production.

Time series methods help track the characteristics that determine the health of the
soil over time, including moisture content, pH, and nutrient levels. Finding trends in soil
health data aids in scheduling and fertilization optimization. Through the identification
of patterns and trends in resource consumption over time, time series analysis aids in the
optimal use of resources, such as water, fertilizers, and pesticides (Table 3).

Table 3. Information and articles on crop selection.

Title Findings Methods Parameters

Future crop
projection [60]

Taking climate variability forecast into
account and crop productivity in the future ARIMA Atmosphere factors like

rainfall, temperature

FCrop forecast [61]

Crop productivity is also greatly influenced
by environmental factors. Utilising various
machine learning algorithms, forecasting

crop choice

Recursive feature
elimination with bagging

results best accuracy
algorithm. When compared

with other algorithms

N, K, pH, Sulfur,
Zinc, etc.
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Table 3. Cont.

Title Findings Methods Parameters

Crop yield
projection [62]

Examination of several machine learning
methods for predicting crop projection. ANN, CNN temperature, rainfall,

and soil type

Crop type
classification [26]

Identifying crop types with machine
learning methods Random forest, SVM Sentinel-2A images

Internet of Things and
organizing data [63]

Examine the role that Internet of Things
and big data play in smart farming.

Big data and
intelligent cropping

Investigating
IoT importance

Intelligent farming with
Internet of Things [63]

Implementing smart farming with big data
without compromising
computer performance.

Big data and IoT Nitrogen, temperature,
soil Settings

Smart farming with
Internet of Things [64]

Using IoT for smart farming also leads to
the most efficient use of energy.

SVM, logistic regression,
and random forest classifiers

water capacity, period,
soil potency, water

quality, temperature

A mixed model utilizing SVM and ARIMA was created by [65]. SVM designed the non-
linear portion, and ARIMA is utilized to control time series for a linear model. Results from
the mixed model outperformed those from the single model. To forecast the agricultural
production of different crops, Yunli et al. [66] used the ARIMA model, considering several
variables such as changes in the environment and the use of fertilizers. Further in [60],
authors forecasted agricultural output by taking climate variables into account and utilizing
ARIMA. The RNN model was shown by [11] to be a competitive model for time series
data forecasting.

3. Principles and Methods
The well-known PRISMA standards, which outline how to gather and evaluate data

from existing research, are followed in this study. A useful tool for assisting researchers
in the compilation of reviews and meta-analyses is the PRISMA statement, a systematic
framework consisting of 27 items in the form of a checklist. Every stage of the systematic re-
view process is covered in detail in this part, which is in perfect harmony with the four core
stages of the PRISMA approach. The detail of the PRISMA framework is explained below in
the form of subsections: Identification Phase, Screening Phase, Eligibility Phase, Inclusion
Phase, and PRISMA Overview, which gives a comprehensive grasp of the methodical
methodology used in this investigation.

3.1. Identification Phase

The identification phase is the first step in identifying records from a variety of sources.
A search string was created to make this procedure easier in Table 4. “Agricultur*” OR
“Farm*” AND “Machine Learning” AND “application” OR “implementation” OR “case
study” OR “experimental” OR “practical” is the last string.

Table 4. Keywords utilized for extracting records from repositories.

Group 1 Group 2 Group 3

“agricultur*” “machine learning” “application”
“farm*” “deep learning” “implementation”
“crop” “time series” “case study”

“precision”

The search query was modified to fit the syntax of each digital repository, and it
included records indexed in the designated repositories (Web of Science (WoS) and Scopus)
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through 15 December 2024. To retrieve all possible variations of a given keyword, the
wildcard symbol (“*”) was added to the end of some of the terms in the search string.
Keywords from separate groups in the search string were connected using the boolean
“AND” and keywords from the same group were connected using the boolean “OR”.

3.2. Screening Phase

A methodical procedure is used in the screening phase to compare the found records
to the preset inclusion and exclusion criteria in Table 5. The choice of well-regarded articles
shows a dedication to guaranteeing the best possible quality of research.

Table 5. Criteria for screening of an article.

Criteria Description

Duplicates Duplicate records and redundant articles were removed
Article Screening Must include the title, year, abstract, and DOI
Manuscript Type The manuscript is selected that has some original contribution.

