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Abstract 36 

Purpose: The abundance of data in football presents both opportunities and challenges for 37 

decision-making. Consequently, this review has two primary objectives: first, to provide 38 

practitioners with a concise overview of the characteristics of machine learning (ML) analysis; 39 

and second, to conduct a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis 40 

regarding the implementation of ML techniques in professional football clubs. This review 41 

explains the difference between artificial intelligence and ML, and the difference between ML 42 

and statistical analysis. Moreover, we summarize and explain the characteristics of ML 43 

learning approaches such as supervised learning, unsupervised learning and reinforcement 44 

learning. Finally, we present an example of SWOT analysis, which suggests some actions to 45 

be considered in applying ML techniques by the medical and sport science staff working in 46 

football. Specifically, four dimensions were presented namely the use of strengths to create 47 

opportunities and make the most of them, the use of strengths to avoid threats, work on 48 

weaknesses to take advantage of opportunities, and upgrade weaknesses to avoid threats.  49 

Conclusion: ML analysis can be an invaluable ally for football clubs, sport science and medical 50 

departments due to its ability to analyze vast amounts of data and extract meaningful insights. 51 

Moreover, ML can enhance performance by assessing the risk of injury occurrence, 52 

physiological parameters, physical fitness, and optimizing training, recommending strategies 53 

based on opponent analysis, and identifying talent and assessing player suitability. 54 

 55 

Key Points: Strengths, Weaknesses, Opportunities, Threats, decision-making, performance 56 

prediction, injury risk assessment, Soccer 57 
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 66 

INTRODUCTION 67 

The decision-making process plays a critical role for practitioners working in football. 68 

Practitioners aim to optimize the training process, testing protocols, physiological parameters, 69 



physical readiness, and match strategies to increase the probability of success.1–3 In the last 70 

decades, technology has allowed sports scientists and performance analysts to collect larger 71 

volumes of data compared to the past, 4–6 and use them in conjunction with their experience 72 

and the most relevant scientific evidence to make informed decisions. These data have been 73 

typically analyzed using visualizations and statistical methods. Nevertheless, challenges arise 74 

when determining how to effectively select variables and handle larger datasets derived from 75 

multiple sources and instruments. In recent years, artificial intelligence (AI) and machine 76 

learning (ML) have become more pervasive in football 6–8. Although the use of AI and ML are 77 

common in our contemporary society, some confusion exists between the two terms. AI can be 78 

briefly defined as “the theory and development of computer systems able to perform tasks 79 

normally requiring human intelligence”,9 while ML refers to “the technologies and algorithms 80 

that enable systems to identify patterns, make decisions, and improve themselves through 81 

experience (training)”10 and it is a subset of AI. ML can find several applications in football, 82 

for example, to facilitate decision-making, performance prediction, technical and tactical 83 

pattern recognition, game activity/analytics, talent identification, and injury risk 84 

assessment.7,11,12   85 

 86 

Data mining is the process of sorting through large data sets to identify patterns and 87 

relationships.13 Through data mining and ML (which focuses on creating algorithms that can 88 

learn and predict from given data)7 football practitioners (e.g., sports scientists and coaches) 89 

can make informed decisions to enhance physiological parameters, physical development, 90 

reduce fatigue, increase readiness, and match performance. A recent review reported that ML 91 

can be used to determine the parameters that affect (i.e., explainability, which means that a 92 

model and its output can be explained and make sense to a human being) wellness and fitness, 93 

which can be later on manipulated by football practitioners.7 ML regression can determine the 94 

contribution of players’ anthropometric characteristics to physical performance, such as 95 

sprinting and aerobic fitness.14 Furthermore, ML can be used to assess the relationship between 96 

well-being parameters and training load and match performance. However, it showed a limited 97 

predictive capacity of such parameters to determine internal and external load.15 ML analysis 98 

can be used for determining technical and tactical outcomes, for instance, to analyze the team 99 

pattern or the effectiveness of passing strategies.7 ML was used to estimate players’ passing 100 

skills to make predictions for the following season,16 which coaches and performance analysts 101 

could use for scouting objectives. Moreover, multiple ML algorithms were used by Jamil et 102 

al.,17 to classify elite and sub-elite goalkeepers (GK) in professional men's football, suggesting 103 



that a GK's ability with their feet and not necessarily their hands are what distinguishes the elite 104 

