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A B S T R A C T

Machine learning has been successfully applied in developing malware detection systems, with a primary focus 
on accuracy, and increasing attention to reducing computational overhead and improving model interpretability. 
However, an important question remains underexplored: How well can machine learning-based models detect 
entirely new forms of malware not present in the training data? In this study, we present a machine learning- 
based system for detecting obfuscated malware that is not only highly accurate, lightweight and interpretable, 
but also capable of successfully adapting to new types of malware attacks. Our system is capable of detecting 15 
malware subtypes despite being exclusively trained on one malware subtype, namely the Transponder from the 
Spyware family. This system was built after training 15 distinct random forest-based models, each on a different 
malware subtype from the CIC-MalMem-2022 dataset. These models were evaluated against the entire range of 
malware subtypes, including all unseen malware subtypes. To maintain the system’s streamlined nature, training 
was confined to the top five most important features, which also enhanced interpretability. The Transponder- 
focused model exhibited high accuracy, exceeding 99.8%, with an average processing speed of 5.7 µs per file. 
We also illustrate how the Shapley additive explanations technique can facilitate the interpretation of the model 
predictions. Our research contributes to advancing malware detection methodologies, pioneering the feasibility 
of detecting obfuscated malware by exclusively training a model on a single or a few carefully selected malware 
subtype and applying it to detect unseen subtypes.

1. Introduction

Over the last two decades, technological advancements in cloud 
computing, the Internet of Things (IoT) and the introduction of fifth 
Generation (5G) and beyond 5G mobile networks have revolutionised 
the way businesses and individuals access and store data (Mijwil et al., 
2023). This technological paradigm shift has enabled individuals and 
organisations to access their data seamlessly from anywhere in the 
world, using any connected devices. However, malware (i.e., malicious 
software) poses a significant threat to the security of these technologies. 
Malicious actors can use malware to compromise the confidentiality, 
integrity, and availability of data (Gupta & Rani, 2020). The impact of 
malware can be devastating for businesses and individuals alike, as it 
can result in the loss of sensitive information, such as personal data and 
financial information. In 2021 alone, over 1.3 billion malware speci-
mens were detected (Dener et al., 2022), and with increased connec-
tivity, reliance on digital systems, and the growing number of connected 
devices, the attack landscape is expected to grow even more.

With an unprecedented number of malware targeting various 
computing systems and online infrastructures, the detection of malware 
is of great importance. Unfortunately, traditional methods of malware 
detection, such as signature-based detection and behaviour-based 
detection, are becoming increasingly less effective against modern and 
sophisticated malware attacks. Malicious authors are using advanced 
technologies to design malware that is increasingly difficult to detect 
and exterminate (Mezina & Burget, 2022). In recent years, there has 
been a pivot towards the use of machine learning (ML) for malware 
detection. One of the advantages of the ML-based approach is its ca-
pacity to process a large number of files quickly to identify patterns and 
anomalies that may be indicative of malware attacks. The classical 
ML-based approach to malware detection typically involves training a 
model on a dataset of known malware and benign software and then 
using the model to classify new samples from the same distribution of 
malware and benign types (see, for example, Alani et al., 2023; Shafin 
et al., 2023; Roy et al., 2023). While these techniques have been shown 
to learn from past attacks effectively, the following question remains 
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underexplored: Are these ML-based models capable of detecting entirely 
new types of malware not represented in the training data?

1.1. Research contributions

In their 2023 study, Alani et al. underscored the essential pillars for 
effective malware detection systems: (1) high accuracy, (2) lightweight 
design (i.e. minimal memory and processing resource requirements) and 
(3) explainability (as opposed to opaque, ‘black box’ approaches). Here, 
we contend that a fourth pillar—adaptability to novel malware threat-
s—is equally crucial in the face of the continuously evolving cyber- 
threat landscape. We thus designed a malware detection system incor-
porating all four aforementioned criteria. Pioneering a zero-shot ma-
chine-learning approach (Palatucci et al., 2009) in malware detection, 
our system was trained and tested on the CIC-MalMem-2022 dataset, 
with a focus on assessing its capacity to detect unseen obfuscated mal-
ware variants. Our primary contributions include: 

1. Development of a comprehensive and adaptive machine learning- 
based system for detecting obfuscated malware, with high accu-
racy (> 99.8%) and a fast detection rate (5.7 µs per file), while 
trained on a small fraction of the dataset (<7%) used in other related 
works.

2. Use of a novel training methodology, where the system, initially 
trained on a single malware subtype, can successfully detect 14 
distinct, previously unencountered obfuscated malware subtypes. 
This approach demonstrates the ability of machine learning-based 
systems in identifying and combating zero-day malware threats.

3. Implementation of feature selection, leading to a reduced memory 
usage (a model size of 340 KB) and a simplification of the detection 
system’s complexity without compromising accuracy.

4. Inclusion of global and local interpretations of the system’s pre-
dictions to demonstrate how practitioners can gain deeper insights. 
This should encourage a more transparent and informed approach to 
automated cyber security defences.

1.2. Structure of paper

The remaining sections of this paper are as follows. Section 2 pre-
sents a brief review of relevant literature and background content on 
malware detection. In Section 3, we provide details of the study meth-
odologies. Section 4 covers the performance results of the various 
models considered. Finally, Section 5 provides a comprehensive dis-
cussion and comparative analysis of the results of this study, as well as 
limitations and potential future directions.

2. Literature review and background

2.1. Malware types

Malware is a type of software designed to harm or exploit any device, 
network or system it infects. Malicious actors use them to gain unau-
thorised access to steal sensitive information (e.g., financial data), cause 
service disruptions or establish remote control access for future exploi-
tation, among other types of harm. Although malware manifests in 
diverse forms, it typically falls into a known set of distinct types, each 
with unique characteristics and objectives. These malware types can 
overlap, with many types showing traits of other malware types. The 
most prevalent types include Trojan horse, Spyware and Ransomware.

Trojan Horse: Trojan horses appear and behave like legitimate 
software to deceive users into executing them. Once activated, they can 
carry out malicious activities in the background, including stealing 
sensitive information through keylogging, monitoring user activities 
and altering files within the systems it resides in Idika and Mathur 
(2007). Trojan horses are generally propagated via the download of apps 
people consider legitimate. The dataset used in this study includes the 

following Trojan horse subtypes: Zeus, Emonet, Refroso, Scar and 
Reconyc.

Spyware: This is a class of malware used to secretly record user 
activities or steal personal information (such as browsing habits or ac-
tivities) that can be sold to third parties (e.g., for custom advertising; 
Wang et al., 2006). 180Solutions, CoolWebSearch, Gator, Transponder 
and TIBS are subtypes of spyware included in the dataset used in this 
study.

Ransomware: This is a class of malware that is used to take control 
of a computer by encrypting all data on a computer system (Tahir, 
2018). As a result of encryption, the user cannot access their data or use 
their operating system. The screen of an infected computer is usually 
used by an attacker to make their demands such as the payment of 
money (though the victim’s response to the ransom demands does not 
guarantee recovery). The dataset used in this study includes Conti, 
Maze, Pysa, Ako and Shade as subtypes of ransomware.