3.3. Eligibility Phase

Following the initial screening, a thorough evaluation of the complete texts of the
remaining records is used to identify the eligible studies. The research is carefully assessed
in this step in relation to the predetermined inclusion and exclusion criteria in Table 6.

Table 6. Inclusion criteria for eligibility phase of an article.

Criteria Description

Research Content Publications specifically related to smart farming
Articles with ML-based contents
Articles with DL-based contents.

Full Text Must be available.

3.4. Inclusion Phase

The studies that satisfy all inclusion requirements and are incorporated into the SLR are
represented by the inclusion phase. The same author manually conducted this screening.

3.5. PRISMA Overview

In accordance with PRISMA criteria (Figure 3), searching the repositories WoS and
Scopus, 2732 research articles in total matched the search phrase from Table 4. Justified by
the exponential growth of ML adoption in agriculture post-2012, driven by advances in
computational power, sensor technologies, and open-source frameworks (e.g., TensorFlow,
PyTorch). This period aligns with key milestones, such as the rise of precision agriculture
and the proliferation of IoT devices in agriculture. A final selection of 87 articles was
found for an in-depth study after a detailed screening and eligibility process explained in
Tables 5 and 6, respectively.

The Web of Science (WoS) database was used to gather published articles on the
subject. The bibliometric analysis was conducted using the WoS database, specifically
the database’s primary collection. More than 68 million records from 1900 to the present
day are included in this database. By adding the field tags “agricultur*”, “farm*”, “crop”,
“machine learning”, “deep learning”, “time series”, “application”, “implementation”, “case
study”, and “precision” to the title (TIT) and abstract (ABS), we employed an advanced
search. On 15 December 2024, the search was carried out. It contained the Emerging
Sources Citation Index (ESCI), the Social Science Citation Index (SSCI), and the Science
Citation Index—Expanded (SCI-E).
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Figure 3. PRISMA flowchart.

4. Impact of Machine Learning Algorithms on Crop Choice and Oversight
ML is used to impart knowledge to machines. By classifying data like training and

testing, ML entails transferring knowledge into machines. After using training instances
throughout the training phase, the program is used to obtain consistent results for fresh
data. Testing cases are used to validate the model after training. Supervised and unsuper-
vised learning are the two primary classifications of ML techniques. In supervised learning,
program participants are under the supervision of a supervisor. Various supervised learn-
ing techniques are used, including DTs, SVM, KNN, hidden Markov models, Bayesian
networks, identification distributions, and others.

Using an approach called unsupervised machine learning, a computer is fed a lot of
data to look for patterns in it. Unsupervised methods aid in revealing hidden patterns
within the data. Computer science and statistics are combined in machine learning to
enhance prediction abilities. KNN, self-organizing maps, hierarchical clustering, partial-
based clustering, and K-Means clustering are a few examples. Numerous features are
included in historical data, such as pH, temperature, humidity, precipitation, phosphorus,
potassium levels, wind speed, zinc, and organic carbon. The features may be in the form of
binary or numerical in terms of category. ML is used by the irrigation system in several
areas, including soil management, crop management on demand, plant disease detection,
and crop quality management.
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Figure 4 depicts the ML approaches used in smart farming. A variety of techniques,
including deep learning, machine learning, and time series analysis, are included in smart
farming. The implementation of smart farming methods might require a dataset. This
dataset includes crop factors such as temperature (T), humidity (H), nitrogen (N), potassium
(K), and others. It also highlights several machine learning techniques, which are divided
into supervised and unsupervised categories according to input and output. This article
also offers insights into several ML algorithms. To improve accuracy and speed up learning,
crop data will be subjected to DL. Time series analysis will be used to project crop yield
and commodity prices in the future.

Figure 4. Artificial intelligence methods in precision agriculture.

Gosai et al. [67] developed a crop recommendation system to maximize crop yield
using ML. An important factor in Pakistan’s employment and GDP is agriculture. It also
entails obtaining access to elements like soil via a dataset from a soil testing facility and
obtaining crop data from experts in agriculture. Farmers now have a solution thanks
to precision agriculture. We will feed the recommendation algorithm with soil data. To
provide the farmer with extremely precise and economical crop recommendations, the
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system will collect the data and then use SVM and ANN to execute an ensemble model
with majority voting.

