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Abstract 14 

This study aims to quantify and model the game speed demands of professional soccer players 15 

competing in the English Championship league, to compare the effect of match location, and 16 

to examine the effect of playing position on game speed outputs across the season. Twenty-17 

eight male professional soccer players were enrolled. Moving average calculations were 18 

applied to the raw GNSS (STATSports) speed data of each player durations matches (home=14 19 

and away=9). Positional groups were center-back (CB), full-back (FB), center-midfield (CM), 20 

wing-midfield (WM) and center-forward (CF). The maximum value across each of the moving 21 

average window durations was extracted and converted to units of meters per minute. Power-22 

law models were fitted to all observations (R²=0.64), home only (R²=0.98), and away only 23 

(R²=0.98). No significant effects are observed in game speed outputs when home and away 24 

games were analyzed. Significant differences were seen between the following positional 25 

groups; CBvs.CF (d=-0.323), CM (d=-0.530) and FB (d=-0.350). CM displayed positive 26 

difference compared to WM (d=0.614). This study reported power-law model fitted game-27 

speed. Players' positional groups have significant different game-speed demands, which should 28 

be considered during match analysis and training periodization. This study found that game-29 

speed is not affected by the location of the match.  30 
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Introduction  35 

Soccer is a physically demanding sport where both aerobic and anaerobic systems are taxed 36 

during intense activities such as sprints, accelerations, decelerations and change of directions, 37 

alongside sport-specific technical actions such as tackles, headings, passes, and shots (Beato 38 

& Drust, 2020; Beato & Jamil, 2018; Mohr, Krustrup, & Bangsbo, 2005). Soccer players 39 

generally cover a total distance of 10-13 km during a game, which is typically associated with 40 

the player’ position, where external roles (e.g., wings), for tactical motivations, cover longer 41 

distances compared to internal positions (e.g., central backs) (Borghi et al., 2020; Christopher 42 

et al., 2016; Mohr et al., 2003; Tierney et al., 2016). Thus, physical conditioning is of a high 43 

importance to coaches, practitioners and researchers alike in soccer (Mohr et al., 2003, 2005). 44 

 45 

In the last years, external training load monitoring has become one of the most important 46 

necessities for sport science departments (Akubat et al., 2014). External load data is used to 47 

support sport science staff and coaches to make informed decisions during the training 48 

microcycle and mesocycle (Gualtieri et al., 2020). For instance, coaches routinely use external 49 

training load to ensure adequate recovery is provided to players between training sessions and 50 

matches throughout the soccer season (Vanrenterghem et al., 2017). The correct monitoring 51 

and following planification of the training load can have a key impact on the long-term 52 

efficiency of the squad and for the maximization of physical and physiological adaptations 53 

(Beato, Coratella, Stiff, & Dello Iacono, 2018; Chmura et al., 2019; Vanrenterghem et al., 54 

2017). This is particularly true when considering professional soccer team schedules which can 55 

be very demanding and can reduce the training availability between official matches (Gualtieri 56 

et al., 2020). The metrics that are generally analyzed are total distance, relative velocity, high 57 

speed running, peak velocity, accelerations and decelerations (Andrzejewski et al., 2018; Beato 58 

et al., 2020; Gualtieri et al., 2020; Stevens et al., 2017). The instrumentations usually utilized 59 

to monitor external load parameters are global navigation satellite systems (GNSS) and video-60 

tracking systems (Beato & Jamil, 2018; Cummins, Orr, & Connor, 2013). Both these systems 61 

give the user the possibility to evaluate external load variables, however, GNSS is currently 62 

the most common instrument used in elite soccer departments because it can be used during 63 

both matches and training sessions (Beato, Devereux, & Stiff, 2018; Vanrenterghem et al., 64 

2017). In this study the STATSports Apex GNSS device was used to capture match day speed 65 

and displacement data. The Apex GNSS is capable of acquiring and tracking multiple satellite 66 

systems (e.g., global positioning systems, GLONASS, BeiDou) to provide the best possible 67 

positional information (Beato, Coratella, et al., 2018) in varying environments. The validity 68 



and reliability of this specific GNSS model has been previously reported (Beato & De Keijzer, 69 