2.2. Malware obfuscation techniques

While malware detection poses a significant challenge, malware 
authors have recently exacerbated this challenge by employing obfus-
cation techniques to make their code more intricate and resistant to 
detection (O’Kane et al., 2011). Obfuscation can take many forms, such 
as code obfuscation, which involves making the code difficult to under-
stand and analyse, for example, by renaming variables and functions, 
adding unnecessary code or using complex control structures (Rad et al., 
2012); code encryption, which encrypts the malware code using a secret 
key or algorithm to evade detection by antivirus software, as the 
encrypted code may not match known malware signatures (Rad et al., 
2012); polymorphism, where the malware is designed to change its code 
structure and behaviour with each new infection (Alam et al., 2015); and 
metamorphism, which goes a step further than polymorphism by 
changing its code structure and behaviour even while it is running 
(O’Kane et al., 2011).

2.3. Malware analysis approaches

In the field of cyber security, malware analysis is primarily per-
formed using two methodologies: static analysis and dynamic analysis, 
each with its distinct mechanisms and implications (Aslan & Samet, 
2020; Elkhail et al., 2021). Both static and dynamic analysis approaches 
result in the generation of excessively large numbers of features and 
signatures. To mitigate this complexity and battle the unprecedented 
increase in the number of malware specimens, researchers in recent 
years have started using ML techniques to improve malware detection 
based on features generated from static and dynamic analysis (Dada 
et al., 2019). The remaining subsections will delve into some notable 
studies that have leveraged ML for malware analysis, with a focus on 
binary classification of benign versus malware software and the detec-
tion of zero-day attacks.

2.3.1. Machine learning-based static analysis
Using a dataset derived from Windows Portable Executable files (PE 

files), Liu et al. (2020) proposed a malware detection system based on 
adversarial training, which achieved up to 97.73% accuracy. Similarly, 
Radwan (2019) performed malware detection using data from the static 
analysis of PE files. The dataset consisted of 2683 malware, 2501 benign 
records and 55 variables. After training seven classifiers—Gradient 
Boosted Trees, Decision Tree, Random Forest (RF), K-Nearest Neigh-
bours, File large margin, Logistic Regression and Naïve Bayes—the au-
thors showed that RF technique performed the best, with a detection 
accuracy of 99.23%.

In an attempt to detect harmful mobile applications, Huang et al. 
(2013) evaluated the performance of AdaBoost, Naïve Bayes, Decision 
Tree and Support Vector Machine for malware classification based on 
data generated from the permission calls of an application. Their results 
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suggest that the Naïve Bayes technique can be used to detect more than 
81% of malicious samples (Huang et al., 2013). Although 
signature-based approaches are effective against known malware sig-
natures, they can be ineffective in detecting zero-day malware that lacks 
pre-existing signatures (Aslan & Samet, 2020; Elkhail et al., 2021). In 
addition, recent malware now uses obfuscation techniques, such as 
modifying code, replacing instructions, reassigning registers and 
inserting redundant code, all of which are aimed at evading detection. 
Therefore, this strategy can be ineffective in identifying malicious soft-
ware that uses obfuscation, packaging or encryption methods (Sihwail 
et al., 2019).

2.3.2. Machine learning-based dynamic analysis
In their dynamic analysis, Bhatia and Kaushal (2017) employed the 

Decision Tree and RF algorithms to classify datasets derived from system 
call traces of Android applications as malicious or benign. Their results 
indicated that the Decision Tree and RF algorithms achieved accuracies 
of 85% and 88% respectively. In a subsequent study, Hwang et al. 
(2020) developed a two-stage detection model. First, they use an 
analytical framework, the Markov model, to dynamically characterise 
Windows API calls of ransomware. Next, they applied ML techniques to 
classify the data. The authors demonstrated that they were able to 
achieve an overall accuracy of 97.3 % with 4.8 % false positives and 1.5 
% false negatives using a RF algorithm. While dynamic-based ap-
proaches offer a deeper understanding of the true nature of the malware 
and the threat it poses without the risk of infection of the entire enter-
prise architecture. However, due to advancements in technology, mal-
ware is becoming more complex, and evasion techniques are being 
adopted by adversaries to evade detection in sandboxes by ensuring that 
malware remains dormant until a certain trigger is activated (Sihwail 
et al., 2019).

2.3.3. Machine learning-based hybrid analysis
To address the issue of dormant malware, other studies have used 

features from hybrid analysis, that is, a combination of features from 
dynamic analysis and static analysis with ML techniques. For example, 
Ijaz et al. (2019) extracted 2300 features from dynamic analysis, and 92 
features from the static analysis of PE files. Owing to the large number of 
features, different combinations of features were evaluated using ML 
algorithms. They reported that the Gradient Boosting Algorithm ach-
ieved 94.64 % accuracy on data from the dynamic analysis, whereas the 
accuracy of the static analysis-based model was 99.36 %. Hadiprakoso 
et al. (2020) also reported that the Gradient Boosting Algorithm is 
effective for classifying malware that targets Android applications. 
Using their method, a detection accuracy of approximately 99 % was 
achieved using a Gradient Boosting Algorithm.

2.3.4. Machine learning-based memory analysis
Owing to the increasingly changing behaviour of malware, data from 

forensic memory analysis has been proposed for effective malware 
detection in recent years (Mosli et al., 2016, Rathnayaka & Jamdagni, 
2017, Sihwail et al., 2021). Memory-based features have been suggested 
as an effective way to overcome some of the limitations of other methods 
of malware detection (Dener et al., 2022). Useful information such as 
active and terminated processes, Dynamic Link Libraries (DLL) used, 
running services, registry entries, and active network connections can 
readily be read from memory (Rathnayaka & Jamdagni, 2017; Sihwail 
et al., 2019; 2021). Furthermore, memory analysis can help identify 
attackers’ IP addresses, hooks used to hide themselves, malware in-
jections, and interdependencies of processes (Rathnayaka & Jamdagni, 
2017)

In 2022, Carrier et al. proposed a stacked ensemble system to classify 
obfuscated malware by using features derived from device memory of 
recent and advanced obfuscated malware attacks. In their ensemble 
system, they use Naïve-Bayes, RF and Decision Tree as base learners and 
Logistic Regression as meta-learner. With this approach, they reported 

99 % accuracy for malware detection. Their work also resulted in the 
publication of a new dataset specifically designed to test the detection of 
obfuscated malware, namely the CIC-MalMem-2022 dataset. Using the 
same dataset, Dener et al. (2022) proposed a detection method within a 
big data environment. In their study, they evaluated machine and deep 
learning techniques for binary malware detection. Results were evalu-
ated based on accuracy, F1-score, precision, recall, and AUC perfor-
mance metrics. The authors reported that the Logistic Regression 
algorithm achieved 99.97 % accuracy, and the Gradient Boost Tree 
achieved 99.94 % accuracy for malware detection by memory analysis 
(Dener et al., 2022).