GK's from the sub-elite. Another area in which ML can be used is talent identification, which 105 

is one of the more critical challenges for football clubs. In this specific context, technical and 106 

tactical variables, together with psychological and physical variables can be assessed to 107 

determine the talent predictors that coaches need to monitor and develop.18,19 Such information 108 

may impact the productivity (in terms of talent) of football academies and related clubs. 109 

Certainly, ML holds the promise to overcome the constraints of conventional reductionism 110 

approaches, enabling the concurrent integration of diverse data sources. It may play a pivotal 111 

role in gathering a comprehensive understanding of the game by bridging gaps across physical, 112 

physiological, technical, and tactical dimensions, while simultaneously contextualizing the 113 

information and actively pursuing integrative models. This advanced approach may accelerate 114 

analyses but also potentially heightens accuracy, thereby strengthening decision-making 115 

processes in coaching, player development, and overall team performance. 116 

 117 

Research in the field of ML for identifying injury risks and associated factors has been steadily 118 

growing over the years, as evidenced by a recent systematic review 11. For instance, in a study 119 

by Oliver et al.,20 involving 355 elite youth football players, decision tree algorithms displayed 120 

an overall accuracy that was not significantly superior to statistical logistic regression in 121 

detecting injuries. However, ML (e.g., decision tree) demonstrated increased sensitivity in this 122 

context. In contrast, a study by Rommers et al.,21 which employed extreme gradient boosting 123 

algorithms on a larger sample of 734 youth players, revealed promising results. The ML 124 

algorithm successfully identified injured players in the hold-out test sample with 85% 125 

precision, 85% recall (sensitivity), and 85% accuracy.21 Additionally, the same study21 126 

achieved reasonably high accuracy in distinguishing between overuse and acute injuries based 127 

on pre-season measures. Hence, beyond predicting potential injuries, ML has the potential to 128 

categorize them effectively. This capability provides additional insights for rapidly 129 

constructing models in subsequent stages of interpretation. Furthermore, it facilitates 130 

interaction with potential injury mechanisms and factors that may influence the overall risk.22 131 

 132 

To successfully implement ML in football, practitioners need to address the integration into 133 

medical, sport science, and coaching departments. A strategic management plan, anchored by 134 

a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis, is vital to evaluate the 135 

team’s internal capabilities and external possibilities concerning ML. This analysis will inform 136 

strategic decisions, leveraging strengths to harness opportunities or neutralize threats, and 137 



improving weaknesses to support ML adoption. A team’s preparedness to adopt ML is crucial, 138 

as it can significantly refine their strategic approach to ML utilization, ensuring a more 139 

effective and efficient integration. This condensed strategy enables teams to navigate the 140 

complexities of ML implementation in the competitive sports environment. 141 

 142 

In the dynamic field of football, the profusion of data creates a spectrum of possibilities and 143 

hurdles in the decision-making process. Addressing this, the review unfolds in two distinct 144 

parts: the first segment offers practitioners a streamlined synopsis of ML analysis features; the 145 

second segment presents a comprehensive SWOT analysis, assessing the practicality and 146 

impact of integrating ML methodologies within the ecosystem of professional football clubs. 147 

 148 

MACHINE LEARNING  149 

Difference between AI and ML 150 

Before delving into ML in football, it is important to appreciate the evolution of ML to the 151 

modern form used to solve many real-world problems. As mentioned in the introduction, ML 152 

constitutes a subset within the broader field of AI. Modern AI gained prominence in the early 153 

1940s and the seminal work of McCullogh and Pitts is considered as the first work on the 154 

artificial neuron (they defined a mathematical computation model similar to neural networks).23 155 