2019; Beato, Coratella, et al., 2018). 70 

 71 

Recently evidence confirms that soccer matches are a critical training component of the week 72 

(Anderson et al., 2016; Morgans et al., 2018). During a match, players perform, relative 73 

distances (RD), high-speed running, and soccer-specific activities that can be difficult to 74 

recreate during training sessions or during  congested fixture micro-cycles (Gualtieri et al., 75 

2020; Jones et al., 2019). However, the majority of research analyzing match demands has 76 

focused its attention on average values without considering the most intense periods (e.g., 77 

worst-case scenario) (Delaney et al., 2018). For this reason, training sessions and drills that 78 

replicate the average match demands could underestimate the intensity of the most demanding 79 

moments of the game. To overcome this issue, running intensity have been evaluated using 80 

time blocks between 5 to 15 min (Bradley & Noakes, 2013). Additionally, game speed 81 

(represented as RD) calculated using a moving average technique has been recently used to 82 

elucidate this issue of underestimating the most intense periods of the a match in team sports 83 

(Delaney et al., 2017). Previous research reported RD can be over 170 m∙min−1 when analyzed 84 

using short time windows (e.g., 1 min) (Delaney et al., 2018). This game-speed intensity is 85 

much higher than the average RD (e.g., around 120 m∙min−1) reported considering whole games 86 

(Mohr et al., 2005; Stevens et al., 2017). Furthermore, mathematical models assessing the 87 

relationship between running intensity and duration (moving average) have shown to be a valid 88 

way to quantify soccer match intensity and account for true periods of maximal player output 89 

(Delaney et al., 2018). Sports Scientists and coaches can use this information for training load 90 

management during training microcycles in order to construct training drills of an appropriate 91 

intensity and expose players to match like running conditions (Konefał et al., 2019). 92 

 93 

Effective soccer training prescription is especially important because professional players have 94 

generally a very limited time available for specific physical training because of travel 95 

commitments, recovery, and the need for tactical and technical skills training (Beato, Bianchi, 96 

Coratella, Merlini, & Drust, 2019). To date, information related to match day in-season external 97 

load and mathematical models used to evaluate game-speed in professional soccer players is 98 

limited and such information may help sports scientists and coaches to adequately prepare their 99 

soccer players. Therefore, the aim of this study was, to firstly quantify and model the game 100 

speed demands of professional soccer players competing in the English Championship league. 101 

Secondly to compare the effect of match location on game speed outputs. Lastly to examine 102 



the effect of playing position on game speed outputs across the season. The authors’ hypothesis 103 

was that game speed is affected by the time window being analyzed, by the location of the 104 

match (home vs. away), and by the players' positional group. 105 

 106 

Methods 107 

Participants 108 

Twenty-eight male professional soccer players of the same team were enrolled in this study 109 

(age; 25.3 ± 4.2 years, body mass; 79.5 ± 6.3 kg, height; 1.82 ± 0.07 m). All participants and 110 

the club were informed about the risk and benefits of the study and consent form was signed. 111 

Inclusion criteria were the absence of any injury or illness (based on team medical staff) and 112 

regular participation in soccer training and competition. Only outfield players’ data were 113 

analyzed in this study, while goalkeepers were excluded. Players were professional players of 114 

the English championship with several years of professional experience (> 5 years). The data 115 

analysis was performed during the official season 2019/20 and did not include any friendly 116 

matches. Player names were anonymized before data analysis, which was performed in blind 117 

by a researcher non-affiliated with the club. The Ethics Committee of the “blind” approved this 118 

study. All procedures were conducted according to the Declaration of Helsinki for human 119 

studies. 120 

 121 

Experimental design 122 

This descriptive study evaluates the game speed outputs of professional Championship players 123 

using moving average windows of varying sizes and mathematical modeling techniques 124 

(Delaney et al., 2018). This study also compared the effects of match location on game-speed 125 

outputs. In addition, the game speed demands of different player positions during the official 126 

season have been compared to determine if statistical differences exist. External training load 127 

data was recorded as part of the normal monitoring routine of the team. Twenty-three matches 128 

were analyzed in this study, of which fourteen were home games, and nine were away games. 129 