Improving on the work by Carrier et al. (2022), Alani et al. (2023)
proposed a ML-based system that uses the recursive feature elimination 
method to reduce the number of features initially proposed by Carrier 
et al. (2022) from 55 to 5. The selected features were then used to train 
an Extreme Gradient Boost classifier, with an accuracy of over 99 % and 
a speed of malware detection of 0.413 µs. Another contribution of Alani 
et al.’s study is the integration of an AI explainability approach based on 
Shapely additive explanations to support the interpretation of model 
predictions.

Although identifying malware is crucial, there is an argument that 
discerning the specific type of malware can enhance the responsiveness 
and effectiveness of anti-malware systems, while also influencing the 
approach taken to mitigate the malware attack. Using deep learning 
techniques, Mezina and Burget (2022) develop a dilated convolutional 
neural network for binary and multiclass classification (Benign and 
Malware types) and detection of obfuscated malware using the 
CIC-MalMem-2022 dataset. They found that RF outperforms the dilated 
convolutional neural network model for binary classification (with 99 % 
accuracy). Similarly, Roy et al. (2023) and Shafin et al. (2023) propose 
different systems for detecting obfuscated malware types and malware 
subtypes using the CIC-MalMem-2022 dataset. With their MalHyStack 
method, Roy et al. (2023) reported an accuracy of 99.97% for binary 
classification. On the other hand, Shafin et al. (2023) reported 99.96% 
accuracy for binary classification by their RobustCBL method and 
99.92% accuracy by their CompactCBL method respectively.

2.3.5. Machine learning-based detection of zero-day attacks
Detection of previously unseen malware types, or what is often 

referred to as zero-day malware, represents a significant and growing 
challenge within the cyber security field. It is estimated that approxi-
mately 350,000 instances of zero-day malware are generated daily 
(Amer & Zelinka, 2020). These zero-day malware attacks exploit un-
known system vulnerabilities and uses evasion techniques to evade 
cyber security detection tools. Several ML-based solutions have been 
proposed (for a recent review, see Guo, 2023), ranging from supervised 
learning (Alazab et al., 2011, Gandotra et al., 2016, Zhou & Pezaros, 
2019), unsupervised outlier detection approaches (Kim et al., 2018; 
Mirsky et al., 2018) and semi-supervised learning approaches (Huda 
et al., 2017) to reinforcement learning (Acuto et al., 2023).

Jain and Singh (2017) proposed an integrated approach that use 
features from both static and dynamic analysis for detection and clas-
sification of zero-day malware. They evaluated three classifiers (Naïve 
Bayes, RF and Support Vector Machine), and observed that RF achieved 
the best accuracy of 73.47 % for the detection of zero-day malware (Jain 
& Singh, 2017). Using the CSE-CIC-IDS 2018 dataset, Zhou and Pezaros 
(2019) evaluate the effectiveness of RF, Naïve Bayes, Decision Tree, 
Multi-layer Perceptron, K-Nearest Neighbours and Quadratic Discrimi-
nant for the detection of 14 different intrusions attacks. To stimulate 
zero-day attacks, the trained classifiers were tested on eight new attacks 
that were not included in training but were collected from real-world 
attack scenarios. An evaluation of various classification algorithms 
revealed performance discrepancies. The Decision Tree model emerged 
as the best performer, achieving 96 % accuracy on unseen attacks. 
Alhaidari et al. (2022) proposed a zero- day vigilante system (ZeVigi-
lante) for the detection of unknown malware. In their study, they 
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considered both static and dynamic analysis and evaluated the perfor-
mance of RF, Neural Networks, Decision Tree, K-Nearest Neighbours, 
Naïve-Bayes and Support Vector Machine for the detection of unknown 
malware. They reported that RF achieved the highest accuracy of 98.17 
% and 98.89 % for static and dynamic analysis respectively.

Although the proposed zero-day attack detection systems mentioned 
above showed promise, they often exhibit large variation in detection 
accuracy against different types of attacks, and they lack explainability. 
Also, apart from Alazab et al. (2011), these studies have not considered 
issues of obfuscation, which is one of the major evasion techniques used 
by newer malware specimens. Additionally, none of the previous studies 
have used memory-analysis based features or considered interpretable 
ML approaches. Table 1 provides a concise summary of related work that 
was reviewed and compared in this study.

2.4. Summary

While ML techniques have shown promise in recognising unique 
malware signatures and classifying known malware samples, there is a 
need to extend these methods to effectively detect previously unseen 
obfuscated malware types, particularly when using data from memory 
analysis. Furthermore, it is essential to establish a comprehensive 
framework for developing malware detection systems. Alani et al. 
(2023) proposed a framework based on three critical criteria: (1) high 
accuracy, (2) lightweight design (i.e. minimal memory and processing 
resource requirements) and (3) explainability (as opposed to opaque, 
‘black box’ approaches). Here, we argue that a fourth criteria—adapt-
ability to novel malware threats—is indispensable, given the continu-
ously evolving cyber-threat landscape. We thus designed a malware 
detection system incorporating all four aforementioned criteria. Our 
system was trained and tested on the CIC-MalMem-2022 dataset, with a 
focus on assessing its capacity to detect unseen obfuscated malware.

3. Methodology

3.1. Dataset

The CIC-Malmem-2022 dataset used in this study is a publicly 
available dataset introduced by Carrier et al. (2022). The dataset was 
created from memory dumps of recent real-life cyberattacks. It has a 
total of 58,596 records, evenly split between 29,298 benign and 29,298 
malicious instances. Each instance consists of 55 features extracted from 
the single memory dump file using VolMemLyzer (Lashkari et al., 2021). 

Features include, for example, the number of running processes, the 
number of open dynamic-link libraries (DLLs), the average number of 
threads per process and the number of open files (for more detailed 
information about the features, refer to Table A.1 in Appendix). The 
dataset further classifies each malicious file by malware type (Ran-
somware, Spyware or Trojan Horse) and subtype (e.g., Zeus, Gator, Pysa, 
etc). Table 2 summarises the distribution of malware types and subtypes 
in the dataset.

3.2. Data modelling and evaluation metrics

3.2.1. Data pre-processing
Standard procedures were employed to prepare the dataset for ML 

modelling, including the removal of invariant features (pslist.nprocs64-
bit, handles.nport and svcscan.interactive_process_services), scaling numer-
ical features using the min-max method and label-encoding the 
categorical target variable (0 for benign and 1 for malware). The dataset 
did not contain any missing values.

3.2.2. Evaluation criteria
The performance of the classifiers was examined using the following 

metrics: confusion matrix, accuracy, precision, recall and F-1 score. 
These performance metrics are defined below.

Table 1 
Comparison and summary of related work. * For the study by Alazab et al. (2011), we present the weighted F1-score since accuracy was not reported in their paper.