Various AI initiatives aim to emulate human intelligence through computational models based 156 

on artificial neurons. Consequently, AI encompasses a wide spectrum of tasks and issues, in 157 

contrast to ML, where the primary objective is the development of algorithms tailored for 158 

specific tasks. Frequently, everyday tasks can be formulated as either regression or 159 

classification problems, and ML endeavors to address these challenges systematically. 160 

 161 

Difference between ML and statistical analysis 162 

In numerous data science scenarios, the principal goals are inference and prediction. Inference 163 

involves creating a mathematical model of the data-generation process to formalize 164 

understanding or test hypotheses regarding system behavior. As an example in football, Zeki 165 

et al.24 infer the neuromuscular fatigue imposed on players after a football match based on 166 

measurements such as the players’ heart rate, accelerations, and distance traveled. Prediction 167 

aims at forecasting unobserved outcomes or future behavior, such as whether a football player 168 

will likely develop an injury in a future game. In a typical research project or applied setting, 169 

both inference and prediction can be of value - we want to know how the system works and 170 

what will happen next.25  171 



 172 

Many methods from statistics and ML may, in principle, be used for both prediction and 173 

inference. However, statistical methods have a long-standing focus on inference, which is 174 

achieved through the creation and fitting of a probabilistic model onto the data.26 The model 175 

allows us to compute a quantitative measure of confidence that a discovered relationship 176 

describes a 'true' effect, and so unlikely to result from noise or disturbances. In contrast, ML 177 

emphasizes prediction, employing learning algorithms to identify patterns in complex and big 178 

datasets.26 ML techniques prove particularly advantageous when dealing with situations where 179 

the number of input variables surpasses the number of samples, as opposed to scenarios with 180 

more samples than input variables. ML operates with minimal assumptions about data-181 

generating systems, exhibiting efficacy even in instances where data collection lacks a 182 

meticulously controlled experimental design or involves intricate nonlinear interactions. Also, 183 

ML allows for the interdependence of data points and facilitates the identification of hidden 184 

targets/groups without needing a subjective setting while providing an error estimation.27 185 

However, despite achieving compelling predictive outcomes, the limited interpretability of 186 

numerous ML solutions poses challenges in directly addressing specific problems and applying 187 

them in safety-critical applications. Often, statistical methods, including hypothesis testing, are 188 

employed to validate ML outcomes, and the relative performance of ML methods is commonly 189 

compared using hypothesis testing approaches. 190 

 191 

Classical statistics and ML diverge in terms of computational tractability as the number of 192 

variables per subject increases.26 Classical statistical modeling, originally designed for datasets 193 

with a limited number of input variables and sample sizes considered small to moderate by 194 

contemporary standards, encounters challenges as the complexity of the relationships among 195 

numerous input variables increases. Consequently, statistical inferences become less precise 196 

and the boundary between statistical and ML approaches becomes hazier.  197 

 198 

SUPERVISED AND UNSUPERVISED ML METHODS 199 

Supervised learning 200 

In supervised learning, a model is derived from a dataset that incorporates features and labels, 201 

with both entities employed during the training phase (see Table 1).17,28,29  Once the model is 202 

trained, it predicts the label corresponding to the input features (values that a supervised model 203 

uses) when presented with unseen input (the value we want the model to predict). The 204 

supervisor oversees the learner's every move, dictating precise actions for every situation until 205 



the learner masters the mapping from situations to actions. While working under such close 206 

supervision may seem restrictive, the process is relatively straightforward – quickly 207 

recognizing patterns and replicating the supervisor's actions ensures compliance.  208 

 209 

In supervised ML, the supervisory aspect is crucial, as it forces the model to learn parameters 210 

of the model such that the output given by the model is close to the desired output indicated by 211 

the label. In probabilistic terms, the focus is typically on estimating the conditional probability 212 

of a label given specific input features. While supervised learning represents just one paradigm 213 

among several, it predominates in the success of ML applications across various domains.30,31 214 

This prevalence is attributed, in part, to the fact that many pivotal tasks, such as those listed 215 

below, revolve around estimating the probability of an unknown attribute given a specific set 216 

of available data: 217 

•  Assess injury risk in elite youth football players using ML.21 218 

• Classifying elite and sub-elite goalkeepers in professional men's football.17 219 