Positional groups were defined as center back (CB), full back (FB), center midfield (CM), wing 130 

midfield (WM) and center forward (CF). 131 

 132 

External training load 133 

External training load parameters were recorded during matches using 10 Hz GNSS units 134 

(STATSports, Apex, Northern Ireland). The GNSS units were turned on approximately 10–15 135 

min before the beginning of the match. Meanwhile the subjects performed the warm-up routine 136 



with the fitness coach of the team. During the matches, one GNSS unit was placed on the back 137 

of each player by means of a harness at the level of the chest. The Apex GNSS model reports 138 

information about the quality of the signal such as the number of satellites and dilution of 139 

precision. In this study the number of satellites was 16.1 ± 1.9 and dilution of precision was 140 

2.38 ± 0.60. Players consistently wore the same GNSS unit during each match to avoid inter-141 

unit variability (Beato, Devereux, et al., 2018). Total distance in meters and relative velocity 142 

calculated as the ratio between total distance and the total time were measured and analyzed 143 

(Gaudino et al., 2013). GNSS data recorded by the units were downloaded and further analyzed 144 

with STATSports Software (Apex version 3.0.02011). The validity and reliability of the Apex 145 

GNSS unit was previously calculated during sport-specific activities. The bias reported for 146 

distance was between 1.05 to 2.3% respectively (Beato, Coratella, et al., 2018). Inter-unit 147 

reliability for speed was classified as excellent and the coefficient of variation was good (< 5%) 148 

(Beato & De Keijzer, 2019).  149 

 150 

Game-speed modelling 151 

In order to model game speed data the protocol previously presented by Delaney (et al., 2018) 152 

was utilized. Briefly, this involved exporting raw GNSS data at a sampling rate of 10Hz for 153 

each player across all matches. A custom computer program written in the Python 154 

programming language (Version 3.6.5, Anaconda Inc, New York, USA) was then used to clean 155 

the raw data, removing dead time (half time, extra time) and excluding any match files where 156 

a player had less than 60 minutes of data. Moving average calculations were then applied to 157 

the GNSS Doppler speed data of each player using ten different moving average window 158 

durations (1, 2, 3, …10). The maximum value across each of the moving average window 159 

durations was then extracted and converted to units of meters per minute (m.min-1) for further 160 

statistical analysis (Delaney et al., 2018; Zinoubi et al., 2017). 161 

 162 

Statistical Analyses 163 

All statistical analyses were performed using JASP software (version 0.9.2; JASP, Amsterdam, 164 

The Netherlands). Descriptive statistics are reported as mean ± standard deviation (SD) or 165 

mean ± 95% confidence intervals (CI) unless otherwise stated. Model fitting was conducted 166 

using nonlinear least squares regression, goodness-off-fit statistics are reported using the 167 

coefficient of determination (R²). Measures of goodness-of-fit summarize the discrepancy 168 

between observed values and the values expected under the model in question. A multivariate 169 

analysis of variance (MANOVA) was used to test for significant effects in game speed outputs 170 



when games are played at home compared to away (Harrell, 2015). The total observations 171 

analyzed for home and away matches was n=96 and n=36. A repeated measures analysis of 172 

variance (RMANOVA) was used to test for between player positional group differences in 173 

game speed outputs. Where Mauchly's test of sphericity has been found to be significant 174 

Greenhouse–Geisser corrections have been applied. Post-hoc analysis was performed using 175 

Bonferroni corrections (applied to the alpha value). Significance was set at p<0.05 and reported 176 

to indicate the strength of the evidence alongside the effect size. Results are reported using p-177 

values and Omega squared (ω2) effect sizes. Based on the Cohen’s d values revised by Hopkins 178 

effect sizes are interpreted as follows: trivial < 0.2; 0.2 ≤ small < 0.6; 0.6 ≤ moderate < 1.2; 179 

