
Detecting new obfuscated malware variants: A lightweight and
interpretable machine learning approach

Oladipo A. Madamidola, Felix Ngobigha , Adnane Ez-zizi *

University of Suffolk, Waterfront Building, IP4 1QJ Ipswich, UK

A R T I C L E I N F O

Keywords:
Cyber security
Obfuscated malware
Detection of unknown malware
Machine learning
Explainable machine learning

A B S T R A C T

Machine learning has been successfully applied in developing malware detection systems, with a primary focus
on accuracy, and increasing attention to reducing computational overhead and improving model interpretability.
However, an important question remains underexplored: How well can machine learning-based models detect
entirely new forms of malware not present in the training data? In this study, we present a machine learning-
based system for detecting obfuscated malware that is not only highly accurate, lightweight and interpretable,
but also capable of successfully adapting to new types of malware attacks. Our system is capable of detecting 15
malware subtypes despite being exclusively trained on one malware subtype, namely the Transponder from the
Spyware family. This system was built after training 15 distinct random forest-based models, each on a different
malware subtype from the CIC-MalMem-2022 dataset. These models were evaluated against the entire range of
malware subtypes, including all unseen malware subtypes. To maintain the system’s streamlined nature, training
was confined to the top five most important features, which also enhanced interpretability. The Transponder-
focused model exhibited high accuracy, exceeding 99.8%, with an average processing speed of 5.7 µs per file.
We also illustrate how the Shapley additive explanations technique can facilitate the interpretation of the model
predictions. Our research contributes to advancing malware detection methodologies, pioneering the feasibility
of detecting obfuscated malware by exclusively training a model on a single or a few carefully selected malware
subtype and applying it to detect unseen subtypes.

1. Introduction

Over the last two decades, technological advancements in cloud
computing, the Internet of Things (IoT) and the introduction of fifth
Generation (5G) and beyond 5G mobile networks have revolutionised
the way businesses and individuals access and store data (Mijwil et al.,
2023). This technological paradigm shift has enabled individuals and
organisations to access their data seamlessly from anywhere in the
world, using any connected devices. However, malware (i.e., malicious
software) poses a significant threat to the security of these technologies.
Malicious actors can use malware to compromise the confidentiality,
integrity, and availability of data (Gupta & Rani, 2020). The impact of
malware can be devastating for businesses and individuals alike, as it
can result in the loss of sensitive information, such as personal data and
financial information. In 2021 alone, over 1.3 billion malware speci
mens were detected (Dener et al., 2022), and with increased connec
tivity, reliance on digital systems, and the growing number of connected
devices, the attack landscape is expected to grow even more.

With an unprecedented number of malware targeting various
computing systems and online infrastructures, the detection of malware
is of great importance. Unfortunately, traditional methods of malware
detection, such as signature-based detection and behaviour-based
detection, are becoming increasingly less effective against modern and
sophisticated malware attacks. Malicious authors are using advanced
technologies to design malware that is increasingly difficult to detect
and exterminate (Mezina & Burget, 2022). In recent years, there has
been a pivot towards the use of machine learning (ML) for malware
detection. One of the advantages of the ML-based approach is its ca
pacity to process a large number of files quickly to identify patterns and
anomalies that may be indicative of malware attacks. The classical
ML-based approach to malware detection typically involves training a
model on a dataset of known malware and benign software and then
using the model to classify new samples from the same distribution of
malware and benign types (see, for example, Alani et al., 2023; Shafin
et al., 2023; Roy et al., 2023). While these techniques have been shown
to learn from past attacks effectively, the following question remains

* Corresponding author.
E-mail addresses: o.madamidola@uos.ac.uk (O.A. Madamidola), f.ngobigha@uos.ac.uk (F. Ngobigha), a.ez-zizi@uos.ac.uk (A. Ez-zizi).

Contents lists available at ScienceDirect

Intelligent Systems with Applications

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications

https://doi.org/10.1016/j.iswa.2024.200472
Received 6 July 2024; Received in revised form 22 November 2024; Accepted 22 December 2024

Intelligent Systems with Applications 25 (2025) 200472

Available online 26 December 2024
2667-3053/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://orcid.org/0000-0002-3066-8568
https://orcid.org/0000-0002-3066-8568
https://orcid.org/0000-0002-3495-2048
https://orcid.org/0000-0002-3495-2048
mailto:o.madamidola@uos.ac.uk
mailto:f.ngobigha@uos.ac.uk
mailto:a.ez-zizi@uos.ac.uk
www.sciencedirect.com/science/journal/26673053
https://www.journals.elsevier.com/intelligent-systems-with-applications
https://doi.org/10.1016/j.iswa.2024.200472
https://doi.org/10.1016/j.iswa.2024.200472
http://creativecommons.org/licenses/by-nc-nd/4.0/

underexplored: Are these ML-based models capable of detecting entirely
new types of malware not represented in the training data?

1.1. Research contributions

In their 2023 study, Alani et al. underscored the essential pillars for
effective malware detection systems: (1) high accuracy, (2) lightweight
design (i.e. minimal memory and processing resource requirements) and
(3) explainability (as opposed to opaque, ‘black box’ approaches). Here,
we contend that a fourth pillar—adaptability to novel malware threat
s—is equally crucial in the face of the continuously evolving cyber-
threat landscape. We thus designed a malware detection system incor
porating all four aforementioned criteria. Pioneering a zero-shot ma
chine-learning approach (Palatucci et al., 2009) in malware detection,
our system was trained and tested on the CIC-MalMem-2022 dataset,
with a focus on assessing its capacity to detect unseen obfuscated mal
ware variants. Our primary contributions include:

1. Development of a comprehensive and adaptive machine learning-
based system for detecting obfuscated malware, with high accu
racy (> 99.8%) and a fast detection rate (5.7 µs per file), while
trained on a small fraction of the dataset (<7%) used in other related
works.

2. Use of a novel training methodology, where the system, initially
trained on a single malware subtype, can successfully detect 14
distinct, previously unencountered obfuscated malware subtypes.
This approach demonstrates the ability of machine learning-based
systems in identifying and combating zero-day malware threats.

3. Implementation of feature selection, leading to a reduced memory
usage (a model size of 340 KB) and a simplification of the detection
system’s complexity without compromising accuracy.

4. Inclusion of global and local interpretations of the system’s pre
dictions to demonstrate how practitioners can gain deeper insights.
This should encourage a more transparent and informed approach to
automated cyber security defences.

1.2. Structure of paper

The remaining sections of this paper are as follows. Section 2 pre
sents a brief review of relevant literature and background content on
malware detection. In Section 3, we provide details of the study meth
odologies. Section 4 covers the performance results of the various
models considered. Finally, Section 5 provides a comprehensive dis
cussion and comparative analysis of the results of this study, as well as
limitations and potential future directions.

2. Literature review and background

2.1. Malware types

Malware is a type of software designed to harm or exploit any device,
network or system it infects. Malicious actors use them to gain unau
thorised access to steal sensitive information (e.g., financial data), cause
service disruptions or establish remote control access for future exploi
tation, among other types of harm. Although malware manifests in
diverse forms, it typically falls into a known set of distinct types, each
with unique characteristics and objectives. These malware types can
overlap, with many types showing traits of other malware types. The
most prevalent types include Trojan horse, Spyware and Ransomware.

Trojan Horse: Trojan horses appear and behave like legitimate
software to deceive users into executing them. Once activated, they can
carry out malicious activities in the background, including stealing
sensitive information through keylogging, monitoring user activities
and altering files within the systems it resides in Idika and Mathur
(2007). Trojan horses are generally propagated via the download of apps
people consider legitimate. The dataset used in this study includes the

following Trojan horse subtypes: Zeus, Emonet, Refroso, Scar and
Reconyc.

Spyware: This is a class of malware used to secretly record user
activities or steal personal information (such as browsing habits or ac
tivities) that can be sold to third parties (e.g., for custom advertising;
Wang et al., 2006). 180Solutions, CoolWebSearch, Gator, Transponder
and TIBS are subtypes of spyware included in the dataset used in this
study.

Ransomware: This is a class of malware that is used to take control
of a computer by encrypting all data on a computer system (Tahir,
2018). As a result of encryption, the user cannot access their data or use
their operating system. The screen of an infected computer is usually
used by an attacker to make their demands such as the payment of
money (though the victim’s response to the ransom demands does not
guarantee recovery). The dataset used in this study includes Conti,
Maze, Pysa, Ako and Shade as subtypes of ransomware.

2.2. Malware obfuscation techniques

While malware detection poses a significant challenge, malware
authors have recently exacerbated this challenge by employing obfus
cation techniques to make their code more intricate and resistant to
detection (O’Kane et al., 2011). Obfuscation can take many forms, such
as code obfuscation, which involves making the code difficult to under
stand and analyse, for example, by renaming variables and functions,
adding unnecessary code or using complex control structures (Rad et al.,
2012); code encryption, which encrypts the malware code using a secret
key or algorithm to evade detection by antivirus software, as the
encrypted code may not match known malware signatures (Rad et al.,
2012); polymorphism, where the malware is designed to change its code
structure and behaviour with each new infection (Alam et al., 2015); and
metamorphism, which goes a step further than polymorphism by
changing its code structure and behaviour even while it is running
(O’Kane et al., 2011).

