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Abstract:  

Background and Objectives: A justifiable sample size is essential at trial design stage. Generally this 

task is completed by forming the main research question into a statistical procedure and then 

implementing the published formulae or software packages. When these standard statistical 

formulae/software packages become unavailable for studies with complex statistical procedures, 

some statisticians choose to fill this gap by assuming an alternative simplified sample size 

calculation. Monte Carlo simulations can also be deployed, particularly for complex trials. However, 

it is still unclear on how to determine the appropriate approach under certain practical scenarios. 

Methods: We adopted real clinical trials as examples and investigated on simplification and 

simulation-based sample size calculation approaches.  

Results: Compared to simplified sample size calculation, the simulation approach can better address 

the non-ignorable impact of baseline/follow-up outcome correlation on study power. For studies 

with multiple endpoints and multiple co-primary endpoints, the sample sizes calculated by 

simplification approach should be scrutinized.  

Conclusions: Directly using the simplification approach for sample size calculation should be 

restricted. We recommend to utilize the simulation approach, particularly for complex trials, at least 

as a sensitivity checking and a useful triangulation to the simplification approach outlined. 
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Background 

Sample size calculation in trials is crucial as an underpowered study may cause clinical important 

effects not to be detected, whereas an overpowered study can lead to waste in unnecessary 

recruitment resources and the unnecessary detection of statistically significant but not clinical 

important treatment effects.  Existing sample size calculation formulae or software packages, such 

as N-query, Stata and packages in R language, are well placed for sample size calculation for 

conventional trials. However, with the rapid development of evidence-based medicine, more 

innovative trial designs were developed and utilized in health research (1,2).  

Correspondingly, a variety of formulae-based sample size calculation approaches were developed for 

cluster-randomized trials (3,4), hierarchical longitudinal designs (5) and proportional hazards mixture 

cure model (6). However, formulae-based sample size calculation occasionally fails to cover 

innovative trial designs. Also, sometimes formulae-based sample size calculation fails to incorporate 

the related trial information, such as the correlation among repeated measures or multiple 

endpoints. When facing these difficulties, an alternative simpler statistical procedure for direct 

formulae/software calculation is sometimes chosen instead. Here we define this behaviour as 

simplified sample size calculation, i.e., when there is no direct sample size calculation 

formula/software for the statistical approach used in the analysis of primary outcome, one simplified 

statistical approach was used for sample size calculation. 

On the other hand, simulation approaches had also been adapted for sample size calculations. With 

the assistance of computers, statisticians can repeatedly simulate the trial data and carry out the 

statistical analysis to accumulate the proportion of hypotheses rejections as an estimate of power. It 

avoids the complexity of direct formulae development and hence can comprehensively serve sample 

size calculations. Feiveson (7) provided a step-to-step process for simulation based sample size 

calculation with examples coded in Stata. Eng (8) discussed the usage of simulation approach in 

correlated data and ROC curves. Gastañaga et.al (9) considered the simulation approach for 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Gasta%C3%B1aga%20VM%5BAuthor%5D&cauthor=true&cauthor_uid=16982112
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longitudinal data with the non-zero with-in cluster correlation. Zhang et.al (10) utilized the 

simulation approach in power calculation for interrupted time series.  Simulation approach was also 

used to investigate the impact of cluster size variation on study powers (11). 

To this end, we investigate the sample size calculation by simplification and simulation approaches in 

clinical trials, in terms of the reliability aspect of each approach. 

Methods 

 Full powered individual randomised controlled trials, i.e., Phase III RCTs, were chosen as worked 

examples for comparison between simplification and simulation based sample sizes. For each case 

scenario, general trial information on the study design, models for simulation and simplification 

based sample size calculation were summarised in Table 1.Power calculation by simplification was 

firstly undertaken using nQuery version 8, with the given trial information and pre-specified 

simplification procedure.  Then the simulated outcome data were formulated and generated by 

multivariable linear models following multivariate normal distribution. Details on the simulation 

formulation for each case scenario, together with their simulation codes, were placed in the 

supplementary materials. The study power of a given sample size was calculated as the proportion 

of significant p values in the primary outcome data analysis. We fulfil 10,000 times simulation for 

each scenario in order to get adequate accuracy in power calculation (12). With 90% power as the 

conventional requirement, the study sample size is the first one that reaches the required power.  In 

order to assess the impact of correlations among multiple primary and co-primary endpoints, 

common setting of 0.2, 0.5 and 0.8 as weak, moderate and strong correlation were adopted. 