1.2 ≤ large < 2.0; very large > 2.0 (Hopkins et al., 2009).  180 

 181 

Results 182 

All models demonstrated acceptable to near perfect fits (Harrell, 2015), Figure 1.0 displays 183 

the power-law model fitted to all observations (R²=0.64). Figure 2.0 displays separate models 184 

fitted to the home only (R²=0.98) and away only (R²=0.98) observations. 185 

 186 

“Please, figure 1 here” 187 

 188 

The results of the MANOVA test detailed in Table 1.0 demonstrate that no significant effects 189 

are observed in the dependent variables (game speed outputs) when the independent variables 190 

(home & away games) are manipulated.  191 

 192 

“Please, table 1 here” 193 
 194 

“Please, figure 2 here” 195 

 196 

The results of the RMANOVA for between subject effects are detailed in Table 2.0. Significant 197 

moderate mean game speed output differences were found between player positional groups 198 

(p <0.001, d=0.093).  199 

 200 

“Please, table 2 here” 201 

 202 

The results of a post hoc analysis for the between subject effects are detailed in Table 3.0. 203 

Significant differences are seen between the following positional groups; CB displayed small 204 



negative differences in output compared to CF (p=0.007, d=-0.323), CM (p<0.001, d=-0.530) 205 

and FB (p=0.003, d=-0.350). CF displayed a small positive difference compared to WM 206 

(p<0.001, d=-0.380). CM displayed a moderate positive difference compared to WM (p<0.001, 207 

d=0.614). FB displayed a small positive difference compared to WM (p<0.001, d=0.426). 208 

Figure 3.0 shows game speed output per moving average window by player positional group.  209 
 210 

“Please, figure 3 here” 211 

 212 

“Please, table 3 here” 213 

 214 

Discussion 215 

The aim of this study was, to firstly quantify and model the game speed demands of 216 

professional soccer players competing in the English Championship league. Secondly to 217 

compare the effect of match location on game speed outputs. Lastly to examine the effect of 218 

playing position on game speed outputs across the season. In agreement with the author’s 219 

hypothesis game speed is affected by the time window being analyzed, where higher speed has 220 

been found analyzing short time intervals (e.g., 1-2 minutes vs. 10 minutes) and by the players' 221 

positional group (e.g., CM vs. WM). Contrariwise, this study found that game-speed is not 222 

affected by match location (home vs. away). The findings of this study provide new 223 

information related to match day game speed outputs of professional soccer players competing 224 

in the English Championship running. The mathematical models fitted to the game speed 225 

outputs in this study can assist in profiling the competitive running demands of Championship 226 

soccer. And provide an objective anchor to design training drills that replicate match day 227 

running demands.  228 

 229 

The game speed model was fit using ten different moving average window durations (Delaney 230 

et al., 2018) and reported in figure 1.0, which displays the power-law model fitted to all 231 

observations (R²=0.64). Game-speed is as expected higher during short window durations (e.g., 232 

1 min > 180 m.min-1) compared to longer window durations (e.g., 10 min approximately 130 233 

m.min-1). The data reported in the current study is similar to that previously reported by 234 

Delaney (et al., 2018). Our study reports that English Championship players have RDs > 180 235 

m.min-1 and 160 m.min-1 during short window durations (1 min and 2 min duration, 236 

respectively) compared to previous research  analyzing elite players of the Australian A-237 

League, who reported lower RD of around 175 m.min-1 and 155 m.min-1 using the same 238 



windows durations (1 and 2 min) (Delaney et al., 2018). Conversely, game-speed differences 239 

cannot be observed when longer window durations (e.g., 9-10 min) are compared between the 240 

two studies. Delaney (et al., 2018) reported RD between 120 and 130 m.min-1, which are similar 241 

to the RD reported in the current study, e.g., 130 m.min-1. Therefore, the current study analyzing 242 

professional English Championship players presented higher RD during games compared 243 