Approach Research Classifier Accuracy Obfuscation Interpretability Zero Day Attacks

Static Analysis Liu et al. (2020) Visual-AT 0.9773 x x x
 Radwan (2019) Random Forest 0.9923 x x x
 Huang et al. (2013) Naïve Bayes 0.8100 x x x
 Alazab et al. (2011) Support Vector Machine 0.9840* ✓ x ✓
 Zhou and Pezaros (2019) Decision Tree 0.9600 x x ✓
 Alhaidari et al. (2022) Random Forest 0.9817 x x ✓
Dynamic Analysis Bhatia and Kaushal (2017) Decision Tree 0.8500 x x x
  Random Forest 0.8800   
 Hwang et al. (2020) Random Forest 0.9730 x x x
 Alhaidari et al. (2022) Random Forest 0.9889 x x ✓
Hybrid Analysis Ijaz et al. (2019) Gradient Boosting 0.9464 x x x
 Hadiprakoso et al. (2020) Gradient Boosting 0.9900 x x x
 Gandotra et al. (2016) Random Forest 0.9997 x x ✓
 Jain and Singh (2017) Random Forest 0.7347 x x ✓
 Carrier et al. (2022) Ensemble 0.9900 ✓ x x
 Dener et al. (2022) Logistic Regression 0.9997 ✓ x x
 Mezina and Burget (2022) Dilated Convolutional Neural Network 0.9989 ✓ x x
Memory Analysis Shafin et al. (2023) RobustCBL 0.9996 ✓ x x
  CompactCBL 0.9992   
 Roy et al. (2023) Hybrid Stack Ensemble 0.9998 ✓ x x
 Alani et al. (2023) Extreme Gradient Boost 0.9985 ✓ ✓ x

Table 2 
Summary of malware types and subtypes distribution in the CIC-Malmem-2022 
dataset.

Malware type Malware subtype Number of instance Percentage (%)

Trojan Horse Zeus 1950 3.3
 Emotet 1967 3.4
 Refroso 2000 3.4
 Scar 2000 3.4
 Reconyc 1570 2.7
Spyware 180Sulotions 2000 3.4
 CoolWebSearch 2000 3.4
 Gator 2200 3.8
 Transponder 2410 4.1
 TIBS 1410 2.4
Ransomware Conti 1988 3.4
 MAZE 1958 3.3
 Pysa 1717 2.9
 Ako 2000 3.4
 Shade 2128 3.6
Total - 29,298 50.0
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Confusion matrix: A matrix that summarises the performance of a 
ML model on a set of test data. It provides a graphical display of the 
number of accurate and inaccurate model’s predictions, broken down by 
class. In our binary classification problem, the confusion matrix is 
divided into four quadrants displaying the following metrics: True 
Positive (TP), True Negative (TN), False Positive (FP), and False Nega-
tive (FN).

Accuracy: The ratio of correctly classified instances divided by the 
total number of instances. It is measured using the following equation: 

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(1) 

Precision: The ratio of true positives divided by true positives and 
false positives: 

Precision =
TP

TP + FP
(2) 

Recall (also known as sensitivity): The ratio of true positives 
divided by true positives and false negatives: 

Recall =
TP

TP + FN
(3) 

F1-Score: The harmonic means of precision and recall: 

F1 − Score = 2 ×
Precision× Recall
Precision+ Recall

(4) 

3.2.3. Random forest and feature selection
RF, an ensemble method that can be used for both classification and 

feature selection, is the main ML algorithm used in this study, following 
an earlier assessment of various ML algorithms. It works by constructing 
multiple decision trees during training and aggregating their predictions 
(Genuer et al., 2010). Each tree is trained on a bootstrap sample, and 
optimal features at each split are identified from a random subset of all 
features (Degenhardt et al., 2019). The final features are determined 
from all trees based on the mean decrease in accuracy value obtained 
from multiple calculations (Zhao et al., 2022). The feature importance 
derived from RF—an embedded selection method (Speiser et al., 2019, 
Alduailij et al., 2022)—was particularly beneficial for our lightweight 
system, allowing the use of an optimal subset of features without 

compromising on accuracy. The advantage of using a RF for feature 
selection is that it is fast to train and is robust to noise (Niu et al., 2020).

3.3. Experimental methodology

The development process of our malware detection system can be 
divided into the following three stages as described below (see Fig. 1 for 
a summary).

3.3.1. Stage 1: development of a baseline classifier
Here, baseline performance results are obtained for the task of 

classifying benign versus malware. To achieve this, the original dataset 
is split into training (80 %) and test (20 %) sets. The original repre-
sentations of the malware subtypes in the training and test samples are 
retained using stratification. Seven classifiers are trained and tested on 
the processed dataset. The best-performing classifier is determined 
based on the F1 score. To validate the results, a stratified 10-fold cross- 
validation method is also used. All in all, this stage represents the 
traditional way of developing ML-based malware detection systems, 
where the model is trained and tested on the same malware (sub-)types.

3.3.2. Stage 2: development of an adaptive malware detection system
Once a baseline model for classifying malware and benign memory 

dumps has been established, we turn to the objective of building an 
adaptive malware detection system that can detect new malware at-
tacks. Furthermore, we want our system to also be highly accurate, 
interpretable and lightweight (in the sense that is fast and relies on a 
small number of features). To achieve this, 15 distinct models are built, 
each on a different malware subtype. The training data contains only 80 
% of malware instances from a specific malware subtype (e.g., 80 % of 
Transponder instances) along with an equivalent randomly selected 
number of benign instances. The trained model is then tested on a 
holdout unseen dataset containing the remaining benign instances and 
all other malware subtypes in addition to the remaining 20 % of the 
specific malware instances. To make the system lightweight, the top five 
features selected based on RF-based feature importance are retained for 
the training and testing processes.

3.3.3. Stage 3: model interpretation
Here we demonstrate how the model’s decision-making process can 

Fig. 1. Overview of the development process of the proposed obfuscated malware detection system. The process begins with the development of a baseline classifier 
using all malware data (Stage 1). The next phase (Stage 2) consists of developing a separate classifier for each malware subtype, using only the top five features 
selected based on feature importance.
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be interpreted using the Shapely Additive Explanations technique both 
at a global (i.e. how to interpret the effect of the main features) and a 
local level (i.e. how to interpret a single prediction).

3.4. Apparatus

The experimentation setup for this study included the following 
hardware specifications: an Intel(R) Core (TM) i5-1035G1 CPU @ 1.00 
GHz 1.19 GHz processor, 8.00 GB of RAM, Intel(R) UHD Graphics GPU, 
Windows 10 Home operating system. For software implementation, 
Python v3.11.5 was used with the following packages: Pandas (v1.3.5) 
for data manipulation and analysis, Scikit-learn (v1.2.2) for running ML 
algorithms, Matplotlib (v3.6.2) for plotting graphs, and SHAP (v0.42.1) 
for model explainability.

4. Results

4.1. Assessing baseline classifier performance against known malware 
variants

As explained in Section 3.3.1, in the first stage, seven classifiers— RF, 
Gradient Boosting, Decision Tree, K-Nearest Neighbours, Logistic 
Regression, Support Vector Machine and Naive Bayes—were evaluated 
for binary malware detection. After removing constant features (pslist. 
nprocs64bit, handles.nport and svcscan.interactive_process_services), the 
remaining 52-feature dataset was randomly split into 80 % training and 
20 % testing subsets. All subtypes of malware were included in the 
training dataset and subsequently tested, as in previous studies (see, for 
example, Alani et al., 2023; Dener et al., 2022; Mezina and Burget, 2022; 
and Shafin et al., 2023). The performance metrics, as detailed in Table 3, 
revealed that all seven classifiers were effective at detecting malware, 
with average accuracies surpassing 99.2 %. Notably, RF achieved 
marginally higher accuracy compared to the other classifiers, and thus 
was selected as the best-performing classifier and subsequent experi-
ments were based on it.