2.3. Malware analysis approaches

In the field of cyber security, malware analysis is primarily per
formed using two methodologies: static analysis and dynamic analysis,
each with its distinct mechanisms and implications (Aslan & Samet,
2020; Elkhail et al., 2021). Both static and dynamic analysis approaches
result in the generation of excessively large numbers of features and
signatures. To mitigate this complexity and battle the unprecedented
increase in the number of malware specimens, researchers in recent
years have started using ML techniques to improve malware detection
based on features generated from static and dynamic analysis (Dada
et al., 2019). The remaining subsections will delve into some notable
studies that have leveraged ML for malware analysis, with a focus on
binary classification of benign versus malware software and the detec
tion of zero-day attacks.

2.3.1. Machine learning-based static analysis
Using a dataset derived from Windows Portable Executable files (PE

files), Liu et al. (2020) proposed a malware detection system based on
adversarial training, which achieved up to 97.73% accuracy. Similarly,
Radwan (2019) performed malware detection using data from the static
analysis of PE files. The dataset consisted of 2683 malware, 2501 benign
records and 55 variables. After training seven classifiers—Gradient
Boosted Trees, Decision Tree, Random Forest (RF), K-Nearest Neigh
bours, File large margin, Logistic Regression and Naïve Bayes—the au
thors showed that RF technique performed the best, with a detection
accuracy of 99.23%.

In an attempt to detect harmful mobile applications, Huang et al.
(2013) evaluated the performance of AdaBoost, Naïve Bayes, Decision
Tree and Support Vector Machine for malware classification based on
data generated from the permission calls of an application. Their results

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

2

suggest that the Naïve Bayes technique can be used to detect more than
81% of malicious samples (Huang et al., 2013). Although
signature-based approaches are effective against known malware sig
natures, they can be ineffective in detecting zero-day malware that lacks
pre-existing signatures (Aslan & Samet, 2020; Elkhail et al., 2021). In
addition, recent malware now uses obfuscation techniques, such as
modifying code, replacing instructions, reassigning registers and
inserting redundant code, all of which are aimed at evading detection.
Therefore, this strategy can be ineffective in identifying malicious soft
ware that uses obfuscation, packaging or encryption methods (Sihwail
et al., 2019).

2.3.2. Machine learning-based dynamic analysis
In their dynamic analysis, Bhatia and Kaushal (2017) employed the

Decision Tree and RF algorithms to classify datasets derived from system
call traces of Android applications as malicious or benign. Their results
indicated that the Decision Tree and RF algorithms achieved accuracies
of 85% and 88% respectively. In a subsequent study, Hwang et al.
(2020) developed a two-stage detection model. First, they use an
analytical framework, the Markov model, to dynamically characterise
Windows API calls of ransomware. Next, they applied ML techniques to
classify the data. The authors demonstrated that they were able to
achieve an overall accuracy of 97.3 % with 4.8 % false positives and 1.5
% false negatives using a RF algorithm. While dynamic-based ap
proaches offer a deeper understanding of the true nature of the malware
and the threat it poses without the risk of infection of the entire enter
prise architecture. However, due to advancements in technology, mal
ware is becoming more complex, and evasion techniques are being
adopted by adversaries to evade detection in sandboxes by ensuring that
malware remains dormant until a certain trigger is activated (Sihwail
et al., 2019).

2.3.3. Machine learning-based hybrid analysis
To address the issue of dormant malware, other studies have used

features from hybrid analysis, that is, a combination of features from
dynamic analysis and static analysis with ML techniques. For example,
Ijaz et al. (2019) extracted 2300 features from dynamic analysis, and 92
features from the static analysis of PE files. Owing to the large number of
features, different combinations of features were evaluated using ML
algorithms. They reported that the Gradient Boosting Algorithm ach
ieved 94.64 % accuracy on data from the dynamic analysis, whereas the
accuracy of the static analysis-based model was 99.36 %. Hadiprakoso
et al. (2020) also reported that the Gradient Boosting Algorithm is
effective for classifying malware that targets Android applications.
Using their method, a detection accuracy of approximately 99 % was
achieved using a Gradient Boosting Algorithm.

2.3.4. Machine learning-based memory analysis
Owing to the increasingly changing behaviour of malware, data from

forensic memory analysis has been proposed for effective malware
detection in recent years (Mosli et al., 2016, Rathnayaka & Jamdagni,
2017, Sihwail et al., 2021). Memory-based features have been suggested
as an effective way to overcome some of the limitations of other methods
of malware detection (Dener et al., 2022). Useful information such as
active and terminated processes, Dynamic Link Libraries (DLL) used,
running services, registry entries, and active network connections can
readily be read from memory (Rathnayaka & Jamdagni, 2017; Sihwail
et al., 2019; 2021). Furthermore, memory analysis can help identify
attackers’ IP addresses, hooks used to hide themselves, malware in
jections, and interdependencies of processes (Rathnayaka & Jamdagni,
2017)

In 2022, Carrier et al. proposed a stacked ensemble system to classify
obfuscated malware by using features derived from device memory of
recent and advanced obfuscated malware attacks. In their ensemble
system, they use Naïve-Bayes, RF and Decision Tree as base learners and
Logistic Regression as meta-learner. With this approach, they reported

99 % accuracy for malware detection. Their work also resulted in the
publication of a new dataset specifically designed to test the detection of
obfuscated malware, namely the CIC-MalMem-2022 dataset. Using the
same dataset, Dener et al. (2022) proposed a detection method within a
big data environment. In their study, they evaluated machine and deep
learning techniques for binary malware detection. Results were evalu
ated based on accuracy, F1-score, precision, recall, and AUC perfor
mance metrics. The authors reported that the Logistic Regression
algorithm achieved 99.97 % accuracy, and the Gradient Boost Tree
achieved 99.94 % accuracy for malware detection by memory analysis
(Dener et al., 2022).

Improving on the work by Carrier et al. (2022), Alani et al. (2023)
proposed a ML-based system that uses the recursive feature elimination
method to reduce the number of features initially proposed by Carrier
et al. (2022) from 55 to 5. The selected features were then used to train
an Extreme Gradient Boost classifier, with an accuracy of over 99 % and
a speed of malware detection of 0.413 µs. Another contribution of Alani
et al.’s study is the integration of an AI explainability approach based on
Shapely additive explanations to support the interpretation of model
predictions.

Although identifying malware is crucial, there is an argument that
discerning the specific type of malware can enhance the responsiveness
and effectiveness of anti-malware systems, while also influencing the
approach taken to mitigate the malware attack. Using deep learning
techniques, Mezina and Burget (2022) develop a dilated convolutional
neural network for binary and multiclass classification (Benign and
Malware types) and detection of obfuscated malware using the
CIC-MalMem-2022 dataset. They found that RF outperforms the dilated
convolutional neural network model for binary classification (with 99 %
accuracy). Similarly, Roy et al. (2023) and Shafin et al. (2023) propose
different systems for detecting obfuscated malware types and malware
subtypes using the CIC-MalMem-2022 dataset. With their MalHyStack
method, Roy et al. (2023) reported an accuracy of 99.97% for binary
classification. On the other hand, Shafin et al. (2023) reported 99.96%
accuracy for binary classification by their RobustCBL method and
99.92% accuracy by their CompactCBL method respectively.

2.3.5. Machine learning-based detection of zero-day attacks
Detection of previously unseen malware types, or what is often

referred to as zero-day malware, represents a significant and growing
challenge within the cyber security field. It is estimated that approxi
mately 350,000 instances of zero-day malware are generated daily
(Amer & Zelinka, 2020). These zero-day malware attacks exploit un
known system vulnerabilities and uses evasion techniques to evade
cyber security detection tools. Several ML-based solutions have been
proposed (for a recent review, see Guo, 2023), ranging from supervised
learning (Alazab et al., 2011, Gandotra et al., 2016, Zhou & Pezaros,
2019), unsupervised outlier detection approaches (Kim et al., 2018;
Mirsky et al., 2018) and semi-supervised learning approaches (Huda
et al., 2017) to reinforcement learning (Acuto et al., 2023).