• Effective injury forecasting in soccer with GPS training data and ML.32 220 

• Predicting the stock price (e.g., of a Club) for the next month based on this month's 221 

financial reporting data.29 222 

Despite all supervised learning problems being encapsulated by the overarching description 223 

of "predicting labels given input features," the methodology assumes diverse forms and 224 

necessitates numerous modeling decisions. These decisions hinge on considerations such as 225 

the type, size, and quantity of inputs and outputs, leading to the utilization of different models 226 

tailored for processing sequences of varying lengths and fixed-length vector representations, 227 

among other factors. 228 

***Table 1 here*** 229 

 230 

Regression and classification 231 

Perhaps the simplest supervised learning task is regression. A typical illustration of a regression 232 

problem involves predicting a player transfer market value based on various factors such as 233 

age, performance statistics, experience, etc. Goddard (2005) applied regression techniques to 234 

forecast goals scored and conceded,33 leveraging a 25-year dataset on English league football 235 

match outcomes. The defining characteristic of a regression problem lies in the form of the 236 

target variable. When labels assume arbitrary numerical values, even within a specific interval, 237 



the problem is classified as a regression problem. The primary objective is to develop a model 238 

that produces predictions closely aligned with the actual numerical label values. 239 

In contrast to regression, the output of a classifier takes only a finite number of values. In 240 

classification tasks, the model predicts the category (often termed a class) to which a given 241 

example belongs from a discrete set of options. For instance, automatic activity classification 242 

in sports, like jumping or running. The most basic form of classification is binary classification, 243 

where the scenario involves only two classes. While regression employs a regressor to output 244 

a numerical value, classification seeks a classifier whose output predicts the assigned class. 245 

Despite classification and regression being distinct problems, analogous models are employed 246 

to address both sets of challenges. In classification, classes are distinguished using a decision 247 

boundary, whereas in regression, efforts are directed towards minimizing the difference 248 

between training samples and the values predicted by the boundary.  249 

 250 

Decision tree 251 

Decision trees stand out as a widely adopted ML technique employed to establish connections 252 

between input variables, depicted within the branches and nodes of the tree, and an output value 253 

encapsulated in the leaves of the tree. The decision tree is one of the oldest and most popular 254 

techniques for supervised learning, which has been developed independently in the statistical34 255 

and ML35 communities. These trees find applications in both classification problems, where 256 

they produce a category label, and regression problems, where they yield a real number as 257 

output. Various algorithms, including the well-established CART (Classification and 258 

Regression Tree, which produces only binary Trees) or ID3 (Iterative Dichotomiser 3, which 259 

produces decision trees with nodes having more than two children), are employed for fitting 260 

decision trees, employing a combination of greedy searching and pruning strategies to ensure 261 

the tree effectively fits the training data while also generalizing well to unseen input/output 262 

pairs. 263 

 264 

A notable advantage of decision trees lies in their scalability with additional data, resilience to 265 

irrelevant features, and interpretability. The choices made at each node facilitate an 266 

understanding of the impact of each predictor variable on the ultimate outcome. Random 267 

forests operate by constructing a multitude of decision trees during training, utilizing different 268 

subsets of the dataset as the training set for each tree.36 In classification scenarios, the final 269 



output is determined by the mode of the outputs of each decision tree, while for regression 270 

problems, the mean is computed. This approach yields a model with significantly enhanced 271 

performance compared to a single decision tree, attributed to reduced overfitting. Nevertheless, 272 

the interpretability of the model diminishes, as the decisions at the nodes of the individual trees 273 

differ. 274 

 275 

Support vector machines (SVMs) 276 

Support vector machines (SVMs) are ML models for classification and regression tasks 37. In 277 