To validate our results, we also run 10-fold cross-validation, which 
produced comparable results with all F1-scores above 0.999 as shown in 
Table A.2 in Appendix. This demonstrates the robustness and reliability 
of the developed models for classifying known malware variants. Next, 
we assess the capability of such ML models to detect unseen malware 
variants.

4.2. Performance analysis of the adaptive malware detection system

Having established the baseline performance results, we aimed to 
develop a malware detection system capable of detecting novel malware 
(sub-)types, while maintaining high accuracy and lightweight design 
architecture. Here, we sought to adopt a strategy that is radically 
different from what has been proposed previously in the literature. As 
explained in Section 3.3.2, the objective in this second stage was to 
assess if models trained on a reduced dataset from one malware subtype 
can be used to identify emerging threats (i.e., be future-proof). We 
postulated that each malware subtype will exhibit distinct obfuscation 

traits, therefore leaving different signatures in memory, and as a result, 
will have different features’ importance rankings.

To test this, 15 new models were trained, each on 80 % of data from a 
specific malware subtype (e.g., 80 % of Transponder instances), along 
with an equivalent randomly selected number of benign instances, as 
explained in Section 3.3.2. Following the approach of Alani et al. (2023)
to make the models lightweight, only the top five features from the RF 
feature importance were used in the training and testing of each model 
(also our experiments show that increasing the number of features above 
five only marginally affect the model performance, as can be seen in 
Fig. A.1). The results are presented in Fig. 2 and Table 4 (for more 
detailed information about feature ranking of each malware 
subtype-based model, refer to Table A.3 in Appendix).

The model achieved an accuracy of over 99 % for 11 out of 15 
malware subtypes, with the Transponder malware subtype producing 
the highest accuracy at 99.84 %, and the lowest accuracy for Zeus at 98 
% (Fig. 2). Looking at the selected features (Table 4), svcscan.nservices 
and svcscan.shared_process_services are in the top three features for most 
of the malware subtypes, and they are the top two most important fea-
tures for six malware subtype-based models (namely, Emotet, Reconyc, 
Gator, TIBS, Pysa and Shade; see Table A.3). Also, as shown in Table 4, 
only 10 features out of 52—representing four feature categories—were 
selected in the 15 malware subtype-focused models. This indicates that 
malware attacks, albeit belonging to their different variants, tend to 
target common memory processes and share common characteristics.

The Transponder malware subtype, which represents the malware 
subtype producing the highest accuracy, also exhibited a high speed in 
classifying memory dump instances, with an average speed of 5.7 µs per 
instance. This speed is comparable to that reported by Alani et al. (2023)
for their RF model, which had a processing speed of 5.2 µs per memory 
dump. Furthermore, the model size of 340 KB demonstrates the feasi-
bility of deploying such a system in resource-constrained devices.

Fig. 3 depicts the resulting confusion matrix, which indicates that the 
false-negative rate was only 0.01 % (i.e., 8 instances were wrongly 
classified as benign out of 27,370 unseen malware instances) and that 
the false-positive rate was 0.15 % (i.e., 81 instances out of the 27,370 
benign instances were wrongly classified as malware). To validate our 
results, we also run 10-fold cross-validation, which produced an overall 
accuracy above 0.997, as shown in Table A.4.

4.3. Model explainability

Global interpretation
One of the aims of this study is to ensure that the model’s perfor-

mance is based on interpretable and explainable processes. In this study, 
the impact of each feature on the prediction of the model was further 
explored using SHapley Additive exPlanations (SHAP) values, as 
explained in Section 3.3.3. Here, the SHAP values of each feature are 
calculated using the test dataset. Since training with the Transponder 
malware subtype produces the best model performance, we will base 
model interpretation on its respective model. Fig. 4 illustrates a SHAP 
beeswarm plot of the top five features used by this model and tested on 
data containing other unseen malware subtypes. In this plot, features are 
represented vertically along the Y-axis and are ranked in the order of 
importance as determined by the SHAP analysis. SHAP values for a given 
dump file and feature are represented horizontally along the X-axis by 
coloured dots. A red dot represents a high feature value, while a blue dot 
represents a low feature value. If the value corresponding to a feature is 
on the left side of the X-axis, it suggests that the feature has a “negative” 
drag on the prediction of that data instance, thereby pushing the pre-
diction value towards ‘benign’ classification. On the other hand, if the 
value corresponding to a feature is on the right side of the X-axis, this 
means it has a “positive” drag on the prediction, thereby pushing the 
prediction value towards the ‘malware’ classification. The overall dis-
tribution of the SHAP values determines the influence of each feature on 
the model’s prediction.

Table 3 
Binary classification results for models tested on previously encountered mal-
ware subtypes. Findings from previous studies are listed at the bottom of the 
table for comparative purposes.

Classifiers Accuracy Precision Recall F1 Score

Random Forest 1.0000 1.0000 1.0000 1.0000
Gradient Boosting 0.9996 0.9996 0.9996 0.9996
Decision Tree 0.9997 0.9997 0.9997 0.9997
Support Vector 0.9970 0.9970 0.9970 0.9970
Logistic Regression 0.9958 0.9958 0.9958 0.9958
GuassianNB 0.9922 0.9922 0.9922 0.9922
Kneighbors 0.9998 0.9998 0.9998 0.9998
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Fig. 4 indicates that svcscan.nservices (total number of services), 
handles.avg_handles_per_proc (average number of handles per process) 
and svcscan.shared_process_service (number of shared processes detected 
in the memory image) are the topmost critical features for binary clas-
sification. Since most blue dots appear on the right side of the X-axis, low 
numbers of service handles per process and shared processes are asso-
ciated with a higher likelihood of being classified as malware, in line 
with behaviour patterns of modern obfuscated malware families. That is, 
instead of running as independent services or processes, modern 
obfuscated malware can use techniques such as file-less execution or 

executing arbitrary code in the address space of a separate live service or 
process. By suspending an existing service or process, and then 
unmapping/hollowing its memory, which can then be replaced with 
malicious code or the path to a DLL. In other words, an obfuscated 
malware does not need to initiate new services or processes, thereby 
keeping the number of services or processes low while remaining un-
detected (Alani et al., 2023; Brennan, 2021).