4.1. Generating a Comprehensible Decision Tree

To process agricultural data in the cloud, an Advanced Decision Tree (ADT) catego-
rization model is created and presented in [31]. Technology development has led to notable
advancements in the creation of agricultural software applications that deliver information
more quickly. Nonetheless, a lot of farmers still employ traditional farming methods, which
have led to comparatively low creation. The importance of fertile soil in maintaining crop
growth and increasing yield cannot be overstated. By assisting farmers in identifying soil
inadequacies related to nutrient content, soil type, pH value, EC (Electrical Conductivity)
value, and soil texture, the soil fertility levels enable them to select the best crops to increase
productivity. Initially, this approach uses the Virudhunagar District to forecast the degree of
soil fertility. C5.0: The ADT classification approach provides information on soil, planting
advice, and crop options.

A decision tree can be easily understood by people if it has an easy-to-understand
structure and, more specifically, simple expressions. However, using simple decision trees
will cause issues with accuracy. Multivariate Understandable Statistical Tree (MUST), an
oblique decision tree split approach developed by researchers in [68], creates decision trees
with fewer variables that appear in decision rules.

4.2. Contribution Regarding Support Vector Machine

Using Landsat NDVI data, researchers tested whether support vector machines could
recognize crop types that were watered over time [69]. Most agro-environmental assess-
ments require a specific crop variety specific to the site. SVMs were employed by researchers
in the Phoenix Active Management Area to attempt to differentiate between different crops
in a complex cropping system. Stratified random selection and data from the Landsat NDVI
time series dataset were used to choose datasets for SVM training. Local knowledge and
stratified random selection were employed. Nine major crop kinds were correctly classified
with an accuracy of nearly better than 86% for both training datasets. Intelligent-gent
selection reduced training set sizes and improved overall classification accuracy when
compared with stratified random approaches. According to a comparative study, standard
support vector machines will only consider significant samples and disregard the value of
features. Characteristic Weighting is the process of giving each characteristic in a data col-
lection a particular weight based on a set of standards. Ref. [70] made the Relief algorithm’s
proposal. Weights will be assigned according to the correlation between the qualities using
the Relief-F technique. Some qualities that do not meet the predetermined criterion are
eliminated. The SVM classifier will perform better if the Relief-F method is applied and
uncorrelated or weakly correlated SVM features are eliminated. Crop selection or soil
fertility classification may use the Relief-F technique with SVM for improved outcomes.

4.3. KNN Algorithm Based on Multi-Dimension Tree

Data mining techniques were employed by [71] to examine several agricultural yield
forecast methodologies. The agricultural system handles a large volume of data produced
by numerous components, making it incredibly complex. Crop yield prediction has drawn
the interest of consultants, producers, and organizations involved in the agricultural
industry. This study examines how data mining methods are applied in the agriculture
sector. Relatively modern data mining techniques in agriculture use a variety of techniques,
including SVM, K-Means, and KNN. These days, AI is expanding quickly, and data mining
has advanced significantly as well. A recent development in agricultural crop yield analysis
is data mining, which is the process of identifying patterns hidden in vast amounts of
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data. With the available data, yield prediction is a crucial agricultural subject that has not
yet been resolved. One difficult problem that can be solved with data mining approaches
is yield prediction. Figure 4 highlights the prominent ML and DL approaches for smart
farming or agriculture.

KNN is a supervised ML approach that searches for the target among the kNN in the
training dataset. As such, it will take a long period to create KNN. A multidimensional
binary tree is utilized by the KD-tree (K Dimension tree) to efficiently describe training
data. As a result, a groundbreaking method called [10] was introduced to effectively
decrease time complexity and describe training data. In a KD-tree, the hyperplane of each
non-leaf node can be split into two subspaces, and each subspace can be further divided
recursively using the same technique. The left subspace and the right subspace—often
referred to as the upper subspace and lower subspace—are the two divisions that apply
to all subspaces. Making a KD-tree from a piece of data in K dimensions indicates a split
of the K-dimensional space made up of the K-dimensional dataset. In K dimensions, each
node in the tree represents a hyper-rectangle area.