Jain and Singh (2017) proposed an integrated approach that use
features from both static and dynamic analysis for detection and clas
sification of zero-day malware. They evaluated three classifiers (Naïve
Bayes, RF and Support Vector Machine), and observed that RF achieved
the best accuracy of 73.47 % for the detection of zero-day malware (Jain
& Singh, 2017). Using the CSE-CIC-IDS 2018 dataset, Zhou and Pezaros
(2019) evaluate the effectiveness of RF, Naïve Bayes, Decision Tree,
Multi-layer Perceptron, K-Nearest Neighbours and Quadratic Discrimi
nant for the detection of 14 different intrusions attacks. To stimulate
zero-day attacks, the trained classifiers were tested on eight new attacks
that were not included in training but were collected from real-world
attack scenarios. An evaluation of various classification algorithms
revealed performance discrepancies. The Decision Tree model emerged
as the best performer, achieving 96 % accuracy on unseen attacks.
Alhaidari et al. (2022) proposed a zero- day vigilante system (ZeVigi
lante) for the detection of unknown malware. In their study, they

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

3

considered both static and dynamic analysis and evaluated the perfor
mance of RF, Neural Networks, Decision Tree, K-Nearest Neighbours,
Naïve-Bayes and Support Vector Machine for the detection of unknown
malware. They reported that RF achieved the highest accuracy of 98.17
% and 98.89 % for static and dynamic analysis respectively.

Although the proposed zero-day attack detection systems mentioned
above showed promise, they often exhibit large variation in detection
accuracy against different types of attacks, and they lack explainability.
Also, apart from Alazab et al. (2011), these studies have not considered
issues of obfuscation, which is one of the major evasion techniques used
by newer malware specimens. Additionally, none of the previous studies
have used memory-analysis based features or considered interpretable
ML approaches. Table 1 provides a concise summary of related work that
was reviewed and compared in this study.

2.4. Summary

While ML techniques have shown promise in recognising unique
malware signatures and classifying known malware samples, there is a
need to extend these methods to effectively detect previously unseen
obfuscated malware types, particularly when using data from memory
analysis. Furthermore, it is essential to establish a comprehensive
framework for developing malware detection systems. Alani et al.
(2023) proposed a framework based on three critical criteria: (1) high
accuracy, (2) lightweight design (i.e. minimal memory and processing
resource requirements) and (3) explainability (as opposed to opaque,
‘black box’ approaches). Here, we argue that a fourth criteria—adapt
ability to novel malware threats—is indispensable, given the continu
ously evolving cyber-threat landscape. We thus designed a malware
detection system incorporating all four aforementioned criteria. Our
system was trained and tested on the CIC-MalMem-2022 dataset, with a
focus on assessing its capacity to detect unseen obfuscated malware.

3. Methodology

3.1. Dataset

The CIC-Malmem-2022 dataset used in this study is a publicly
available dataset introduced by Carrier et al. (2022). The dataset was
created from memory dumps of recent real-life cyberattacks. It has a
total of 58,596 records, evenly split between 29,298 benign and 29,298
malicious instances. Each instance consists of 55 features extracted from
the single memory dump file using VolMemLyzer (Lashkari et al., 2021).

Features include, for example, the number of running processes, the
number of open dynamic-link libraries (DLLs), the average number of
threads per process and the number of open files (for more detailed
information about the features, refer to Table A.1 in Appendix). The
dataset further classifies each malicious file by malware type (Ran
somware, Spyware or Trojan Horse) and subtype (e.g., Zeus, Gator, Pysa,
etc). Table 2 summarises the distribution of malware types and subtypes
in the dataset.

3.2. Data modelling and evaluation metrics

3.2.1. Data pre-processing
Standard procedures were employed to prepare the dataset for ML

modelling, including the removal of invariant features (pslist.nprocs64
bit, handles.nport and svcscan.interactive_process_services), scaling numer
ical features using the min-max method and label-encoding the
categorical target variable (0 for benign and 1 for malware). The dataset
did not contain any missing values.

3.2.2. Evaluation criteria
The performance of the classifiers was examined using the following

metrics: confusion matrix, accuracy, precision, recall and F-1 score.
These performance metrics are defined below.

Table 1
Comparison and summary of related work. * For the study by Alazab et al. (2011), we present the weighted F1-score since accuracy was not reported in their paper.

Approach Research Classifier Accuracy Obfuscation Interpretability Zero Day Attacks

Static Analysis Liu et al. (2020) Visual-AT 0.9773 x x x
​ Radwan (2019) Random Forest 0.9923 x x x
​ Huang et al. (2013) Naïve Bayes 0.8100 x x x
​ Alazab et al. (2011) Support Vector Machine 0.9840* ✓ x ✓
​ Zhou and Pezaros (2019) Decision Tree 0.9600 x x ✓
​ Alhaidari et al. (2022) Random Forest 0.9817 x x ✓
Dynamic Analysis Bhatia and Kaushal (2017) Decision Tree 0.8500 x x x
​ ​ Random Forest 0.8800 ​ ​ ​
​ Hwang et al. (2020) Random Forest 0.9730 x x x
​ Alhaidari et al. (2022) Random Forest 0.9889 x x ✓
Hybrid Analysis Ijaz et al. (2019) Gradient Boosting 0.9464 x x x
​ Hadiprakoso et al. (2020) Gradient Boosting 0.9900 x x x
​ Gandotra et al. (2016) Random Forest 0.9997 x x ✓
​ Jain and Singh (2017) Random Forest 0.7347 x x ✓
​ Carrier et al. (2022) Ensemble 0.9900 ✓ x x
​ Dener et al. (2022) Logistic Regression 0.9997 ✓ x x
​ Mezina and Burget (2022) Dilated Convolutional Neural Network 0.9989 ✓ x x
Memory Analysis Shafin et al. (2023) RobustCBL 0.9996 ✓ x x
​ ​ CompactCBL 0.9992 ​ ​ ​
​ Roy et al. (2023) Hybrid Stack Ensemble 0.9998 ✓ x x
​ Alani et al. (2023) Extreme Gradient Boost 0.9985 ✓ ✓ x

Table 2
Summary of malware types and subtypes distribution in the CIC-Malmem-2022
dataset.

Malware type Malware subtype Number of instance Percentage (%)

Trojan Horse Zeus 1950 3.3
​ Emotet 1967 3.4
​ Refroso 2000 3.4
​ Scar 2000 3.4
​ Reconyc 1570 2.7
Spyware 180Sulotions 2000 3.4
​ CoolWebSearch 2000 3.4
​ Gator 2200 3.8
​ Transponder 2410 4.1
​ TIBS 1410 2.4
Ransomware Conti 1988 3.4
​ MAZE 1958 3.3
​ Pysa 1717 2.9
​ Ako 2000 3.4
​ Shade 2128 3.6
Total - 29,298 50.0

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

4

Confusion matrix: A matrix that summarises the performance of a
ML model on a set of test data. It provides a graphical display of the
number of accurate and inaccurate model’s predictions, broken down by
class. In our binary classification problem, the confusion matrix is
divided into four quadrants displaying the following metrics: True
Positive (TP), True Negative (TN), False Positive (FP), and False Nega
tive (FN).

Accuracy: The ratio of correctly classified instances divided by the
total number of instances. It is measured using the following equation:

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(1)

Precision: The ratio of true positives divided by true positives and
false positives:

Precision =
TP

TP + FP
(2)

Recall (also known as sensitivity): The ratio of true positives
divided by true positives and false negatives:

Recall =
TP

TP + FN
(3)

F1-Score: The harmonic means of precision and recall:

F1 − Score = 2 ×
Precision× Recall
Precision+ Recall

(4)

3.2.3. Random forest and feature selection
RF, an ensemble method that can be used for both classification and

feature selection, is the main ML algorithm used in this study, following
an earlier assessment of various ML algorithms. It works by constructing
multiple decision trees during training and aggregating their predictions
(Genuer et al., 2010). Each tree is trained on a bootstrap sample, and
optimal features at each split are identified from a random subset of all
features (Degenhardt et al., 2019). The final features are determined
from all trees based on the mean decrease in accuracy value obtained
from multiple calculations (Zhao et al., 2022). The feature importance
derived from RF—an embedded selection method (Speiser et al., 2019,
Alduailij et al., 2022)—was particularly beneficial for our lightweight
system, allowing the use of an optimal subset of features without

compromising on accuracy. The advantage of using a RF for feature
selection is that it is fast to train and is robust to noise (Niu et al., 2020).

3.3. Experimental methodology

The development process of our malware detection system can be
divided into the following three stages as described below (see Fig. 1 for
a summary).

3.3.1. Stage 1: development of a baseline classifier
Here, baseline performance results are obtained for the task of

classifying benign versus malware. To achieve this, the original dataset
is split into training (80 %) and test (20 %) sets. The original repre
sentations of the malware subtypes in the training and test samples are
retained using stratification. Seven classifiers are trained and tested on
the processed dataset. The best-performing classifier is determined
based on the F1 score. To validate the results, a stratified 10-fold cross-
validation method is also used. All in all, this stage represents the
traditional way of developing ML-based malware detection systems,
where the model is trained and tested on the same malware (sub-)types.

3.3.2. Stage 2: development of an adaptive malware detection system
Once a baseline model for classifying malware and benign memory

dumps has been established, we turn to the objective of building an
adaptive malware detection system that can detect new malware at
tacks. Furthermore, we want our system to also be highly accurate,
interpretable and lightweight (in the sense that is fast and relies on a
small number of features). To achieve this, 15 distinct models are built,
each on a different malware subtype. The training data contains only 80
% of malware instances from a specific malware subtype (e.g., 80 % of
Transponder instances) along with an equivalent randomly selected
number of benign instances. The trained model is then tested on a
holdout unseen dataset containing the remaining benign instances and
all other malware subtypes in addition to the remaining 20 % of the
specific malware instances. To make the system lightweight, the top five
features selected based on RF-based feature importance are retained for
the training and testing processes.