SVM models, the training data is represented as points in space, aiming to delineate distinct 278 

categories by a hyperplane (a crucial deciding boundary that partitions the input space into two 279 

or more sections) situated as far as possible from the nearest data points. New input instances 280 

are subjected to the same mapping as the training data, enabling their categorization based on 281 

their position relative to the hyperplane. In instances where the data lacks linear separability, 282 

the kernel trick is used. This is a technique employed in SVMs to transform data that is not 283 

linearly separable into a higher-dimensional feature space, where it can potentially be separated 284 

linearly.38 Extending beyond classification, SVMs can effectively address regression problems 285 

by relying on a subset of the training data to formulate regression predictions and is commonly 286 

known as support vector regression. Advantages of using SVMs include that they are effective 287 

in high dimensional spaces, that they are memory efficient thanks to the use of a subset of 288 

training points in the decision function, and finally that they are versatile through the use of 289 

different possible kernel functions. On the other hand, using SVMs can have some 290 

disadvantages: they do not directly provide probability estimates for classification problems, 291 

and correctly optimizing the kernel function and regularization term is essential to avoid 292 

overfitting. 293 

 294 

Neural networks 295 

Neural networks, also known as artificial neural networks, are systems based on a collection 296 

of nodes (neurons) designed to algorithmically emulate the interconnections between neurons 297 

in the human brain.39 Each neuron can receive signals from other neurons and transmit them to 298 

additional neurons, establishing a network of interconnections. The relationship between two 299 

neurons is facilitated by an edge or arrow (which, represents the weights and biases of linear 300 

transformations between the layers), characterized by a weight that signifies the significance 301 



of the input from one neuron to the output of the other. Typically, a neural networks comprises 302 

an input layer, featuring one neuron per input variable for the model, an output layer with a 303 

single neuron providing the classification or regression outcome, and several hidden layers 304 

positioned between the input and output layers, each containing a variable number of neurons. 305 

An example of the use of neural networks in team sports can be found here, Ruddy et al., 306 

developed predictive modelling of hamstring strain injuries in elite Australian footballers.40   307 

 308 

The advantages of using neural networks as classification or regression models are that they 309 

usually achieve higher predictive accuracy than other techniques. However, their effectiveness 310 

is contingent upon a substantial volume of training data to optimize the model. Furthermore, 311 

neural networks lack a guarantee of convergence to a singular solution, rendering them non-312 

deterministic. Importantly, neural networks lack interpretability due to the complexity 313 

introduced by numerous layers and neurons, making it challenging to discern the direction and 314 

magnitude of the association between each input variable and the output variable through the 315 

different weights. 316 

 317 

Unsupervised learning 318 

The previous sections focused on supervised learning, where a large dataset containing both 319 

features and corresponding label values is provided to the model. In this scenario, the 320 

supervised learner operates under the guidance of a highly specialized supervisor. In contrast, 321 

envisioning the opposite scenario involves working for a supervisor with ambiguous 322 

expectations. In this context, the supervisor might furnish a vast dataset and instruct the data 323 

scientist to perform some ML algorithms without providing specific guidance. This ambiguity 324 

characterizes a class of problems known as unsupervised learning, wherein the range of 325 

questions one can pose is limited only by one's creativity. One common question addressed is 326 

to find a small number of prototypes that accurately summarize the data (e.g., given a set of 327 

players’ characteristics, we can group them into categories). This action is typically known as 328 

clustering. Another important and exciting recent development in unsupervised learning is the 329 

advent of deep generative models. These models aim to estimate the data density, either 330 

through explicit or implicit methods.41,42  331 

 332 

Clustering 333 

Cluster analysis (predictive or descriptive) is an approach that organizes data objects based 334 



solely on information inherent in the data describing these objects and their interrelationships.43 335 

The primary objective is to assemble objects within a group that exhibit similarity or 336 

relatedness while maintaining dissimilarity or unrelatedness to objects in other groups. The 337 

efficacy of clustering is contingent upon achieving homogeneity within a group and 338 

maximizing dissimilarity between groups, thereby enhancing the distinctiveness of the 339 

clustering outcomes. Cluster analysis shares commonalities with other techniques employed 340 

for partitioning data objects into groups. It can be perceived as a variant of classification, as it 341 

involves labeling objects with class (cluster) labels derived exclusively from the data. In 342 

contrast, classification is a supervised process, where new, unlabeled objects receive class 343 

labels using a model developed from objects with known class labels. Consequently, cluster 344 

analysis is considered a form of unsupervised classification. In ML, the unqualified term 345 