Local interpretation
To determine the contribution of each feature to the prediction for a 

given instance, the SHAP force plot can be used for local interpretation 
of each instance. The SHAP force plot offers an in-depth perspective of 
SHAP values for individual instances and can be used to identify the 
main features affecting the prediction and the magnitude of its contri-
bution. Fig. 5 illustrates the interpretation of SHAP force plot for one 
benign instance (panel A) and one (Pysa) malware instance (panel B). 
The model’s decision is decomposed into the sum of the effects of each 
feature value. In the case of the benign instance (Fig. 5), svcscan.share-
d_process_service, svcscan.nservices and handles.avg_handles_per_proc play 
pivotal roles, as denoted by the size of the blue arrows, in influencing the 
model’s likelihood of prediction towards benign classification. handles. 
nevent is the feature with the least influence for this memory dump 
instance. An identical feature influence pattern is observed for the 
instance featuring Pysa malware (Fig. 5), as indicated by the size of the 
red arrows.

5. General discussion

5.1. Summary of findings

The primary aim of this study was to develop not only a highly ac-
curate, lightweight and interpretable ML-based system for detecting 
obfuscated malware (see, for example, Alani et al., 2023), but also one 
that can adapt to previously unknown malware variants. Our novel 
approach achieved state-of-the-art accuracy despite training on a single 
malware subtype—namely, the Transponder—and a small subset of 
features, distinguishing itself in the landscape of malware detection 
research.

Fig. 2. Comparison of accuracies of the different malware subtype-based models.

Table 4 
Overall frequencies of selected features from the 15-malware subtype-focused 
models, along with the frequency breakdown by malware type.

Feature 
category

Feature Description Feature 
Importance 
Ranking

1st 2nd 3rd

SVCscan svcscan.nservices Total number of 
services running.

10 1 4

SVCscan svcscan. 
shared_process_services

Total number of 
services in shared 
processes.

0 7 4

SVCscan svcscan.kernel_drivers Total number of 
kernel drivers.

1 0 3

PsList pslist.avg_handlers Average number of 
handlers.

2 3 1

Handles handles. 
avg_handles_per_proc

Average number of 
handles per 
process.

1 3 1

Handles handles.nevent Total number of 
event handles.

0 1 0

Handles handles.nmutant Total number of 
mutant handles.

0 0 0

Handles handles.nhandles Total number of 
handles opened.

1 0 0

DLLlist dlllist.avg_dlls_per_proc Average number of 
DLLs loaded per 
process.

0 0 0

Handles handles.nsection Total number of 
section handles.

0 0 1
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Fig. 3. Confusion matrix for the Random Forest-based malware detection model trained solely on the Transponder malware subtype.

Fig. 4. SHAP Beeswarm plot of the top five features in the Transponder-based malware detection model. Each dot represents a prediction for one file. The position of 
a dot relative to the X-axis indicates the feature’s influence on that prediction: dots on the left suggest influence towards benign, while dots on the right suggest 
influence towards malware. The colour of a dot indicates the feature’s value, with red representing a high value and blue a low value.(For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Local explanations using SHAP force plot for individual prediction cases. Panel A displays a benign instance and Panel B a Pysa malware instance. The f(x) 
value represents the model’s predicted label. The size of each arrow bar for each feature represents the contribution of that feature to the prediction. The colour of the 
arrow bar indicates the feature’s influence: blue suggests influence towards benign, while red suggests influence towards malware.(For interpretation of the ref-
erences to color in this figure legend, the reader is referred to the web version of this article.)
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The comparative analysis of our model with existing research is 
shown in Table 5. Our model demonstrates performance in line with 
previous work, with accuracy surpassing 99.8%, while trained solely on 
the Transponder, representing a small fraction of no more than 6.6% of 
the data. This model was used to successfully classify memory dumps 
from 14 other unseen obfuscated malware subtypes. This finding in-
dicates that our model is highly adaptive with capacity to generalise 
beyond training data. Such aspect is crucial in the pursuit of developing 
defence systems capable of combating zero-day attacks without pre- 
existing signatures (that is, for detecting emerging vulnerabilities); yet 
to the best of our knowledge, none of the previous studies based on the 
CIC-MalMem-2022 dataset, or generally on memory analysis-based 
features, have considered zero-day attacks when evaluating their ML 
models.

The size of a malware detection model can present challenges for the 
implementation on resource-constrained devices. Our model’s size of 
340 KB is significantly smaller compared to most sizes reported in the 
literature. For example, Shafin et al. (2023) proposed model sizes of 967 
KB for RobustCBL and 575 KB for CompactCBL. Meanwhile, Dener et al. 
(2022) reported size of 6037 KB for their DNN, while Mezina and Burget 
(2022) reported a size of 627 KB for their LSTM model.

While emphasising high accuracy and a lightweight model size is 
crucial, it is equally important for a real-time malware monitoring sys-
tem to possess the capability to promptly and effectively counter 
incoming attacks. Our proposed model demonstrated capacity in swiftly 
identifying individual instances of both existing and unseen obfuscated 
malware, with an overall average speed of 5.7 µs. This microsecond- 
level speed surpasses substantially the millisecond-level speeds re-
ported by deep learning-focused studies such as those by Mezina and 
Burget (2022) (0.738 ms), Shafin et al. (2023) (0.255 ms for Com-
pactCBL and 0.384 ms for RobustCBL). The reported processing speed is 
comparable to the speeds achieved by ML-based methods like those 
proposed by Carrier et al. (2022) (8 µs) and Alani et al. (2023) (0.413 
µs). The lightweight, accurate, and fast detection speed capabilities of 
our proposed model suggest the potential for integrating such a model as 
an effective malware detection system in resource-constrained systems 
such as IoT devices. To provide an in-depth explanation of the pre-
dictions made by our proposed model, the SHAP technique was used to 
provide both global and local interpretations of the impact of each 
feature on the model’s predictions. The interpretation of the SHAP plot 
of the top features suggests that low values of features such as svcscan. 
nservices, handles.avg_handles_per_proc and svcscan.shared_process_service 
result in the likelihood of prediction towards malware classification, in 
line with observed behaviour patterns of modern obfuscated-malware 
families (Brennan, 2021). Local interpretation was also demonstrated; 
such an approach has the capacity of enabling more targeted and 
effective security incident responses by providing a detailed under-
standing of the factors driving a model’s prediction for a specific file 

analysis.

5.2. Implications for cyber security defences

Our research addresses a critical gap in cybersecurity by developing 
a malware detection model that uniquely combines high accuracy, 
lightweight design and generalisability (Stallings, 2023, pp. 438–448). 
Traditional high-accuracy models typically require substantial compu-
tational resources, limiting their practicality in resource-constrained 
environments such as IoT devices, mobile systems and embedded se-
curity frameworks. On the other hand, lightweight models often 
compromise on accuracy, reducing their effectiveness against novel or 
sophisticated malware specimens.

Our model overcomes these limitations by providing robust detec-
tion capabilities without a heavy computational footprint, potentially 
enabling seamless integration into diverse cyber security frameworks. 
Its lightweight architecture offers an important deployment flexibility 
advantage, particularly in edge computing and cloud-based applica-
tions, where efficiency is crucial for scalability and real-time threat 
response. Therefore, this approach supports adaptive, resilient and 
scalable cyber security solutions, aligning with modern industry needs 
for effective threat mitigation.