3.3.3. Stage 3: model interpretation
Here we demonstrate how the model’s decision-making process can

Fig. 1. Overview of the development process of the proposed obfuscated malware detection system. The process begins with the development of a baseline classifier
using all malware data (Stage 1). The next phase (Stage 2) consists of developing a separate classifier for each malware subtype, using only the top five features
selected based on feature importance.

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

5

be interpreted using the Shapely Additive Explanations technique both
at a global (i.e. how to interpret the effect of the main features) and a
local level (i.e. how to interpret a single prediction).

3.4. Apparatus

The experimentation setup for this study included the following
hardware specifications: an Intel(R) Core (TM) i5-1035G1 CPU @ 1.00
GHz 1.19 GHz processor, 8.00 GB of RAM, Intel(R) UHD Graphics GPU,
Windows 10 Home operating system. For software implementation,
Python v3.11.5 was used with the following packages: Pandas (v1.3.5)
for data manipulation and analysis, Scikit-learn (v1.2.2) for running ML
algorithms, Matplotlib (v3.6.2) for plotting graphs, and SHAP (v0.42.1)
for model explainability.

4. Results

4.1. Assessing baseline classifier performance against known malware
variants

As explained in Section 3.3.1, in the first stage, seven classifiers— RF,
Gradient Boosting, Decision Tree, K-Nearest Neighbours, Logistic
Regression, Support Vector Machine and Naive Bayes—were evaluated
for binary malware detection. After removing constant features (pslist.
nprocs64bit, handles.nport and svcscan.interactive_process_services), the
remaining 52-feature dataset was randomly split into 80 % training and
20 % testing subsets. All subtypes of malware were included in the
training dataset and subsequently tested, as in previous studies (see, for
example, Alani et al., 2023; Dener et al., 2022; Mezina and Burget, 2022;
and Shafin et al., 2023). The performance metrics, as detailed in Table 3,
revealed that all seven classifiers were effective at detecting malware,
with average accuracies surpassing 99.2 %. Notably, RF achieved
marginally higher accuracy compared to the other classifiers, and thus
was selected as the best-performing classifier and subsequent experi
ments were based on it.

To validate our results, we also run 10-fold cross-validation, which
produced comparable results with all F1-scores above 0.999 as shown in
Table A.2 in Appendix. This demonstrates the robustness and reliability
of the developed models for classifying known malware variants. Next,
we assess the capability of such ML models to detect unseen malware
variants.

4.2. Performance analysis of the adaptive malware detection system

Having established the baseline performance results, we aimed to
develop a malware detection system capable of detecting novel malware
(sub-)types, while maintaining high accuracy and lightweight design
architecture. Here, we sought to adopt a strategy that is radically
different from what has been proposed previously in the literature. As
explained in Section 3.3.2, the objective in this second stage was to
assess if models trained on a reduced dataset from one malware subtype
can be used to identify emerging threats (i.e., be future-proof). We
postulated that each malware subtype will exhibit distinct obfuscation

traits, therefore leaving different signatures in memory, and as a result,
will have different features’ importance rankings.

To test this, 15 new models were trained, each on 80 % of data from a
specific malware subtype (e.g., 80 % of Transponder instances), along
with an equivalent randomly selected number of benign instances, as
explained in Section 3.3.2. Following the approach of Alani et al. (2023)
to make the models lightweight, only the top five features from the RF
feature importance were used in the training and testing of each model
(also our experiments show that increasing the number of features above
five only marginally affect the model performance, as can be seen in
Fig. A.1). The results are presented in Fig. 2 and Table 4 (for more
detailed information about feature ranking of each malware
subtype-based model, refer to Table A.3 in Appendix).

The model achieved an accuracy of over 99 % for 11 out of 15
malware subtypes, with the Transponder malware subtype producing
the highest accuracy at 99.84 %, and the lowest accuracy for Zeus at 98
% (Fig. 2). Looking at the selected features (Table 4), svcscan.nservices
and svcscan.shared_process_services are in the top three features for most
of the malware subtypes, and they are the top two most important fea
tures for six malware subtype-based models (namely, Emotet, Reconyc,
Gator, TIBS, Pysa and Shade; see Table A.3). Also, as shown in Table 4,
only 10 features out of 52—representing four feature categories—were
selected in the 15 malware subtype-focused models. This indicates that
malware attacks, albeit belonging to their different variants, tend to
target common memory processes and share common characteristics.

The Transponder malware subtype, which represents the malware
subtype producing the highest accuracy, also exhibited a high speed in
classifying memory dump instances, with an average speed of 5.7 µs per
instance. This speed is comparable to that reported by Alani et al. (2023)
for their RF model, which had a processing speed of 5.2 µs per memory
dump. Furthermore, the model size of 340 KB demonstrates the feasi
bility of deploying such a system in resource-constrained devices.

Fig. 3 depicts the resulting confusion matrix, which indicates that the
false-negative rate was only 0.01 % (i.e., 8 instances were wrongly
classified as benign out of 27,370 unseen malware instances) and that
the false-positive rate was 0.15 % (i.e., 81 instances out of the 27,370
benign instances were wrongly classified as malware). To validate our
results, we also run 10-fold cross-validation, which produced an overall
accuracy above 0.997, as shown in Table A.4.

4.3. Model explainability

Global interpretation
One of the aims of this study is to ensure that the model’s perfor

mance is based on interpretable and explainable processes. In this study,
the impact of each feature on the prediction of the model was further
explored using SHapley Additive exPlanations (SHAP) values, as
explained in Section 3.3.3. Here, the SHAP values of each feature are
calculated using the test dataset. Since training with the Transponder
malware subtype produces the best model performance, we will base
model interpretation on its respective model. Fig. 4 illustrates a SHAP
beeswarm plot of the top five features used by this model and tested on
data containing other unseen malware subtypes. In this plot, features are
represented vertically along the Y-axis and are ranked in the order of
importance as determined by the SHAP analysis. SHAP values for a given
dump file and feature are represented horizontally along the X-axis by
coloured dots. A red dot represents a high feature value, while a blue dot
represents a low feature value. If the value corresponding to a feature is
on the left side of the X-axis, it suggests that the feature has a “negative”
drag on the prediction of that data instance, thereby pushing the pre
diction value towards ‘benign’ classification. On the other hand, if the
value corresponding to a feature is on the right side of the X-axis, this
means it has a “positive” drag on the prediction, thereby pushing the
prediction value towards the ‘malware’ classification. The overall dis
tribution of the SHAP values determines the influence of each feature on
the model’s prediction.

Table 3
Binary classification results for models tested on previously encountered mal
ware subtypes. Findings from previous studies are listed at the bottom of the
table for comparative purposes.

Classifiers Accuracy Precision Recall F1 Score

Random Forest 1.0000 1.0000 1.0000 1.0000
Gradient Boosting 0.9996 0.9996 0.9996 0.9996
Decision Tree 0.9997 0.9997 0.9997 0.9997
Support Vector 0.9970 0.9970 0.9970 0.9970
Logistic Regression 0.9958 0.9958 0.9958 0.9958
GuassianNB 0.9922 0.9922 0.9922 0.9922
Kneighbors 0.9998 0.9998 0.9998 0.9998

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

6

Fig. 4 indicates that svcscan.nservices (total number of services),
handles.avg_handles_per_proc (average number of handles per process)
and svcscan.shared_process_service (number of shared processes detected
in the memory image) are the topmost critical features for binary clas
sification. Since most blue dots appear on the right side of the X-axis, low
numbers of service handles per process and shared processes are asso
ciated with a higher likelihood of being classified as malware, in line
with behaviour patterns of modern obfuscated malware families. That is,
instead of running as independent services or processes, modern
obfuscated malware can use techniques such as file-less execution or

executing arbitrary code in the address space of a separate live service or
process. By suspending an existing service or process, and then
unmapping/hollowing its memory, which can then be replaced with
malicious code or the path to a DLL. In other words, an obfuscated
malware does not need to initiate new services or processes, thereby
keeping the number of services or processes low while remaining un
detected (Alani et al., 2023; Brennan, 2021).

Local interpretation
To determine the contribution of each feature to the prediction for a

given instance, the SHAP force plot can be used for local interpretation
of each instance. The SHAP force plot offers an in-depth perspective of
SHAP values for individual instances and can be used to identify the
main features affecting the prediction and the magnitude of its contri
bution. Fig. 5 illustrates the interpretation of SHAP force plot for one
benign instance (panel A) and one (Pysa) malware instance (panel B).
The model’s decision is decomposed into the sum of the effects of each
feature value. In the case of the benign instance (Fig. 5), svcscan.share
d_process_service, svcscan.nservices and handles.avg_handles_per_proc play
pivotal roles, as denoted by the size of the blue arrows, in influencing the
model’s likelihood of prediction towards benign classification. handles.
nevent is the feature with the least influence for this memory dump
instance. An identical feature influence pattern is observed for the
instance featuring Pysa malware (Fig. 5), as indicated by the size of the
red arrows.