"classification" typically refers to the supervised classification discussed in previous sections. 346 

There are many types of clustering techniques, but the most common approach is known as K-347 

means. K-means is a prototype-based, partitional clustering technique striving to identify a 348 

user-specified number of clusters (K) represented by their centroids. Agglomerative 349 

Hierarchical Clustering encompasses a group of closely related techniques that yield a 350 

hierarchical clustering. It initiates by treating each point as a singleton cluster and iteratively 351 

merges the two closest clusters until a single, overarching cluster remains. Some of these 352 

techniques have a natural interpretation in terms of graph-based clustering, while others have 353 

an interpretation in terms of a prototype-based approach.  354 

 355 

Reinforcement Learning 356 

In methodologies of learning discussed in previous sections, predictions were made on models 357 

trained with data from a similar distribution, leading to prediction failures when the system 358 

underwent significant changes compared to its training state.12 In such dynamic situations, we 359 

could develop an agent that interacts with an environment and takes actions, then our learning 360 

paradigm is known as reinforcement learning. This approach finds applications in diverse 361 

domains such as evaluating players performance and training,44 including robotics, and the 362 

development of AI for video. In the recent past, deep reinforcement learning, which applies 363 

deep learning to reinforcement learning problems, has surged in popularity. Although not 364 

related to football but sport in general, notable works include the groundbreaking deep Q-365 

network, which outperformed humans in Atari games using only visual input,45 and the 366 



AlphaGo program, which triumphed over the world champion in the board game Go.46  367 

Reinforcement learning gives a very general statement of a problem in which an agent interacts 368 

with an environment over a series of time steps. At each time step, the agent receives some 369 

observation from the environment and must choose an action that is subsequently transmitted 370 

back to the environment via some mechanism. After each iteration, the agent receives a reward 371 

from the environment. The agent then receives a subsequent observation, and chooses a 372 

subsequent action, and so on. The behavior of a reinforcement learning agent is governed by a 373 

policy. In brief, a policy is just a function that maps from observations of the environment to 374 

actions. The goal of reinforcement learning is to produce good policies. 375 

 376 

Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis  377 

Earlier sections have explored the integration of ML in football, detailing and clarifying the 378 

distinct features of ML learning strategies, including supervised, unsupervised, and 379 

reinforcement learning. The forthcoming section introduces a SWOT analysis, proposing 380 

several considerations for the implementation of ML tactics by football’s medical and sports 381 

science departments. It specifically outlines four strategic aspects: 1) use strengths to create 382 

opportunities and make the most of them, 2) use strengths to avoid threats, 3) work on 383 

weaknesses to take advantage of opportunities, 4) upgrade weaknesses to avoid threats. The 384 

SWOT analysis process is a valuable tool for organizations and businesses (i.e., clubs) to assess 385 

their internal and external environment. Table 2 reports some key needs for conducting a 386 

SWOT analysis. 387 

 388 

*** Table 2 here*** 389 

 390 

Practical tips to run a SWOT analysis in football aiming to apply ML 391 

Before applying ML in the team, medical and sport science staff are advised to build a strategic 392 

management plan. As part of this plan, they should perform an environmental analysis, which 393 

includes scanning the internal and external factors.47 The internal factors include analyzing the 394 

strengths and weaknesses of their team/organization.47 The external factors analysis includes 395 

the factors outside the team/organization, the opportunities, and threats of using ML. This is 396 

called SWOT analysis and is being used in other domains too.47 An example of a SWOT 397 

analysis for a top-level football club is presented in Figure 1. We have assumed that the club’s 398 

top management has adopted ML to improve their senior squad's injury risk assessment 399 



strategy. This new approach may bring value provided the team is ready to take advantage of 400 

that opportunity (see, Figure 1).  401 

 402 

***Please, add here Figure 1*** 403 

 404 

 405 

With regards to the SWOT analysis presented above, we are suggesting some actions to be 406 

considered by the medical and sport science staff working in the club. In particular and with 407 