Simulation based power calculation was programmed and undertaken by R language version 3.6.1.   

Results 

Case 1. Baseline/follow-up correlation 

For studies with repeated trial outcome measures, the correlation between baseline and follow-up 

measures of each participant, such as test-retest correlation (13), often exists. To reflect on this, 
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ANCOVA or regression approach with the follow-up measure regressed by the baseline measure are 

commonly employed. In this sense, sample size calculation based on unadjusted tests (independent 

t-test or Mann-Whitney test) is a simplified procedure, as it does not consider the baseline measure 

and potential baseline/follow-up correlation.  

The CREAM study was a three-arm randomised controlled trial (14). Patients were randomised to 

three study groups: one placebo (control) group and two active treatment groups. The primary 

outcome, Patient Oriented Eczema Measure (POEM) score, was measured at baseline and 2-week 

follow-up. The initial sample size calculation was based on a clinically important difference of 3 in 

POEM score and a common standard deviation of 7. Based on independent t-test on POEM score at 

2-week follow-up and with 0.025 significance level and 90% power, 137 patients per treatment 

group were required, giving a total of 411.  

During an interim analysis, the data from the first 69 patients was used to revisit some of the 

parameters. Using the standard deviation from the baseline POEM scores (5.3) and the correlation 

between baseline and 2-week POEM scores (0.27) and the same clinically important difference for 

POEM, we use the simulation approach to re-calculate the sample size (Refer to supplementary 

materials). It was found that less number of patients were actually needed, i.e., 75 patients per 

group were required to reach 90% power, giving a total of 225 required for analysis.  

Case 2. Multiple primary endpoints 

The term multiple primary endpoints and multiple co-primary endpoints were specified in recent 

EMA guidance and FDA guidance (15, 16).  For studies with multiple endpoints, a success in at least 

one endpoint is regarded as sufficient.  To control the overall type I error, this multiple-comparison 

statistical inference is often carried out by splitting the significance level alpha for each primary 

endpoint under the union-intersection test. Simplification in sample size calculation occurs when 

direct corrections (Bonferroni correction) are used for alpha splitting, which ignores the potential 

correlation between primary endpoints (assuming independence). 
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We redesigned the aforementioned CREAM trial as a two–arm trial with 2-week, 4-week and 3-

month POEM scores as multiple primary endpoints. Patients were randomized to two study groups: 

placebo (the control group) or active treatment group.  Three statistical hypothesis testing 

(treatment vs control group comparison of POEM scores at 2-week, 4-week and 3-month) are 

required to conclude whether the treatment is effective or not. The treatment is regarded as 

successful if it is effective in at least one of these three tests.  To control the overall type I error, the 

significance level alpha needs to be split by these tests. The simplification approach lies in evenly 

splitting alpha cross these endpoints ( 
α

3
=

0.05

3
= 0.0167). To reach 90% power, 86 patients per 

group is required. 

Depending on the level of correlations, we employed the simulation approach to calculate the 

sample size (Refer to supplementary materials).  The corresponding power calculations were listed in 

the first half of Table 2. With 86 patients per group, the calculated study power were 99.6%, 98.4% 

and 95.7% for weak, moderate and strong correlation. 

The over-estimation in sample size can be tuned by the simulation approach with an iterative 

process of adjusting for type I and type II error. For the case with weak correlation (rho=0.2), we plot 

the powers against the sample sizes, together with its corresponding split alpha (Figure 1). It was 

shown 46 patients per group can achieve 90% study power, with the simulated split alpha 
𝛼

3
=0.0173 

under its null hypothesis. 

Case 3. Multiple co-primary endpoints  

A trial with multiple co-primary endpoints is successful if there is a significant improvement for all 

the endpoints. This means that the collective power should be deduced under the intersection-union 

test.  Simplification in its sample size calculation occurs when the independence of these co-primary 

endpoints was assumed, which ignores the potential correlation between co-primary endpoints.  