Australian A-League players only when short window durations where analyzed. This 244 

comparison further highlights the utility of the modeling approach used in this study which 245 

provides a more granular description of the match day running demands of competitive soccer 246 

compared to traditional methodologies (Mohr et al., 2005). Sports scientists and soccer coaches 247 

can use these innovative findings to physically prepare their players for the demands of the 248 

matches and determine if adjustments are required when a team is going to compete in a 249 

different league or competition. The differences between the game speed outputs in the two 250 

studies maybe explained by the physical fitness levels of the two cohorts of players studied, 251 

the higher game demands of the English Championship compared to Australian A-League, or 252 

simply because of different tactical strategies used by the two teams in their respective leagues 253 

(Rampinini et al., 2007; Sæterbakken et al., 2019; Wells et al., 2012; Winter & Pfeiffer, 2016). 254 

Future research may compare the RD and other training load variables between the two leagues 255 

to verify these hypotheses.  256 

 257 

This study reported power-law models fitted to the home (R²=0.98) and away (R²=0.98) 258 

observations (Figure 2.0). Therefore, both models reported in this research can be used to 259 

prescribe game-speed specific intensity during drills of various durations with a high degree of 260 

accuracy. However, we did not find any significant difference between home and away games 261 

following MANOVA analysis (Table 1.0). This is an interesting finding which suggests that it 262 

is not necessary to independently assess game-speed demands on the bases of the match 263 

location, both home and away game speed values can be interpolated using the same model. 264 

However, soccer practitioners should consider that this finding is strictly related to the soccer 265 

team analyzed in this study, therefore other teams could show some differences between home 266 

and away games. Furthermore, these findings have practical implications for training load 267 

management during the training microcycle, where physical training does not need to be 268 

differentiated on the bases of next game location since home and away games reported the 269 

similar game-speed (RD) outputs on average. Future research may evaluate additional 270 

independent variables to verify their effect on game-speed data. Our analysis did not analyze 271 

the game-speed demands based on the score of the game, e.g., win vs. lose or draw, which 272 



could affect the intensity of the match (Winter & Pfeiffer, 2016). Therefore, other independent 273 

variables could be taken into consideration by sports scientists and coaches to constructed 274 

potentially more informative game-speed models. Future studies could also analyze how 275 

players' physical, technical activities, players and team game-speed as well as contextual 276 

variables may affect the match outcome (Konefał et al., 2020). 277 

 278 

Previous research reported that game demands change on the bases of the players' position 279 

(Bush et al., 2015; Carling, 2013). In this study, we confirm that game speed output assessed 280 

per moving average window changes on the bases of a players’ positional grouping (Figure 3). 281 

Significant lower RD was reported for CB compared to CF (small), CM (small) and FB (small). 282 

CF reported higher RD compared to WM (small). CM reported higher RD compared to WM 283 

(moderate). FB reported higher RD compared to WM (small). Additionally, this study reported 284 

a similar trend of decline in peak running intensity between players’ positions as reported by 285 

previous research (Delaney et al., 2018). These findings can have critical importance for 286 

position-specific physical training in soccer. In many cases, soccer players do not receive a 287 

specific physical training based on their game position but instead, they train together 288 

performing similar soccer drills (e.g., using small-sided games) and therefore experience 289 

similar external training loads (Bianchi et al., 2019; Dello Iacono et al., 2019). This training 290 

approach could underestimate the game-speed demands for some positions, as well as 291 

overestimate the RD for some others, which could result in an inadequate quantification of 292 

training load during the weekly microcycle or mesocycle (Duthie et al., 2018; Gualtieri et al., 293 

2020; Malone et al., 2015). This situation may be further complicated during some specific 294 

periods of the season when several competitions (e.g., the national cup, the national league, 295 

international cup) are played in the same microcycle (Gualtieri et al., 2020; Morgans et al., 296 