regards to the: 408 

• Strategic dimension 1. Use strengths to take advantage of opportunities: the supporting 409 

team staff can work with top management to convince the coaches of the competitive 410 

advantages this new approach may bring to the team. The highly skilled ML staff can 411 

work effectively on optimizing systems and building algorithms for injury risk 412 

assessment.11  413 

• Strategic dimension 2. Use strength to avoid threats: the supports team staff may work 414 

on knowledge transfer to the coaches. Simultaneously, the support team staff should 415 

receive further education on technical and tactical aspects of football to better 416 

understand the game. This will help in accounting for the context when analyzing big 417 

data. In turn, this will facilitate the communication of the support team staff with the 418 

coaches and optimize knowledge implementation.48 419 

• Strategic dimension 3. Upgrade weaknesses to take advantage of opportunities: 420 

implement a holistic player-centric monitoring system  and consider the complexity of 421 

injury occurrence.8,49 This will help in better interpreting the algorithms.50  422 

• Strategic dimension 4. Update weaknesses to avoid threats: optimize player’s 423 

monitoring and integration of ML tools with the existing systems and workflows, while 424 

working on knowledge transfer to the coaches.50 Build a “bright spot” that will add a 425 

competitive advantage to the team. 426 

 427 

Limitations and future directions 428 

The implementation of ML is not without limitations or barriers. First, ML models require large 429 

amounts of high-quality data for training. In football, obtaining comprehensive and accurate 430 

data can be challenging due to variations in data collection methods, inconsistencies, and 431 

missing information. For instance, limited historical data for specific events (e.g., injuries, 432 



specific player movements) can hinder model performance. Second, ML techniques are not 433 

guaranteed to provide correct information (e.g., poor model performance, incorrect prediction 434 

and therefore, do not always enhance decision-making). Third, many ML algorithms operate 435 

as black boxes (if practitioners do not have a specific background in ML), making it difficult 436 

to understand how they arrive at specific decisions. In football, coaches and analysts need 437 

interpretable models to make informed decisions. Fourth, creating relevant features (input 438 

variables) for football-specific tasks can be complex. Deciding which player attributes, team 439 

statistics, or match context to include requires domain knowledge. Moreover, football events 440 

(e.g., goals, fouls, yellow cards) occur infrequently compared to non-events (e.g., passes, ball 441 

possession). This class imbalance affects model training and evaluation. Therefore, techniques 442 

like oversampling, undersampling, or using weighted loss functions are necessary to address 443 

this issue. Finally, football is highly context-dependent. Player actions depend on the game 444 

situation, opponent, field position, and time remaining. ML models must account for these 445 

dynamic factors. 446 

 447 

Practical applications 448 

ML models can analyze player data (such as physical condition, physiological parameters, 449 

match performance, and training load) to assess the likelihood of injuries. Clubs can use this 450 

information to manage player load, optimize recovery, and reduce injury risks. ML algorithms 451 

can assess player form by analyzing historical performance data. Clubs can identify players 452 

who are in peak form and make informed decisions about team selection. For scouting, ML 453 

can analyze player statistics, playing style, and potential fit with the team’s tactics. It helps 454 

clubs discover talented players and make strategic signings. ML techniques can analyze 455 

opponents’ playing styles, strengths, and weaknesses. Clubs can use this information to tailor 456 

their game plans, identify vulnerabilities, and exploit opponent weaknesses during matches. 457 

ML algorithms can evaluate youth players’ performance metrics and potential. Clubs can 458 

identify promising talents early, nurture their development, and integrate them into the senior 459 

team. Finally, clubs that want to build a strategic management plan can use the four dimensions 460 

presented in our SWOT analysis such as the use of strengths to create opportunities and make 461 

the most of them, the use of strengths to avoid threats, work on weaknesses to take advantage 462 

of opportunities, and upgrade weaknesses to avoid threats. 463 

 464 

Conclusion  465 

This education review provides practitioners with a concise overview of the characteristics of 466 



ML analysis and a guide for how to conduct a SWOT analysis regarding the implementation 467 

of ML techniques in professional football clubs. This review explains the difference between 468 

AI and ML, and the difference between ML and statistical analysis. Furthermore, we explained 469 

the characteristics of ML approaches such as supervised learning, unsupervised learning, and 470 

reinforcement learning. Finally, we presented an example of a SWOT analysis, which 471 

suggested some actions to consider when ML is implemented by medical and sport science 472 

staff in football. In conclusion, ML analysis can be an invaluable ally of football clubs and 473 

sport science and medical departments due to its ability to analyze vast amounts of data and 474 

extract meaningful insights. 475 
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Table 1. Supervised and unsupervised machine learning analysis.  