We redesigned the CREAM study as a two-arm trial with 2-week, 4-week and 3-month POEM scores 

as three co-primary endpoints. Patients were randomized to two study groups: placebo (the control 
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group) or active treatment group. Three statistical hypothesis testing (treatment vs control group 

comparison of POEM scores at 2-week, 4-week and 3-month) are required to conclude whether the 

treatment is effective or not. The treatment is regarded as effective only when it is tested to be 

effective at all three tests. The simplification approach indicates that each primary endpoint has to 

be at least 96.6% to ensure the 90% overall power of the study (96.6%3=90.1%).  To reach the overall 

power, 91 patients per group are required by simplification approach. 

Depending on the level of correlations, we employed the simulation approach to calculate the 

sample size (Refer to supplementary materials).  The corresponding powers were presented in the 

second half of Table 2.  With 91 patients per group, the calculated study power were 90.5%, 92.0% 

and 93.4% for weak, moderate and strong correlation. 

Conclusion 

Using simplified statistical approach for sample size calculation is not rarely seen in clinical trial 

practice, despite it is not well recognized. To the best of our knowledge, this is the first research that 

formally address and investigate the impact of this behaviour.  

Our results showed that there is a growing trend in power when the correlation between baseline 

and follow-up outcome measures increases. Simplified sample size calculation does not consider this 

correlation and hence provides a conservative sample size, which can cause unnecessary 

recruitment burden. Unless the prior study information endorse no/weak correlation (such as 

studies with long follow-up period), it is recommendable to avoid simplification based sample size 

calculation approach. Under certain circumstances, this issue can be resolved by multiplying a 

deflating factor to the sample size calculated by two sample t-test (17). However, it is only valid for 

cases with bivariate normal distribution, constant baseline/follow correlation and variances in two 

treatment groups. Simulation based approach, on the contrary, can serve this purpose more 

comprehensively.  An alternative approach is to replace the primary outcome by the change from 

baseline to follow-up and then still undertake two sample t-test. This approach is preferable to 
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simplified power calculation, as the correlation is incorporated into the baseline/follow-up change to 

some extent. However, comparing to the simulation approach which fully takes the baseline and 

follow-up measures into the analysis model, the baseline/follow-up change is actually a data 

compression hence subject to information loss.  Therefore, the statistical property of this alternative 

approach is inferior to the simulation approach.     

For studies with multiple primary endpoints, the sample sizes calculated by directly splitting alpha 

largely over-power the study, as the Bonferroni correction is quite conservative for multiple 

comparison inference and it doesn’t consider the potential correlations among primary endpoints.  

For studies with multiple co-primary endpoints, the sample sizes calculated by simplification 

approaches are over-powered when correlation exists. Therefore, it is accurate only when the co-

primary endpoints can be regarded as non-correlated, such as studies with one clinical endpoint and 

one safety endpoint (18).  For some studies with two or three co-primary continuous endpoints, 

formula in adjusting Type II error were developed to accommodate correlation (19). A statistical 

package mpe was develop in R language for this adjustment (20). Again, simulation approach can 

serve this purpose more comprehensively. The flip side of intersection union test for multiple co-

primary endpoints is its impact on type I error. Several methods are available to improve the power 

for co-primary endpoints with an adjusted Type I error (21), whilst these approaches are only 

applicable to certain cases (two or three continuous outcomes and superiority trials). As we 

demonstrated in Figure 1, simulation approaches can achieve more accurate sample size calculation 

with iterative tuning process on type I error and type II error. 

Our three case scenarios showed that the calculated sample size by simplification approach gave 

conservative sample size calculation (over-powered), whilst simplification approach sometimes 

provides under-powered sample size calculation. One typical example is the factorial trial. For a two 

by two factorial RCT, if the interaction term between two main treatments was ignored 

(simplification) in sample size calculation, the study sample size will be underestimated (22). Another 

example is some mediation and moderation models with covariates. In a mediation model with two 



9 
 

covariates and one mediator, the sample size calculated on the basis of the X-Y direct effect only will 

be under-powered (23).  