2018; Thorpe et al., 2015). It has already been reported that congested fixture periods represent 297 

an obstacle for players’ training, injury prevention, and training load management (Dupont et 298 

al., 2010; Gualtieri et al., 2020). Therefore, the current knowledge about game-speed 299 

differences among players’ positions could have an important role for sports scientists and 300 

coaches, which should consider specific player position training load demands on the bases of 301 

the findings in this study. Thus, during both congested and non-congested fixture periods, 302 

positions should be taken into consideration in order to adequately prepare specific groups 303 

within the team (Jones et al., 2019). Sport scientists and soccer coaches can modify soccer-304 

specific drills (e.g., small and large sided games as well as soccer circuits) and adapt some 305 

rules to allow higher speed intensities for specific positions (e.g., FB) in order to adequately 306 



load the players (Lacome et al., 2018; Stone & Kilding, 2009).  307 

 308 

Some limitations need to be taken into considering when applying the results of this research 309 

in practice. Firstly, a single team of soccer players represents a relatively low sample size. 310 

However, we have considered only one club in our analysis which has made it possible to limit 311 

the confounding factors associated with different types of playing and training style, which 312 

could have affected the game speed demands and the ecological validity of the study. 313 

Moreover, it is well known that inter-unit and inter-model variability exist between different 314 

GNSS devices (Beato & De Keijzer, 2019; Beato, Coratella, et al., 2018; Thornton, Nelson, 315 

Delaney, Serpiello, & Duthie, 2019), therefore the monitoring of only one soccer team has 316 

allowed us to use the same GNSS device throughout the season avoiding this bias. Secondly, 317 

this study analyzed the game speed demands of professional soccer players competing in the 318 

English Championship league. Therefore, the results have a great applicability for teams 319 

playing at the same professional level, but the same findings cannot be generalized to other 320 

cohorts such as male semi-professional clubs or female professional teams. The findings 321 

reported in this study may be different if another team is analyzed, therefore future research is 322 

needed to verify if our results and game speed models can be applied to other clubs playing at 323 

different levels and in different leagues.  324 

 325 

Conclusions 326 

This study presents a quantitative model describing the running intensity of English 327 

Championship soccer. It reports that male soccer players game-speed demands are affected by 328 

the time window analyzed. Higher game-speed has been found analyzing shorter time intervals 329 

(e.g., 1-2 minutes vs. 10 min). Additionally, players' positional groups have significant 330 

different game-speed demands (e.g., CM vs. WM), which should be considered during match 331 

analysis and training load periodization. This study also found that game-speed outputs are not 332 

affected by the location of the match (home vs. away), therefore sports scientists should 333 

consider this new evidence during their performance analysis and the construction of effective 334 

training prescriptions.  335 

 336 

The findings of this study contribute important information related to match day game speed 337 

outputs of professional soccer and presents a set of mathematical models that can be used to 338 

evaluate the game-speed demands of professional soccer players. Practitioners can use the 339 

approach and models presented in this study to approximate the typical demands of competition 340 



and implement training interventions with the aim of replicating or overloading those demands. 341 

This type of approach is particularly advantageous when performance staff are required to 342 

prepare players to compete in a competition for the first time, or who are returning from an 343 

injury or long absence. Having a general or specific game speed model for a playing position 344 

provides a set of anchor points which can be used as objective markers in the preparation and 345 

rehabilitation of players. These markers not only consider the average demands of the game 346 

but also its most intense periods, forming a more complete profile of the physical demands 347 

required to perform in a competition such as the English Championship. Performance staff can 348 

also utilize this information as part of the long-term development of youth players who aspire 349 

to compete at this level, intelligent training drill design can be developed to gradually expose 350 

youth players to the physical, technical and tactical demands of senior competition across a 351 

spectrum of intensities relative to game speed. Similar, as previously stated the practice of 352 

game speed modelling is an effective method of assessing the relative demands of training 353 

drills in comparison to match day outputs, this provides coaches and performance staff with a 354 

novel method to use when selecting or designing training activities. Using the duration of a 355 

training drill coaches can quickly and easily assess the running intensity relative to game 356 

demands of the same duration and express those differences in terms of a percentage value. 357 

This method provides an arguably more granular and controlled approach to managing the 358 

volume, intensity and specificity of training activities. Therefore, we conclude that game speed 359 

modeling is a highly practical method of analyzing the demands of competition and provides 360 

coaches and performance staff with key information that can be used to develop players, inform 361 

rehabilitation practices and manage the design and selection of training protocols with a high 362 

degree of control. 363 

 364 
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