Context is key: normalization as a novel approach to sport specific preprocessing of KPI’s for match analysis in soccer.

Phatak, Ashwin. A., Mehta, Saumya, Wieland, Franz-Georg, Jamil, Mikael, Connor, Mark, Bassek, Manuel and Memmert, Daniel (2022) Context is key: normalization as a novel approach to sport specific preprocessing of KPI’s for match analysis in soccer. Scientific Reports, 12 (1117). pp. 1-6. ISSN 2045-2322

[thumbnail of 2022 1. Context is Key - Normalisation of KPI's.pdf]
Preview
Text
2022 1. Context is Key - Normalisation of KPI's.pdf - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (930kB) | Preview

Abstract

Key Performance Indicators (KPIs) have been investigated, validated and applied in multitude of sports for recruiting, coaching, opponent, self-analysis etc. Although a wide variety of in game performance indicators have been used as KPIs, they lack sports specific context. With the introduction of artificial intelligence and machine learning (AI/ML) in sports, the need for building intrinsic context into the independent variables is even greater as AI/ML models seem to perform better in terms of predictability but lack interpretability. The study proposes domain specific feature preprocessing method (normalization) that can be utilized across a wide range of sports and demonstrates its value through a specific data transformation by using team possession as a normalizing factor while analyzing defensive performance in soccer. The study performed two linear regressions and three gradient boosting machine models to demonstrate the value of normalization while predicting defensive performance. The results demonstrate that the direction of correlation of the relevant variables changes post normalization while predicting defensive performance of teams for the whole season. Both raw and normalized KPIs showing significant correlation with defensive performance (p < 0.001). The addition of the normalized variables contributes towards higher information gain, improved performance and increased interpretability of the models.

Item Type: Article
Uncontrolled Keywords: normalisation, context, football, performance analysis
Subjects: Q Science > Q Science (General)
Q Science > QP Physiology
Divisions: Faculty of Health & Science > Department of Science & Technology
Depositing User: Mikael Jamil
Date Deposited: 26 Jan 2022 10:52
Last Modified: 26 Jan 2022 10:52
URI: https://oars.uos.ac.uk/id/eprint/2241

Actions (login required)

View Item
View Item