For the most recent innovative trials, the simulation approach has already been widely accepted and 

used. Hence the behaviour of using simplified sample size calculation is less seen. Despite that, 

practical burdens in using simulation based approach hinders its usage in common practice, because 

a certain level of prior trial information is required to set up the simulation model. If there are 

available data from existing early phase studies (such as feasibility or pilot studies), we would be 

able to use these data as prior information. For the trials without these data, we may refer to the 

existing literature to infer the simulation model specification, and sometimes we need to assume a 

range of values on the model parameter, such as correlation, which will lead to a sample size range 

to check the robustness of calculated sample size against different parameter settings. For trials 

without any prior information, we will need to simulate the sample size with various model settings 

and go with the most conservative option. This sensible checking approach can avoid taking the 

simplified sample size calculation for granted, without exploring the possibilities of getting more 

accurate sample size calculation via simulation approach. 

As the first research addressing and comparing the simulated and simplified sample size calculations, 

we concentrated on full powered individual randomised controlled trials. For some innovative trials, 

such as adaptive design, the more likely situation is the appropriate calculation is not available in 

software, hence the simulation approach is naturally used. Considering the adaptive design is a wide 

concept with various study designs and allows pre-planned changes to an ongoing trial, it is worth 

regarding it as a separate topic to further investigate. In summary, the simplification approach can 

cause over-powered and under-powered study sample sizes, while the direction and degree of miss-

shot is case-dependent. Further work is thus important to evaluate robustly not only the 

contribution, ready applicability and ease of use of the simplification approach, but also potential 

limitations in terms of the impact of more complex models on statistical power. In general, we 

should restrict ourselves in using the simplification approach alone for sample size calculation. We 
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also reckon that more and more updated power calculation approaches for innovative trial designs 

have been incorporated into existing statistical software. Therefore, we encourage trial statisticians 

to regularly check these updates and adopt them in practice. We also recommend to utilize the 

simulation approach, particular for complex trials, at least as a sensitivity checking and a useful 

triangulation to the simplification approach outlined. This practice can reassure the power 

calculation from different aspects, hence enhance the replicability of scientific findings (24).   
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Table 1. Study design, primary outcome and models for simplified and simulation based sample size calculation  

 Study design  Phase Primary outcome Hypothesis testing Simplified sample size 
calculation 

Simulation based sample size 
calculation* 

Case 1. 

Baseline/follow

-up correlation 

Individual 
randomised 
controlled 

trial 

Phase III The primary outcome is 
the POEM score at 2-

week follow-up, which 
was also measured at 

baseline. 

The treatment is 
regarded as successful 

if it is effective at 2-
week follow-up. 

Two sample t-test, ignoring the 
baseline/follow-up correlation. 

Regression approach with 
POEM score at 2-week 

follow-up as the outcome 
measure, adjusting for its 
baseline measurement. 

Case 2. 

Multiple 

primary 

endpoints 

Individual 
randomised 
controlled 

trial 

Phase III Multiple primary 
endpoints, i.e., the 

POEM score measured 
at 2-week, 4-week and 

3-month follow-up.  

The treatment is 
regarded as successful 

if it is effective in at 
least one of the three 

primary endpoints.   

Directly splitting alpha for t-test 
at each primary endpoint, 

ignoring the correlation among 
three primary endpoints. 

Simulation on union-
intersection test with 

correlation among primary 
endpoints accommodated. 

Case 3. 

Multiple co-

primary 

endpoints  

Individual 
randomised 
controlled 

trial  

Phase III Multiple co-primary 
endpoints, i.e., POEM 
score measured at 2-
week, 4-week and 3-

month follow-up.  

The treatment is 
regarded as successful 

if it is effective in all 
three co-primary 

endpoints.    

Directly multiplying power for 
t-test at each co-primary 

endpoint, ignoring the 
correlation among three co-

primary endpoints. 

Simulation on intersection-
union test with correlation 

among co-primary endpoints 
accommodated. 

*The simulation formulation and simulation codes for each case scenario were placed in the supplementary materials. 
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Table 2. Power calculation by simplification approach for multiple primary endpoints and co-primary 

endpoints, along with corresponding powers by simulation approach. 

  Sample 
size  

Power by Power by simulation 
 simplification Weak 

correlation 
(rho=0.2) 

Moderate 
correlation 
(rho=0.5) 

Strong 
correlation 
(rho=0.8) 

Multiple primary endpoints 
 

86 90% 99.6% 98.4% 95.7% 

Multiple co-primary endpoints 
 

91 90% 90.5% 92.0% 93.4% 

 

 

 

Figure 1. Sample size, power and its split alpha for the case with three primary endpoints and weak 

correlation.  

 

 