5. General discussion

5.1. Summary of findings

The primary aim of this study was to develop not only a highly ac
curate, lightweight and interpretable ML-based system for detecting
obfuscated malware (see, for example, Alani et al., 2023), but also one
that can adapt to previously unknown malware variants. Our novel
approach achieved state-of-the-art accuracy despite training on a single
malware subtype—namely, the Transponder—and a small subset of
features, distinguishing itself in the landscape of malware detection
research.

Fig. 2. Comparison of accuracies of the different malware subtype-based models.

Table 4
Overall frequencies of selected features from the 15-malware subtype-focused
models, along with the frequency breakdown by malware type.

Feature
category

Feature Description Feature
Importance
Ranking

1st 2nd 3rd

SVCscan svcscan.nservices Total number of
services running.

10 1 4

SVCscan svcscan.
shared_process_services

Total number of
services in shared
processes.

0 7 4

SVCscan svcscan.kernel_drivers Total number of
kernel drivers.

1 0 3

PsList pslist.avg_handlers Average number of
handlers.

2 3 1

Handles handles.
avg_handles_per_proc

Average number of
handles per
process.

1 3 1

Handles handles.nevent Total number of
event handles.

0 1 0

Handles handles.nmutant Total number of
mutant handles.

0 0 0

Handles handles.nhandles Total number of
handles opened.

1 0 0

DLLlist dlllist.avg_dlls_per_proc Average number of
DLLs loaded per
process.

0 0 0

Handles handles.nsection Total number of
section handles.

0 0 1

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

7

Fig. 3. Confusion matrix for the Random Forest-based malware detection model trained solely on the Transponder malware subtype.

Fig. 4. SHAP Beeswarm plot of the top five features in the Transponder-based malware detection model. Each dot represents a prediction for one file. The position of
a dot relative to the X-axis indicates the feature’s influence on that prediction: dots on the left suggest influence towards benign, while dots on the right suggest
influence towards malware. The colour of a dot indicates the feature’s value, with red representing a high value and blue a low value.(For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Local explanations using SHAP force plot for individual prediction cases. Panel A displays a benign instance and Panel B a Pysa malware instance. The f(x)
value represents the model’s predicted label. The size of each arrow bar for each feature represents the contribution of that feature to the prediction. The colour of the
arrow bar indicates the feature’s influence: blue suggests influence towards benign, while red suggests influence towards malware.(For interpretation of the ref
erences to color in this figure legend, the reader is referred to the web version of this article.)

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

8

The comparative analysis of our model with existing research is
shown in Table 5. Our model demonstrates performance in line with
previous work, with accuracy surpassing 99.8%, while trained solely on
the Transponder, representing a small fraction of no more than 6.6% of
the data. This model was used to successfully classify memory dumps
from 14 other unseen obfuscated malware subtypes. This finding in
dicates that our model is highly adaptive with capacity to generalise
beyond training data. Such aspect is crucial in the pursuit of developing
defence systems capable of combating zero-day attacks without pre-
existing signatures (that is, for detecting emerging vulnerabilities); yet
to the best of our knowledge, none of the previous studies based on the
CIC-MalMem-2022 dataset, or generally on memory analysis-based
features, have considered zero-day attacks when evaluating their ML
models.

The size of a malware detection model can present challenges for the
implementation on resource-constrained devices. Our model’s size of
340 KB is significantly smaller compared to most sizes reported in the
literature. For example, Shafin et al. (2023) proposed model sizes of 967
KB for RobustCBL and 575 KB for CompactCBL. Meanwhile, Dener et al.
(2022) reported size of 6037 KB for their DNN, while Mezina and Burget
(2022) reported a size of 627 KB for their LSTM model.

While emphasising high accuracy and a lightweight model size is
crucial, it is equally important for a real-time malware monitoring sys
tem to possess the capability to promptly and effectively counter
incoming attacks. Our proposed model demonstrated capacity in swiftly
identifying individual instances of both existing and unseen obfuscated
malware, with an overall average speed of 5.7 µs. This microsecond-
level speed surpasses substantially the millisecond-level speeds re
ported by deep learning-focused studies such as those by Mezina and
Burget (2022) (0.738 ms), Shafin et al. (2023) (0.255 ms for Com
pactCBL and 0.384 ms for RobustCBL). The reported processing speed is
comparable to the speeds achieved by ML-based methods like those
proposed by Carrier et al. (2022) (8 µs) and Alani et al. (2023) (0.413
µs). The lightweight, accurate, and fast detection speed capabilities of
our proposed model suggest the potential for integrating such a model as
an effective malware detection system in resource-constrained systems
such as IoT devices. To provide an in-depth explanation of the pre
dictions made by our proposed model, the SHAP technique was used to
provide both global and local interpretations of the impact of each
feature on the model’s predictions. The interpretation of the SHAP plot
of the top features suggests that low values of features such as svcscan.
nservices, handles.avg_handles_per_proc and svcscan.shared_process_service
result in the likelihood of prediction towards malware classification, in
line with observed behaviour patterns of modern obfuscated-malware
families (Brennan, 2021). Local interpretation was also demonstrated;
such an approach has the capacity of enabling more targeted and
effective security incident responses by providing a detailed under
standing of the factors driving a model’s prediction for a specific file

analysis.

5.2. Implications for cyber security defences

Our research addresses a critical gap in cybersecurity by developing
a malware detection model that uniquely combines high accuracy,
lightweight design and generalisability (Stallings, 2023, pp. 438–448).
Traditional high-accuracy models typically require substantial compu
tational resources, limiting their practicality in resource-constrained
environments such as IoT devices, mobile systems and embedded se
curity frameworks. On the other hand, lightweight models often
compromise on accuracy, reducing their effectiveness against novel or
sophisticated malware specimens.

Our model overcomes these limitations by providing robust detec
tion capabilities without a heavy computational footprint, potentially
enabling seamless integration into diverse cyber security frameworks.
Its lightweight architecture offers an important deployment flexibility
advantage, particularly in edge computing and cloud-based applica
tions, where efficiency is crucial for scalability and real-time threat
response. Therefore, this approach supports adaptive, resilient and
scalable cyber security solutions, aligning with modern industry needs
for effective threat mitigation.

Furthermore, the results of this study provide interesting insights for
enhancing cyber security defences, particularly within the context of the
dynamic and evolving threat landscape. Identification of specific
memory processes such as svcscan.nservices and svcscan.share
d_process_service as primary targets across a wide range of malware
subtypes, such as Transponder, Zeus and Gator, highlights a potential
vulnerability within system architectures (Table A.3). Our findings
indicate that these processes, which are critical to operating system
service management, are often exploited by attackers aiming to
manipulate or disrupt system functions covertly. Developing advanced
malware detection systems that specifically guard these service-related
processes could significantly mitigate risks posed by such targeted
attacks.

The impressive generalisation capability of our model, particularly
when trained on the Transponder subtype, to detect other malware
variants points to another important advantage of integrating ML in
cyber security defences—adaptability. This adaptability feature is a
clear differentiating advantage over signature-based or heuristic-based
approaches, which require regular updates to address new threats
(Al-Asli & Ghaleb, 2019). In our study, we integrated ML only with a
memory analysis approach. It remains to be seen if the integration of ML
with static analysis could lead to the same adaptability advantage and
could offer insights into malware’s structural features without execution
(Aslan & Samet, 2020). Such pursuit with all malware analysis ap
proaches could result in a comprehensive detection framework that
maximises the strengths of each analysis approach, fostering robust

Table 5
Comparison of proposed system with related works that used the CIC-MalMem-2022 dataset.

Research Malware Subtype Used
in Training

Training
Instances

Classifier Features Accuracy Average Detection
Speed (µs)

Interp-
retable

Zero Day
Attacks

Carrier et al.
(2022)

All 80 %
(46,876)

Ensemble 55 99% 8 x x

Dener et al.
(2022)

All 70 %
(41,017)

Logistic Regression 52 99.97% - x x

Mezina and
Burget (2022)

All 80 %
(46,876)

Dilated Convolutional
Neural Network

55 99.89 % 738 x x

Shafin et al.
(2023)

All 80 %
(46,876)

RobustCBL CompactCBL 55 99.96 %
99.92 %

384 255 x x

Roy et al. (2023) All 80 %
(46,876)

Hybrid Stack Ensemble 16 99.98 % - x x

Alani et al. (2023) All 66.66 %
(39,060)

Extreme Gradient Boost 5 99.85 % 0.4 ✓ x

This Study Transponder only 6.58 %
(3856)

Random Forest 5 99.84 % 5.7 ✓ ✓

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

9

defence mechanisms against diverse malware types.
Finally, the finding that some malware subtypes, particularly Tran

sponder, exhibit superior generalisation for detecting unseen malware
suggests that intrinsic characteristics of these malware—such as its
operational framework or attack strategies—might play a crucial role in
providing informative training data for the extraction of malware attack
patterns generalisable across different malware variants (at least when
memory-analysis is used). Our work highlights the need for cyber se
curity experts to investigate why Transponder generalises better than
other subtypes like Zeus, or at a broader scale, why the Spyware is more
effective at detecting unseen malware compared to other types, such as
Trojan horse or Ransomware (see Fig. 2).