 

Regression 

 

Supervised ML regression is a type of predictive analysis that is used to model and analyze 

relationships between variables. It aims to predict a continuous target variable based on one or 

more independent variables. The goal is to find the best fit line or curve that minimizes the 

difference between predicted and actual values. This is achieved through algorithms that adjust 

the weights of input features to reduce error in predictions. Regression techniques are widely used 

in fields such as finance, medicine, and environmental science for tasks like prediction market 

value and estimating injury risk.  

Examples of regressions analysis: 

Boosting, Decision Tree, K Nearest 

Neighbor, Neural Network, Random 

Forest, Regularized linear, Support 

Vector Regression 

 

 

Classification 

 

Supervised ML classification is a type of algorithm used to assign predefined labels to new data 

points. It works by learning from a dataset with known labels and then applying this knowledge 

to categorize new, unlabeled data. Common applications include sport movements analysis and 

medical diagnosis, where the algorithm must decide which category or class the new data belongs 

to based on its features.  

Examples of classifications analysis: 

Boosting, Decision Tree, K Nearest 

Neighbor, linear discriminant, Neural 

Network (includes Deep CNNs), 

Random Forest, Support Vector 

Machine. 

Clustering  Clustering in ML is an unsupervised learning technique used to group a set of objects in such a 

way that objects in the same group (called a cluster) are more similar to each other than to those 

in other groups (clusters). It is commonly used in statistical data analysis for pattern recognition, 

game-tactical analysis, information retrieval, and bioinformatics. Algorithms like K-Means, 

Hierarchical clustering, and DBSCAN are popular methods for performing clustering tasks. The 

goal is to discover the inherent structure within the data, often to identify distinct subgroups 

without pre-labeled data or human supervision.  

Examples of clustering analysis: 

Density-based, Fuzzy C-Means, 

Hierarchical, Neighborhood-based. 

 



 

Table 2. This table reports the general characteristics of a SWOT analysis. The SWOT analysis process serves as a compass, guiding 

organizations toward effective strategies, risk management, and sustainable growth of a business (club). 

 

Strategic 

planning 

SWOT analysis helps organizations develop effective strategies by identifying their strengths, weaknesses, opportunities, and threats. It 

provides a comprehensive view of the current situation, enabling informed decision-making. 

 

Self-reflection 

and awareness 

Organizations need to understand their internal capabilities (strengths and weaknesses) and external factors (opportunities and threats). 

SWOT analysis encourages self-reflection and awareness, leading to better alignment with organizational goals. 

 

Risk assessment By evaluating potential threats (such as market changes, competition, or regulatory issues), organizations can proactively address risks. 

SWOT analysis allows them to prioritize risk mitigation strategies. 

 

Resource 

allocation 

SWOT analysis guides resource allocation. Organizations can allocate resources more effectively by capitalizing on strengths and 

minimizing weaknesses. It helps prioritize investments and efforts 

Competitive 

advantage 

Identifying unique strengths and opportunities allows organizations to create a competitive edge. Leveraging these advantages helps them 

stand out in the market. 

 

Adaptation to 

change 

The business landscape constantly evolves. SWOT analysis enables organizations to adapt to changes by recognizing emerging 

opportunities and addressing potential threats promptly 

Communication 

and alignment 

SWOT analysis fosters communication among team members, stakeholders, and leadership. It aligns everyone around a common 

understanding of the organization’s position and future direction. 

 



 

 

Figure 1: An example of SWOT analysis regarding the use of ML for injury risk assessment for a football team 
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