Furthermore, the results of this study provide interesting insights for 
enhancing cyber security defences, particularly within the context of the 
dynamic and evolving threat landscape. Identification of specific 
memory processes such as svcscan.nservices and svcscan.share-
d_process_service as primary targets across a wide range of malware 
subtypes, such as Transponder, Zeus and Gator, highlights a potential 
vulnerability within system architectures (Table A.3). Our findings 
indicate that these processes, which are critical to operating system 
service management, are often exploited by attackers aiming to 
manipulate or disrupt system functions covertly. Developing advanced 
malware detection systems that specifically guard these service-related 
processes could significantly mitigate risks posed by such targeted 
attacks.

The impressive generalisation capability of our model, particularly 
when trained on the Transponder subtype, to detect other malware 
variants points to another important advantage of integrating ML in 
cyber security defences—adaptability. This adaptability feature is a 
clear differentiating advantage over signature-based or heuristic-based 
approaches, which require regular updates to address new threats 
(Al-Asli & Ghaleb, 2019). In our study, we integrated ML only with a 
memory analysis approach. It remains to be seen if the integration of ML 
with static analysis could lead to the same adaptability advantage and 
could offer insights into malware’s structural features without execution 
(Aslan & Samet, 2020). Such pursuit with all malware analysis ap-
proaches could result in a comprehensive detection framework that 
maximises the strengths of each analysis approach, fostering robust 

Table 5 
Comparison of proposed system with related works that used the CIC-MalMem-2022 dataset.

Research Malware Subtype Used 
in Training

Training 
Instances

Classifier Features Accuracy Average Detection 
Speed (µs)

Interp- 
retable

Zero Day 
Attacks

Carrier et al. 
(2022)

All 80 % 
(46,876)

Ensemble 55 99% 8 x x

Dener et al. 
(2022)

All 70 % 
(41,017)

Logistic Regression 52 99.97% - x x

Mezina and 
Burget (2022)

All 80 % 
(46,876)

Dilated Convolutional 
Neural Network

55 99.89 % 738 x x

Shafin et al. 
(2023)

All 80 % 
(46,876)

RobustCBL CompactCBL 55 99.96 % 
99.92 %

384 255 x x

Roy et al. (2023) All 80 % 
(46,876)

Hybrid Stack Ensemble 16 99.98 % - x x

Alani et al. (2023) All 66.66 % 
(39,060)

Extreme Gradient Boost 5 99.85 % 0.4 ✓ x

This Study Transponder only 6.58 % 
(3856)

Random Forest 5 99.84 % 5.7 ✓ ✓
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defence mechanisms against diverse malware types.
Finally, the finding that some malware subtypes, particularly Tran-

sponder, exhibit superior generalisation for detecting unseen malware 
suggests that intrinsic characteristics of these malware—such as its 
operational framework or attack strategies—might play a crucial role in 
providing informative training data for the extraction of malware attack 
patterns generalisable across different malware variants (at least when 
memory-analysis is used). Our work highlights the need for cyber se-
curity experts to investigate why Transponder generalises better than 
other subtypes like Zeus, or at a broader scale, why the Spyware is more 
effective at detecting unseen malware compared to other types, such as 
Trojan horse or Ransomware (see Fig. 2).

5.3. Limitations and future directions

While our study presents a robust proof-of-concept for an adaptive 
malware detection system, several limitations could be addressed to 
improve the system’s effectiveness. Firstly, we did not perform hyper-
parameter tuning, instead opting for default hyperparameter settings for 
our classifiers. Our primary objective was to demonstrate the potential 
of ML-based approaches for detecting unknown malware attacks. 
However, further refinement through hyperparameter tuning and 
testing of alternative feature selection methods could yield improved 
performance and generalisation capabilities. We also expect that other 
ML models, such as Gradient Boosting Machines, could offer substantial 
improvements in speed while maintaining similar accuracy levels (see 
for example, Alani et al., 2023).

To improve model explainability, future work could incorporate 
error analysis to evaluate when and why the model makes errors in 
specific cases (Nushi, 2021). This approach would provide insights into 
the model’s weaknesses and guide improvements. Moreover, future 
research could focus on developing similar models on other obfuscated 
or non-obfuscated malware datasets. This would test the generalisability 
of our approach across different types of malware and identify which 
types of attacks are more amenable to zero-shot learning (Palatucci 
et al., 2009; i.e., enabling the trained model to correctly make pre-
dictions on data from unseen malware subtypes). Finally, training on 
one dataset and testing on a different dataset could provide further 
validation of our model’s adaptability and robustness.

5.4. Conclusion

In this paper, we have presented a novel machine learning-based 

system for detecting obfuscated malware. Trained on a small dataset 
from a single malware subtype—Transponder—our system achieves 
state-of-the-art accuracy, while maintaining rapid processing speeds 
(5.7 µs per file) and minimal memory usage (a model size of 340 KB). 
These findings not only advance the state-of-the-art in malware detec-
tion, but also highlight the critical need for the testing and refinement of 
machine learning-based solutions for detecting previously unseen mal-
ware variants. This is crucial for ensuring that our defence solutions can 
respond to the continuously evolving landscape of cyber threats.
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Appendix A

Table A1., A2., A3., A4.
Fig. A1.

Table A.1 
List of features in the CIC-Malmem-2022 dataset.

Feature Category Feature Description

Callbacks callbacks.nanonymous Total number of anonymous callbacks.
 callbacks.ncallbacks Total number of registered callback functions.
 callbacks.ngeneric Total number of generic callbacks.
DLLlist dlllist.avg_dlls_per_proc Average number of DLLs loaded per process.
 dlllist.ndlls Total number of loaded DLLs.
Handles handles.avg_handles_per_proc Average number of handles per process.
 handles.ndesktop Total number of desktop handles.
 handles.ndirectory Total number of directory handles.
 handles.nevent Total number of event handles.
 handles.nfile Total number of file handles.
 handles.nhandles Total number of handles opened.
 handles.nkey Total number of registry key handles.
 handles.nmutant Total number of mutant handles.

(continued on next page)
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Table A.1 (continued )