5.3. Limitations and future directions

While our study presents a robust proof-of-concept for an adaptive
malware detection system, several limitations could be addressed to
improve the system’s effectiveness. Firstly, we did not perform hyper
parameter tuning, instead opting for default hyperparameter settings for
our classifiers. Our primary objective was to demonstrate the potential
of ML-based approaches for detecting unknown malware attacks.
However, further refinement through hyperparameter tuning and
testing of alternative feature selection methods could yield improved
performance and generalisation capabilities. We also expect that other
ML models, such as Gradient Boosting Machines, could offer substantial
improvements in speed while maintaining similar accuracy levels (see
for example, Alani et al., 2023).

To improve model explainability, future work could incorporate
error analysis to evaluate when and why the model makes errors in
specific cases (Nushi, 2021). This approach would provide insights into
the model’s weaknesses and guide improvements. Moreover, future
research could focus on developing similar models on other obfuscated
or non-obfuscated malware datasets. This would test the generalisability
of our approach across different types of malware and identify which
types of attacks are more amenable to zero-shot learning (Palatucci
et al., 2009; i.e., enabling the trained model to correctly make pre
dictions on data from unseen malware subtypes). Finally, training on
one dataset and testing on a different dataset could provide further
validation of our model’s adaptability and robustness.

5.4. Conclusion

In this paper, we have presented a novel machine learning-based

system for detecting obfuscated malware. Trained on a small dataset
from a single malware subtype—Transponder—our system achieves
state-of-the-art accuracy, while maintaining rapid processing speeds
(5.7 µs per file) and minimal memory usage (a model size of 340 KB).
These findings not only advance the state-of-the-art in malware detec
tion, but also highlight the critical need for the testing and refinement of
machine learning-based solutions for detecting previously unseen mal
ware variants. This is crucial for ensuring that our defence solutions can
respond to the continuously evolving landscape of cyber threats.

CRediT authorship contribution statement

Oladipo A. Madamidola: Methodology, Software, Data curation,
Investigation, Writing - Original draft preparation, Visualisation. Felix
Ngobigha: Conceptualisation, Writing - Review & Editing, Supervision.
Adnane Ez-zizi: Conceptualisation, Methodology, Validation, Writing -
Review & Editing, Visualisation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

We thank Shahroz Nadeem and Muhammad Waqar for comments on
earlier drafts of this paper. We are also grateful to the participants of the
Technology Seminar at the University of Suffolk for their discussions and
feedback during a presentation of this work, conducted by Adnane Ez-
zizi.

Declaration of generative AI and AI-assisted technologies in the writing
process

During the preparation of this work the authors used OpenAI
ChatGPT (version 4.0, 2024) in order to proofread and improve the
readability of the manuscript. After using this tool, the authors reviewed
and edited the content as needed and take full responsibility for the
content of the publication.

Appendix A

Table A1., A2., A3., A4.
Fig. A1.

Table A.1
List of features in the CIC-Malmem-2022 dataset.

Feature Category Feature Description

Callbacks callbacks.nanonymous Total number of anonymous callbacks.
​ callbacks.ncallbacks Total number of registered callback functions.
​ callbacks.ngeneric Total number of generic callbacks.
DLLlist dlllist.avg_dlls_per_proc Average number of DLLs loaded per process.
​ dlllist.ndlls Total number of loaded DLLs.
Handles handles.avg_handles_per_proc Average number of handles per process.
​ handles.ndesktop Total number of desktop handles.
​ handles.ndirectory Total number of directory handles.
​ handles.nevent Total number of event handles.
​ handles.nfile Total number of file handles.
​ handles.nhandles Total number of handles opened.
​ handles.nkey Total number of registry key handles.
​ handles.nmutant Total number of mutant handles.

(continued on next page)

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

10

Table A.1 (continued)

Feature Category Feature Description

​ handles.nport Total number of port handles.
​ handles.nsection Total number of section handles.
​ handles.nsemaphore Total number of semaphore handles.
​ handles.nthread Total number of thread handles.
​ handles.ntimer Total number of timer handles.
LDR modules ldrmodules.not_in_init Total number of modules not in the initialised state.
​ ldrmodules.not_in_init_avg Average number of modules not initialised.
​ ldrmodules.not_in_load Total number of modules not in a loaded state.
​ ldrmodules.not_in_load_avg Average number of modules not loaded.
​ ldrmodules.not_in_mem Total number of modules not present in memory.
​ ldrmodules.not_in_mem_avg Average number of modules not in memory.
MalFind malfind.commitCharge Total number of commit charge of detected memory injections.
​ malfind.ninjections Total number of memory injections detected.
​ malfind.protection Total number of protection attributes of detected memory injections.
​ malfind.uniqueInjections Total number of unique memory injections detected.
Modules modules.nmodules Total number of loaded modules.
PsList pslist.avg_handlers Average number of handlers per process.
​ pslist.avg_threads Average number of threads per process.
​ pslist.nppid Total number of parent processes.
​ pslist.nproc Total number of processes running.
​ pslist.nprocs64bit Total number of 64-bit processes running.
Psxview psxview.not_in_csrss_handles Total number of processes not in CSRSS handles.
​ psxview.not_in_csrss_handles_false_avg Average number of processes not in CSRSS handles.
​ psxview.not_in_deskthrd Total number of processes not in the desktop thread.
​ psxview.not_in_deskthrd_false_avg Average number of processes not in the desktop thread.
​ psxview.not_in_eprocess_pool Total number of processes not in the EPROCESS pool.
​ psxview.not_in_eprocess_pool_false_avg Average number of processes not in the EPROCESS pool.
​ psxview.not_in_ethread_pool Total number of processes not in the ETHREAD pool.
​ psxview.not_in_ethread_pool_false_avg Average number of processes not in the ETHREAD pool.
​ psxview.not_in_pslist Total number of processes not in the process list.
​ psxview.not_in_pslist_false_avg Average number of processes not in the process list.
​ psxview.not_in_pspcid_list Total number of processes not in the PSPCID list.
​ psxview.not_in_pspcid_list_false_avg Average count of processes not in the PSPCID list.
​ psxview.not_in_session Total number of processes not in any session.
​ psxview.not_in_session_false_avg Average number of processes not in any session.
SVCScan svcscan.fs_drivers Total number of file system drivers.
​ svcscan.interactive_process_services Total number of services in interactive processes.
​ svcscan.kernel_drivers Total number of kernel drivers.
​ svcscan.nactive Total number of services running.
​ svcscan.nservices Total number of services running.
​ svcscan.process_services Total number of services in separate processes.
​ svcscan.shared_process_services Total number of services in shared processes.

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

11

Fig. A.1. Change in Accuracy with Number of Features.
Table A.2
Results of 10-fold cross-validation for random forest.

Fold Accuracy Precision Recall F1-Score

1 0.999829 0.999829 0.999829 0.999829
2 1.000000 1.000000 1.000000 1.000000
3 0.999488 0.999488 0.999488 0.999488
4 1.000000 1.000000 1.000000 1.000000
5 0.999829 0.999829 0.999829 0.999829
6 1.000000 1.000000 1.000000 1.000000
7 1.000000 1.000000 1.000000 1.000000
8 1.000000 1.000000 1.000000 1.000000
9 1.000000 1.000000 1.000000 1.000000
10 1.000000 1.000000 1.000000 1.000000
µ 0.999915 0.999915 0.999915 0.999915
σ 0.000166 0.000166 0.000166 0.000166

Table A.3
Summary of results from training on each malware subtype. For each trained model, the table includes the average accuracy, model size in memory and the top five
features in order of importance. Additionally, the ranking of the model relative to the other subtype-focused models is indicated between parentheses.

Zeus (15) Emotet (9) Refroso (13) Scar (14) Reconyc (5)

Trojan Horse 1. pslist.avg_handlers
2. handles.

1. svcscan.nservices
2. svcscan.

1. handles.
avg_handles_per_proc

1. pslist.avg_handlers
2. handles.

1. svcscan.nservices
2. svcscan.

​ avg_handles_per_proc
3. svcscan.nservices

shared_process_services
3. svcscan.kernel_drivers

2. pslist.avg_handlers
3. svcscan.nservices

avg_handles_per_proc
3. svcscan.nservices

shared_process_services
3. handles.nsection

​ 4. svcscan. 4. slist.avg_handlers 4. svcscan. 4. svcscan. 4. handles.nmutant
​ shared_process_services

5. handles.nhandles
5. handles.nsection shared_process_services

5. dlllist.avg_dlls_per_proc
shared_process_services
5. handles.nhandles

5. svcscan.kernel_drivers

Accuracy 0.9800 0.9901 0.9810 0.9810 0.9967
Model Size 90.21 KB 134.74 KB 97.26 KB 119.43 KB 169.59 KB

180Solutions (4) Coolwebsearch (10) Gator (2) Transponder (1) TIBS (7)

Spyware 1. svcscan.nservices 1. svcscan.nservices 1. svcscan.nservices 1. svcscan.nservices 1. svcscan.nservices
​ 2. handles.nevent

3. svcscan.
2. pslist.avg_handlers
3. svcscan.