5. Impact of Deep Learning Algorithms on Crop Choice and Oversight
In the research arena, there is a strong correlation between AI, ML, and AL. Within

ML, which itself is a subset of AI, lies deep learning. Deep learning learns the data by
utilizing hidden layers. ML techniques are appropriate for simple data problems. When
dealing with complex or disorganized data, deep learning approaches are essential. In a DL
architecture, the typical layers are input, hidden, and output. Examples of DL architectures
include RNN, CNN, and others. The next subsections look at several DL algorithms that
different researchers have suggested for crop management and selection.

5.1. Single-Layer Feedforward Approaches

A novel learning method for single-hidden layer feedforward neural networks (SLFNs)
called ELM [72], SLFN is a basic learning technique for single-hidden layer feedforward
neural networks. The ELM might, therefore, function well in terms of generality.

As demonstrated by [72], a single-hidden layer feedforward neural network can ac-
curately learn N different examples. Nearly any non-linear activation function and a
maximum of N hidden nodes can be included in this neural network. Although conven-
tional gradient-based learning algorithms such as Backpropagation (BP) and its variant,
the Levenberg–Marquardt (LM) method, have been used to train multilayer feedforward
neural networks, these learning algorithms remain relatively slow and are prone to be-
coming stuck in local minimums. SVMs are widely employed in algorithm learning and
are renowned for their strong generalization capabilities. However, fine-tuning the SVM
kernel parameters is very labor-intensive. The unified learning framework for “generalized”
SLFN, which includes, but is not limited to, sigmoid networks, RBF networks, threshold
networks, trigonometric networks, fuzzy inference systems, etc., was the focus of ELM
research from 2001 to 2010. The theory-based universal approximation and classification
powers of ELM were proved during those years, according to [73] and other investigations.

Feature learning methods that were often employed in ELM research between 2010
and 2015 were Principal Component Analysis (PCA) and Non-negative Matrix Factoriza-
tion (NMF). It is shown that instead of using the BlackBox kernel that SVM uses, ELM
may provide the WhiteBox kernel mapping, which is accomplished via ELM random
feature mapping, and that SVM provides worse solutions than ELM. Examples of unique
situations in which ELM uses linear hidden nodes are PCA and NMF. Figure 5 displays the
ELM architecture for crop selection. Many aspects are considered when choosing crops,
including temperature, humidity, potassium (K), and nitrogen (N).
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Figure 5. Deep learning techniques for crop selection [9].

The ELM algorithm’s fundamental steps are listed below:

• In the first step, take the bias factor and random weight matrices.
• The weight matrix and bias sizes are (j × k) and (1 × k), where j means how many

hidden nodes there are and k means how many input nodes.
• Ascertain the hidden layer’s output matrix. The output matrix of the first hidden layer

is achieved by taking the transpose of the weight matrix and multiplying X, which
stands for the training data.

• Decide which feature to activate. It is allowed to use any activation function, such as
RELU or SoftMax, and others.

• Find the Moore–Penrose pseudoinverse. There are several methods available for
computing the generalized inverse of H by Moore–Penrose. These methods could
include, but are not limited to, orthogonal projection, iterative methods, orthogonal
value decomposition, and orthogonalization (SVD).

• Find the Moore–Penrose pseudoinverse and the output weight matrix beta, which is a
function of the output.

5.2. Clustering Approach with Radial Basis Function

The radial basis function network was created by Broomhead and Lowe in 1988. Even
though RBFs only have one hidden layer, they are universal approximators that fasten
the convergence process. There are various applications of RBF networks, like function
approximation, interpolation, classification, and time series prediction. These applications
help achieve a variety of industrial goals, such as forecasting soil fertility and agricultural
productivity. Figure 5 displays the RBFN [74] architecture for estimating soil fertility. The
weights connecting the input vector to hidden neurons in an RBF architecture represent the
center of the relevant neuron. The values of the weights connecting the hidden neurons
to the output neurons are chosen to train the network. These weights are preset such that
there is space in the receptive fields of the buried neurons.

Since vectors that are adjacent to one another in Euclidean space should fall into
the same neuron’s receptive field, K-Means clustering is used to locate the centers of
hidden neurons. To set the number of cluster centers, select “K”. Select K randomly chosen
locations from the dataset to act as the K centroids of the data. Determine the centroid
in the dataset that is closest to each given position. For each centroid, find the average
of all the points that are closest to it. Convert each centroid value to the corresponding
average. The range of receptive fields is chosen so that the input vector’s domain is entirely
enclosed by the neurons’ receptive fields. The value of sigma is found using the biggest
“d” distance between two buried neurons. The K-Means clustering method is used to
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determine the locations of RBF centers. The rate of convergence of RBFs with a single
hidden layer is significantly faster than that of multilayer perceptrons (MLPs). In low-
dimensional data, RBF networks are generally preferred over MLP when deep feature
extraction is not required and the results are directly related to the input vector component.
RBFs are resilient learning models in contrast to most machine learning models. They are
also universal approximators.