Feature Category Feature Description

 handles.nport Total number of port handles.
 handles.nsection Total number of section handles.
 handles.nsemaphore Total number of semaphore handles.
 handles.nthread Total number of thread handles.
 handles.ntimer Total number of timer handles.
LDR modules ldrmodules.not_in_init Total number of modules not in the initialised state.
 ldrmodules.not_in_init_avg Average number of modules not initialised.
 ldrmodules.not_in_load Total number of modules not in a loaded state.
 ldrmodules.not_in_load_avg Average number of modules not loaded.
 ldrmodules.not_in_mem Total number of modules not present in memory.
 ldrmodules.not_in_mem_avg Average number of modules not in memory.
MalFind malfind.commitCharge Total number of commit charge of detected memory injections.
 malfind.ninjections Total number of memory injections detected.
 malfind.protection Total number of protection attributes of detected memory injections.
 malfind.uniqueInjections Total number of unique memory injections detected.
Modules modules.nmodules Total number of loaded modules.
PsList pslist.avg_handlers Average number of handlers per process.
 pslist.avg_threads Average number of threads per process.
 pslist.nppid Total number of parent processes.
 pslist.nproc Total number of processes running.
 pslist.nprocs64bit Total number of 64-bit processes running.
Psxview psxview.not_in_csrss_handles Total number of processes not in CSRSS handles.
 psxview.not_in_csrss_handles_false_avg Average number of processes not in CSRSS handles.
 psxview.not_in_deskthrd Total number of processes not in the desktop thread.
 psxview.not_in_deskthrd_false_avg Average number of processes not in the desktop thread.
 psxview.not_in_eprocess_pool Total number of processes not in the EPROCESS pool.
 psxview.not_in_eprocess_pool_false_avg Average number of processes not in the EPROCESS pool.
 psxview.not_in_ethread_pool Total number of processes not in the ETHREAD pool.
 psxview.not_in_ethread_pool_false_avg Average number of processes not in the ETHREAD pool.
 psxview.not_in_pslist Total number of processes not in the process list.
 psxview.not_in_pslist_false_avg Average number of processes not in the process list.
 psxview.not_in_pspcid_list Total number of processes not in the PSPCID list.
 psxview.not_in_pspcid_list_false_avg Average count of processes not in the PSPCID list.
 psxview.not_in_session Total number of processes not in any session.
 psxview.not_in_session_false_avg Average number of processes not in any session.
SVCScan svcscan.fs_drivers Total number of file system drivers.
 svcscan.interactive_process_services Total number of services in interactive processes.
 svcscan.kernel_drivers Total number of kernel drivers.
 svcscan.nactive Total number of services running.
 svcscan.nservices Total number of services running.
 svcscan.process_services Total number of services in separate processes.
 svcscan.shared_process_services Total number of services in shared processes.
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Fig. A.1. Change in Accuracy with Number of Features.
Table A.2 
Results of 10-fold cross-validation for random forest.

Fold Accuracy Precision Recall F1-Score

1 0.999829 0.999829 0.999829 0.999829
2 1.000000 1.000000 1.000000 1.000000
3 0.999488 0.999488 0.999488 0.999488
4 1.000000 1.000000 1.000000 1.000000
5 0.999829 0.999829 0.999829 0.999829
6 1.000000 1.000000 1.000000 1.000000
7 1.000000 1.000000 1.000000 1.000000
8 1.000000 1.000000 1.000000 1.000000
9 1.000000 1.000000 1.000000 1.000000
10 1.000000 1.000000 1.000000 1.000000
µ 0.999915 0.999915 0.999915 0.999915
σ 0.000166 0.000166 0.000166 0.000166

Table A.3 
Summary of results from training on each malware subtype. For each trained model, the table includes the average accuracy, model size in memory and the top five 
features in order of importance. Additionally, the ranking of the model relative to the other subtype-focused models is indicated between parentheses.

Zeus (15) Emotet (9) Refroso (13) Scar (14) Reconyc (5)

Trojan Horse 1. pslist.avg_handlers 
2. handles.

1. svcscan.nservices 
2. svcscan.

1. handles. 
avg_handles_per_proc

1. pslist.avg_handlers 
2. handles.

1. svcscan.nservices 
2. svcscan.

 avg_handles_per_proc 
3. svcscan.nservices

shared_process_services 
3. svcscan.kernel_drivers

2. pslist.avg_handlers 
3. svcscan.nservices

avg_handles_per_proc 
3. svcscan.nservices

shared_process_services 
3. handles.nsection

 4. svcscan. 4. slist.avg_handlers 4. svcscan. 4. svcscan. 4. handles.nmutant
 shared_process_services 

5. handles.nhandles
5. handles.nsection shared_process_services 

5. dlllist.avg_dlls_per_proc
shared_process_services 
5. handles.nhandles

5. svcscan.kernel_drivers

Accuracy 0.9800 0.9901 0.9810 0.9810 0.9967
Model Size 90.21 KB 134.74 KB 97.26 KB 119.43 KB 169.59 KB

180Solutions (4) Coolwebsearch (10) Gator (2) Transponder (1) TIBS (7)

Spyware 1. svcscan.nservices 1. svcscan.nservices 1. svcscan.nservices 1. svcscan.nservices 1. svcscan.nservices
 2. handles.nevent 

3. svcscan.
2. pslist.avg_handlers 
3. svcscan.

2. svcscan. shared_process_services 2. handles. 
avg_handles_per_proc

2. svcscan. 
shared_process_services

 shared_process_services 
4. handles.nmutant

shared_process_services 
4. svcscan.kernel_drivers

3. handles. 
avg_handles_per_proc

3. svcscan. 
shared_process_services

3. handles.nhandles 
4. handles.nevent

 5. svcscan.kernel_drivers 5. handles. 4. pslist.avg_handlers 4. handles.nevent 5. handles.nmutant
  avg_handles_per_proc 5. handles.nmutant 5. handles.nmutant 
Accuracy 0.9972 0.9904 0.9977 0.9984 0.9955
Model Size 154.12 KB 129.29 KB 148.49 KB 339.59 KB 124.42 KB

Conti (6) MAZE (8) Pysa (3) Ako (12) Shade (11)

Ransomware 1. svcscan.kernel_drivers 1. handles.nhandles 1. svcscan.nservices 1. svcscan.nservices 1. svcscan.nservices
 2. svcscan.nservices 

3. svcscan.
2. svcscan. 
shared_process_services

2. svcscan. 
shared_process_services

2. pslist.avg_handlers 
3. svcscan.shared_process_services

2. svcscan. 
shared_process_services

 shared_process_services 
4. handles.nsection

3. svcscan.nservices 
4. svcscan.kernel_drivers

3. pslist.avg_handlers 
4. svcscan.kernel_drivers

4. dlllist.avg_dlls_per_proc 
5. svcscan.kernel_drivers

3. svcscan.kernel_drivers 
4. handles.nevent

 5. handles.nevent 5. handles.nmutant 5. handles.nevent  5. dlllist.avg_dlls_per_proc
Accuracy 0.9962 0.9953 0.9974 0.9844 0.9905
Model Size 150.68 KB 147.09 KB 128.81 KB 113.02 KB 116.46 KB

Table A.4 
Results of 10-fold cross-validation for random forest-based malware detection model trained solely on the tran-
sponder malware subtype.

Fold Accuracy Precision Recall F1-Score

1 1.000000 1.000000 1.000000 1.000000
2 0.997409 0.997423 0.997409 0.997409
3 0.992228 0.992241 0.992228 0.992228
4 0.997409 0.997423 0.997409 0.997409
5 0.994819 0.994872 0.994819 0.994819
6 0.994819 0.994819 0.994819 0.994819
7 0.997403 0.997416 0.997403 0.997403
8 0.997403 0.997416 0.997403 0.997403
9 1.000000 1.000000 1.000000 1.000000
10 0.997403 0.997416 0.997403 0.997403
µ 0.996889 0.996903 0.996889 0.996889
σ 0.002380 0.002374 0.002380 0.002380
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Data availability

All data and code are available on GitHub at https://github. 
com/Adnane017/Detecting_new_obfuscated_malware_variants.
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