2. svcscan. shared_process_services 2. handles.
avg_handles_per_proc

2. svcscan.
shared_process_services

​ shared_process_services
4. handles.nmutant

shared_process_services
4. svcscan.kernel_drivers

3. handles.
avg_handles_per_proc

3. svcscan.
shared_process_services

3. handles.nhandles
4. handles.nevent

​ 5. svcscan.kernel_drivers 5. handles. 4. pslist.avg_handlers 4. handles.nevent 5. handles.nmutant
​ ​ avg_handles_per_proc 5. handles.nmutant 5. handles.nmutant ​
Accuracy 0.9972 0.9904 0.9977 0.9984 0.9955
Model Size 154.12 KB 129.29 KB 148.49 KB 339.59 KB 124.42 KB

Conti (6) MAZE (8) Pysa (3) Ako (12) Shade (11)

Ransomware 1. svcscan.kernel_drivers 1. handles.nhandles 1. svcscan.nservices 1. svcscan.nservices 1. svcscan.nservices
​ 2. svcscan.nservices

3. svcscan.
2. svcscan.
shared_process_services

2. svcscan.
shared_process_services

2. pslist.avg_handlers
3. svcscan.shared_process_services

2. svcscan.
shared_process_services

​ shared_process_services
4. handles.nsection

3. svcscan.nservices
4. svcscan.kernel_drivers

3. pslist.avg_handlers
4. svcscan.kernel_drivers

4. dlllist.avg_dlls_per_proc
5. svcscan.kernel_drivers

3. svcscan.kernel_drivers
4. handles.nevent

​ 5. handles.nevent 5. handles.nmutant 5. handles.nevent ​ 5. dlllist.avg_dlls_per_proc
Accuracy 0.9962 0.9953 0.9974 0.9844 0.9905
Model Size 150.68 KB 147.09 KB 128.81 KB 113.02 KB 116.46 KB

Table A.4
Results of 10-fold cross-validation for random forest-based malware detection model trained solely on the tran
sponder malware subtype.

Fold Accuracy Precision Recall F1-Score

1 1.000000 1.000000 1.000000 1.000000
2 0.997409 0.997423 0.997409 0.997409
3 0.992228 0.992241 0.992228 0.992228
4 0.997409 0.997423 0.997409 0.997409
5 0.994819 0.994872 0.994819 0.994819
6 0.994819 0.994819 0.994819 0.994819
7 0.997403 0.997416 0.997403 0.997403
8 0.997403 0.997416 0.997403 0.997403
9 1.000000 1.000000 1.000000 1.000000
10 0.997403 0.997416 0.997403 0.997403
µ 0.996889 0.996903 0.996889 0.996889
σ 0.002380 0.002374 0.002380 0.002380

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

12

Data availability

All data and code are available on GitHub at https://github.
com/Adnane017/Detecting_new_obfuscated_malware_variants.

References

Acuto, A., Maskell, S., & Jack, D. (2023). Defending the unknown: Exploring
reinforcement learning agents’ deployment in realistic, unseen networks. In 2023
conference on applied machine learning in information security (pp. 22–35).

Alam, S., Horspool, R. N., Traore, I., & Sogukpinar, I. (2015). A framework for
metamorphic malware analysis and real-time detection. Computers & Security, 48,
212–233.

Alani, M. M., Mashatan, A., & Miri, A. (2023). XMal: A lightweight memory-based
explainable obfuscated-malware detector. Computers & Security, 133, Article 103409.

Al-Asli, M., & Ghaleb, T. A. (2019). Review of signature-based techniques in antivirus
products. In 2019 international conference on computer and information sciences
(ICCIS) (pp. 1–6). IEEE.

Alazab, M., Venkatraman, S., Watters, P. A., & Alazab, M. (2011). Zero-day malware
detection based on supervised learning algorithms of API call signatures. AusDM, 11,
171–182.

Alduailij, M., Khan, Q. W., Tahir, M., Sardaraz, M., Alduailij, M., & Malik, F. (2022).
Machine-learning-based DDoS attack detection using mutual information and
random forest feature importance method. Symmetry, 14(6), 1–15.

Alhaidari, F., Shaib, N. A., Alsafi, M., Alharbi, H., Alawami, M., Aljindan, R., Rahman, A.-
U., & Zagrouba, R. (2022). Zevigilante: Detecting zero-day malware using machine
learning and sandboxing analysis techniques. Computational Intelligence and
Neuroscience, 2022, Article 1615528.

Amer, E., & Zelinka, I. (2020). A dynamic Windows malware detection and prediction
method based on contextual understanding of API call sequence. Computers &
Security, 92, Article 101760.

Aslan, Ö. A., & Samet, R. (2020). A comprehensive review on malware detection
approaches. IEEE Access, 8, 6249–6271.

Bhatia, T., & Kaushal, R. (2017). Malware detection in android based on dynamic
analysis. In 2017 international conference on cyber security and protection of digital
services (Cyber security) (pp. 1–6). IEEE.

Brennan, M. 2021, Cobalt Strikes Again: An Analysis of Obfuscated Malware, blog,
Huntress, viewed 22 May 2024, https://www.huntress.com/blog/cobalt-strike-anal
ysis-of-obfuscated-malware.

Carrier, T., Victor, P., Tekeoglu, A., & Lashkari, A. H. (2022). Detecting obfuscated
malware using memory feature engineering. In In ICISSP (pp. 177–188).

Dada, E. G., Bassi, J. S., Hurcha, Y. J., & Alkali, A. H. (2019). Performance evaluation of
machine learning algorithms for detection and prevention of malware attacks. IOSR
Journal of Computer Engineering, 21(3), 18–27.

Degenhardt, F., Seifert, S., & Szymczak, S. (2019). Evaluation of variable selection
methods for random forests and omics data sets. Briefings in Bioinformatics, 20(2),
492–503.

Dener, M., Ok, G., & Orman, A. (2022). Malware detection using memory analysis data in
big data environment. Applied Sciences, 12(17), 8604.

Elkhail, A. A., Refat, R. U. D., Habre, R., Hafeez, A., Bacha, A., & Malik, H. (2021).
Vehicle security: A survey of security issues and vulnerabilities, malware attacks and
defenses. IEEE Access, 9, 162401–162437.

Gandotra, E., Bansal, D., & Sofat, S. (2016). Zero-day malware detection. In 2016 Sixth
international symposium on embedded computing and system design (ISED) (pp.
171–175). IEEE.

Genuer, R., Poggi, J. M., & Tuleau-Malot, C. (2010). Variable selection using random
forests. Pattern Recognition Letters, 31(14), 2225–2236.

Guo, Y. (2023). A review of machine learning-based zero-day attack detection:
Challenges and future directions. Computer Communications, 198, 175–185.

Gupta, D., & Rani, R. (2020). Improving malware detection using big data and ensemble
learning. Computers & Electrical Engineering, 86, Article 106729.

Hadiprakoso, R. B., Kabetta, H., & Buana, I. K. S. (2020). Hybrid-based malware analysis
for effective and efficiency android malware detection. In 2020 international
conference on informatics, multimedia, cyber and information system (ICIMCIS) (pp.
8–12). IEEE.

Huang, C. Y., Tsai, Y. T., & Hsu, C. H. (2013). Performance evaluation on permission-
based detection for android malware. In Advances in intelligent systems and
applications-volume 2: Proceedings of the international computer symposium ICS 2012
held at Hualien, Taiwan, December 12–14, 2012 (pp. 111–120). Springer Berlin
Heidelberg.

Huda, S., Miah, S., Hassan, M. M., Islam, R., Yearwood, J., Alrubaian, M., & Almogren, A.
(2017). Defending unknown attacks on cyber-physical systems by semi-supervised
approach and available unlabeled data. Information Sciences, 379, 211–228.

Hwang, J., Kim, J., Lee, S., & Kim, K. (2020). Two-stage ransomware detection using
dynamic analysis and machine learning techniques. Wireless Personal
Communications, 112(4), 2597–2609.

Idika, N., & Mathur, A. P. (2007). A survey of malware detection techniques. Purdue
University. Technical ReportAvailable at https://www.cerias.purdue.edu/apps/re
ports_and_papers/view/4328/.

Ijaz, M., Durad, M. H., & Ismail, M. (2019). Static and dynamic malware analysis using
machine learning. In 2019 16th international bhurban conference on applied sciences
and technology (IBCAST) (pp. 687–691). IEEE.