6. Overview of Time Series Analysis on Crop Choice and Oversight
The application of ARIMA and SVM mixed models in agricultural management within

the scope of intellectual agriculture [75]. A sophisticated form of contemporary agricul-
ture known as “wisdom agriculture” makes use of numerous scientific and technological
advancements, including automated control systems, telecommunications, and an under-
standing of farm management. Additionally, it is a primary focus of national Internet
strategy. This paper employed the ARIMA model to model the agricultural management
time series [76] in a linear fashion. The SVM model was then used to describe the time
series’ non-linear component. At last, the comprehensive forecasts of the two models came
to pass. Compared with any model used alone, the combined model is more accurate,
precise, and able to provide more information on agricultural production. The ARIMA
model for predicting agricultural productivity was studied by authors in [77]. Figure 5
analyzes different deep learning techniques: the single-layer feedforward approach, RBFN,
and time series with RNN in smart farming.

Predicting any issue, event, or variable requires a thorough grasp of the elements
influencing it; estimations of agricultural crop yield are no exception. India’s agricultural
output is greatly influenced by several elements, such as enough rainfall, timely use of
pesticides and fertilizers, a nice climate and environment, and farmer subsidies.

Because agriculture is a source of income for many people, it is vital and time-
consuming to predict agricultural crop yield. Numerous univariate and multivariate
time series techniques can be used to forecast these variables. This article forecasted the
annual production of a particular agricultural commodity using the ARIMA model. Fur-
ther, in [78], authors proposed an ARIMA model to predict maize output and cultivated
area. An estimated 9952.72 tonnes of maize will be produced, with 6479.8 thousand tonnes
as the maximum and 13,425.64 thousand tonnes as the lowest estimate. This forecast is
important because it helps formulate sensible policies about the nation’s relative produc-
tion, price structure, and consumption of maize. The results show that the total cultivated
area can be increased in the future with the implementation of conservation and land
reclamation techniques.

Every state, as well as every input and output, is independent in conventional neural
networks. Unlike typical neural networks, RNNs [79] produce the current state by feeding
the output of the previous state into it. When comparing different time series analyses,
RNN will perform better than the ARIMA model. Using short-term time series data, RNN
may generate precise prediction results.

To predict output for the upcoming years, smart farming may employ RNN networks.
Projected crop production will decrease food sufficiency in future years. Additionally,
producers can utilize RNN networks to forecast agricultural prices and determine the profit
or loss of a particular crop in the years to come.

Difficulties Encountered in the Analysis of Time Series Data

In agriculture, time series analysis plays a critical role in estimating future crop yield
based on demand. One of the main issues with time series analysis is the overfitting of
the data. Overfitting of time series models is a common occurrence; hence, managing it is
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an important effort. Managing missing data: Incorrect results will arise if time series data
contains any missing values. Thus, the primary goal of data preparation is to prepare data
that is devoid of missing values. Short-term forecasts can benefit from using the ARIMA
model. Any long-term projections could have inaccurate outcomes. RNN can be applied to
any long-term prediction. When utilizing RNN for time series, missing values do not really
matter. Compared with ARIMA, the calculation cost for agriculture time series prediction
utilizing RNN will be higher.

7. Discussion
The integration of AI into agricultural practices represents a paradigm shift in ad-

dressing global challenges such as food security, climate change, and resource optimization.
This review highlights the transformative potential of AI-driven technologies, particularly
ML, DL, and time series analysis, in advancing sustainable crop production. The findings
underscore how these tools enhance decision-making, improve crop yield predictions, and
enable precision agriculture. However, their adoption also raises critical questions about
scalability, ethical considerations, and the balance between technological innovation and
traditional farming practices.

One major obstacle to AI-driven solutions is still their scalability. Smallholder farmers,
who make up a sizable share of the world’s agricultural workforce, frequently do not
have access to high-speed internet, sophisticated equipment, or technical know-how. For
instance, in distant areas with unstable electricity, DL models that require GPU clusters are
not feasible. Prioritizing mobile-based platforms and lightweight models (such as edge AI
and federated learning) is necessary to democratize AI.

Ethical issues are also quite important. When third-party AI companies aggregate
farm-specific data, data privacy concerns surface, and farmers may be subject to abuse. Fur-
thermore, traditional or organic farming methods may be marginalized by algorithmic bias,
such as models that were mostly trained on data from industrialized farms. Frameworks
must be established by policymakers to provide fair access to AI tools while preserving
farmer autonomy.

7.1. Current Challenges

Even though ML and DL have significantly improved smart farming, a number of
obstacles prevent its widespread use the following:

High-quality, labeled datasets are essential for ML and DL models. However, because
of limited historical records, weather fluctuations, and sensor failures, data collection in
smart farming is frequently uneven.

• A lot of ML/DL models need a lot of processing power and cloud-based resources,
which might be expensive and out of reach for small-scale farmers in isolated places.

• Farmers frequently lack the technical know-how to comprehend intricate ML/DL
models, which raises questions about adoption and confidence. Making decisions is
made more difficult by the fact that DL models are black boxes.

• Because of differences in climate, soil, and crop kinds, ML/DL models are frequently
less effective in diverse agricultural settings than they are in controlled ones.

• Cybersecurity risks, such as data breaches and sensor manipulation, are increased
when IoT devices and cloud-based ML/DL systems are integrated into agriculture.

• Standardized rules governing AI-driven smart farming are lacking, especially when
it comes to data ownership, bias in AI models, and moral issues with automated
decision-making.
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7.2. Future Development Directions

Future Development Directions To overcome these challenges and enhance the impact
of ML and DL in smart farming, future research and development efforts should focus on
the following:

• Developing better interpretable ML/DL models that offer farmers clear and useful
insights would boost use and trust in Explainable AI (XAI).

• Improving Federated Learning and Edge Using edge computing with federated learn-
ing to implement on-device processing would lessen reliance on cloud computing
while maintaining privacy and enabling real-time decision-making.

• In a variety of farming scenarios, combining data from satellites, drones, Internet
of Things sensors, and historical records can increase the accuracy and resilience of
ML/DL forecasts.

• DL architectures that are optimized for low-power devices will allow for wider de-
ployment, particularly in areas with limited resources.

• Strong encryption, blockchain technology, and anomaly detection techniques can be
used to improve data security and stop illegal access to agricultural systems.

• Responsible adoption of AI-driven smart farming depends on the establishment of
international regulatory standards that guarantee sustainability, equity, and moral
AI use.

8. Conclusions
The agricultural sector has undergone significant transformation through technological

advancement, with machine learning (ML) emerging as a critical enabler for optimizing
crop management and selection. This systematic review evaluates ML methodologies
applied in agricultural research between 2010 and 2023, highlighting prevalent techniques
such as SVM, KNN, fuzzy neural networks, Autoregressive Integrated Moving Average
(ARIMA), decision trees, ensemble learning, and random forests. Each approach exhibits
distinct advantages and limitations, prompting researchers to increasingly adopt hybrid
frameworks that integrate multiple ML or deep learning architectures to enhance predictive
accuracy and operational efficiency.

To ensure methodological rigor, this review adhered to the PRISMA (Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses) framework, employing a structured
protocol for the identification, screening, and inclusion of relevant studies. Additionally,
the analysis explored methodologies in Natural Language Processing (NLP) for agricultural
data interoperability and evaluated Python-based web development frameworks (V 3.10)
for deploying scalable model interfaces.

By synthesizing these insights, this review serves as a valuable resource for researchers
seeking to advance precision agriculture. It provides a foundation for developing inte-
grated ML architectures tailored to crop optimization, refining multilingual data translation
systems, and designing user-centric web applications for real-time agricultural decision
support. The findings underscore the potential for interdisciplinary innovation, encourag-
ing further exploration of synergistic models to address evolving challenges in sustainable
crop management.

This systematic review was conducted in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The completed
PRISMA checklist is provided in the Supplementary Materials (Supplementary File S1).
Available online: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.
pmed.1000097 (accessed on 30 December 2024).

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1000097
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