Jain, A., & Singh, A. K. (2017). Integrated Malware analysis using machine learning. In
2017 2nd international conference on telecommunication and networks (TEL-NET) (pp.
1–8). IEEE.

Kim, J. Y., Bu, S. J., & Cho, S. B. (2018). Zero-day malware detection using transferred
generative adversarial networks based on deep autoencoders. Information Sciences,
460, 83–102.

Lashkari, A. H., Li, B., Carrier, T. L., & Kaur, G. (2021). Volmemlyzer: Volatile memory
analyzer for malware classification using feature engineering. In 2021 reconciling
data analytics, automation, privacy, and security: a big data challenge (RDAAPS) (pp.
1–8). IEEE.

Liu, X., Lin, Y., Li, H., & Zhang, J. (2020). A novel method for malware detection on ML-
based visualization technique. Computers & Security, 89, Article 101682.

Mezina, A., & Burget, R. (2022). Obfuscated malware detection using dilated
convolutional network. In In 2022 14th international congress on ultra modern
telecommunications and control systems and workshops (ICUMT) (pp. 110–115). IEEE.

Mijwil, M., Salem, I. E., & Ismaeel, M. M. (2023). The significance of machine learning
and deep learning techniques in cybersecurity: A comprehensive review. Iraqi
Journal For Computer Science and Mathematics, 4(1), 87–101.

Mirsky, Y., Doitshman, T., Elovici, Y. and Shabtai, A., 2018. Kitsune: an ensemble of
autoencoders for online network intrusion detection. arXiv preprint.

Mosli, R., Li, R., Yuan, B., & Pan, Y. (2016). Automated malware detection using artifacts
in forensic memory images. In In 2016 IEEE symposium on technologies for homeland
security (HST) (pp. 1–6). IEEE.

Niu, D., Wang, K., Sun, L., Wu, J., & Xu, X. (2020). Short-term photovoltaic power
generation forecasting based on random forest feature selection and CEEMD: A case
study. Applied Soft Computing, 93, Article 106389.

Nushi, B. (2021). Responsible machine learning with error analysis, blog. Microsoft Tech
Community. viewed 16 May 2024 https://techcommunity.microsoft.com/t5/ai-m
achine-learning-blog/responsible-machine-learning-with-error-analysis/ba-p/
2141774.

O’Kane, P., Sezer, S., & McLaughlin, K. (2011). Obfuscation: The hidden malware. IEEE
Security & Privacy, 9(5), 41–47.

Palatucci, M., Pomerleau, D., Hinton, G. E., & Mitchell, T. M. (2009). Zero-shot learning
with semantic output codes. In 2009 NIPS.

Rad, B. B., Masrom, M., & Ibrahim, S. (2012). Camouflage in malware: from encryption
to metamorphism. International Journal of Computer Science and Network Security, 12
(8), 74–83.

Radwan, A. M. (2019). Machine learning techniques to detect maliciousness of portable
executable files. In In 2019 international conference on promising electronic technologies
(ICPET) (pp. 86–90). IEEE.

Rathnayaka, C., & Jamdagni, A. (2017). An efficient approach for advanced malware
analysis using memory forensic technique. In In 2017 IEEE Trustcom/BigDataSE/
ICESS (pp. 1145–1150). IEEE.

Roy, K. S., Ahmed, T., Udas, P. B., Karim, M. E., & Majumdar, S. (2023). Malhystack: A
hybrid stacked ensemble learning framework with feature engineering schemes for
obfuscated malware analysis. Intelligent Systems with Applications, 20, Article 200283.

Shafin, S. S., Karmakar, G., & Mareels, I. (2023). Obfuscated memory malware detection
in resource-constrained IoT devices for smart city applications. Sensors, 23(11),
5348.

Sihwail, R., Omar, K., Zainol Ariffin, K. A., & Al Afghani, S. (2019). Malware detection
approach based on artifacts in memory image and dynamic analysis. Applied Sciences,
9(18), 3680.

Sihwail, R., Omar, K., & Arifin, K. A. Z. (2021). An effective memory analysis for malware
detection and classification. Computers, Materials & Continua, 67(2).

Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019). A comparison of random forest
variable selection methods for classification prediction modeling. Expert Systems with
Applications, 134, 93–101.

Stallings, W. (2023). Cryptography and network security: principles and practice (8th ed, pp.
438–448). Harlow, United Kingdom: Pearson.

Tahir, R. (2018). A study on malware and malware detection techniques. International
Journal of Education and Management Engineering, 8(2), 20.

Wang, T. Y., Horng, S. J., Su, M. Y., Wu, C. H., Wang, P. C., & Su, W. Z. (2006).
A surveillance spyware detection system based on data mining methods. In In 2006
IEEE international conference on evolutionary computation (pp. 3236–3241). IEEE.

Zhao, Y., Zhu, W., Wei, P., Fang, P., Zhang, X., Yan, N., Liu, W., Zhao, H., & Wu, Q.
(2022). Classification of Zambian grasslands using random forest feature importance
selection during the optimal phenological period. Ecological Indicators, 135, Article
108529.

Zhou, Q., & Pezaros, D., 2019. Evaluation of machine learning classifiers for zero-day
intrusion detection–an analysis on CIC-AWS-2018 dataset. arXiv preprint arXiv prepr
intarXiv:1905.03685.

O.A. Madamidola et al. Intelligent Systems with Applications 25 (2025) 200472

13

https://github.com/Adnane017/Detecting_new_obfuscated_malware_variants
https://github.com/Adnane017/Detecting_new_obfuscated_malware_variants
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0001
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0001
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0001
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0002
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0002
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0002
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0003
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0003
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0004
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0004
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0004
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0005
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0005
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0005
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0006
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0006
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0006
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0007
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0007
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0007
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0007
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0008
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0008
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0008
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0009
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0009
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0010
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0010
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0010
https://www.huntress.com/blog/cobalt-strike-analysis-of-obfuscated-malware
https://www.huntress.com/blog/cobalt-strike-analysis-of-obfuscated-malware
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0012
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0012
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0013
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0013
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0013
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0014
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0014
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0014
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0015
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0015
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0016
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0016
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0016
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0017
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0017
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0017
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0018
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0018
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0019
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0019
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0020
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0020
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0021
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0021
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0021
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0021
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0022
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0022
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0022
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0022
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0022
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0023
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0023
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0023
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0024
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0024
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0024
https://www.cerias.purdue.edu/apps/reports_and_papers/view/4328/
https://www.cerias.purdue.edu/apps/reports_and_papers/view/4328/
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0026
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0026
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0026
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0027
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0027
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0027
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0028
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0028
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0028
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0029
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0029
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0029
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0029
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0030
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0030
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0034
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0034
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0034
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0035
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0035
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0035
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0037
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0037
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0037
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0038
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0038
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0038
https://techcommunity.microsoft.com/t5/ai-machine-learning-blog/responsible-machine-learning-with-error-analysis/ba-p/2141774
https://techcommunity.microsoft.com/t5/ai-machine-learning-blog/responsible-machine-learning-with-error-analysis/ba-p/2141774
https://techcommunity.microsoft.com/t5/ai-machine-learning-blog/responsible-machine-learning-with-error-analysis/ba-p/2141774
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0040
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0040
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0041
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0041
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0042
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0042
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0042
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0043
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0043
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0043
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0044
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0044
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0044
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0045
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0045
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0045
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0046
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0046
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0046
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0047
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0047
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0047
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0048
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0048
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0049
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0049
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0049
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0050
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0050
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0051
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0051
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0052
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0052
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0052
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0053
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0053
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0053
http://refhub.elsevier.com/S2667-3053(24)00146-7/sbref0053
http://arXiv:1905.03685
http://arXiv:1905.03685

	Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach
	1 Introduction
	1.1 Research contributions
	1.2 Structure of paper

	2 Literature review and background
	2.1 Malware types
	2.2 Malware obfuscation techniques
	2.3 Malware analysis approaches
	2.3.1 Machine learning-based static analysis
	2.3.2 Machine learning-based dynamic analysis
	2.3.3 Machine learning-based hybrid analysis
	2.3.4 Machine learning-based memory analysis
	2.3.5 Machine learning-based detection of zero-day attacks

	2.4 Summary

	3 Methodology
	3.1 Dataset
	3.2 Data modelling and evaluation metrics
	3.2.1 Data pre-processing
	3.2.2 Evaluation criteria
	3.2.3 Random forest and feature selection

	3.3 Experimental methodology
	3.3.1 Stage 1: development of a baseline classifier
	3.3.2 Stage 2: development of an adaptive malware detection system
	3.3.3 Stage 3: model interpretation

	3.4 Apparatus

	4 Results
	4.1 Assessing baseline classifier performance against known malware variants
	4.2 Performance analysis of the adaptive malware detection system
	4.3 Model explainability
	Global interpretation
	Local interpretation

	5 General discussion
	5.1 Summary of findings
	5.2 Implications for cyber security defences
	5.3 Limitations and future directions
	5.4 Conclusion

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Declaration of generative AI and AI-assisted technologies in the writing process
	Appendix A
	Data availability
	References

