
The published source for this article is available here:

Effects of post-activation potentiation after an eccentric overload bout on countermovement jump and lower-limb muscle strength.

Marco Beato¹, Adam Stiff¹, Giuseppe Coratella²,

1. School of Science, Technology and Engineering, University of Suffolk, Ipswich, UK.
2. Department of Biomedical Sciences for Health, University of Milan, Italy.
Effects of post-activation potentiation after an eccentric overload bout on countermovement jump and lower-limb muscle strength.

Abstract
The present study aimed to evaluate the post-activation potentiation (PAP) effects of an eccentric overload (EOL) exercise on countermovement jump (CMJ) performance and isokinetic lower-limb muscle strength. Eighteen active male (mean ± SD, age 20.2 ± 1.4 years, body mass 71.6 ± 8 kg, height 178 ± 7 cm) were involved in a randomized, cross-over study. The participants performed 3 sets per 6 repetitions of EOL half squats at maximal power using a flywheel ergometer. PAP using an EOL exercise was compared with a control condition (10 min cycling at 1 W·kg⁻¹). CMJ height, peak power, impulse and force were recorded at 15s, 1, 3, 5, 7 and 9 min following an EOL exercise or control. Furthermore, quadriceps and hamstrings isokinetic strength were performed. PAP vs. control reported a meaningful difference for CMJ height after 3 min (ES = 0.68, p = 0.002), 5 min (ES = 0.58, p = 0.008), 7 min (ES = 0.57, p = 0.022) and 9 min (ES = 0.61, p = 0.002), peak power after 1 min (ES = 0.22, p = 0.040), 3 min (ES = 0.44, p = 0.009), 5 min (ES = 0.40, p = 0.002), 7 min (ES = 0.29, p = 0.011), and 9 min (ES = 0.30, p = 0.008), as well as quadriceps concentric, hamstrings concentric and hamstrings eccentric peak torque (ES = 0.13, p = 0.001, ES = 0.24, p = 0.003, and ES = 0.22, p = 003, respectively) after 3 to 9 min rest. In conclusion, the present outcomes highlight that PAP using an EOL bout improves height, peak power, impulse and peak force during CMJ, as well as quadriceps and hamstrings isokinetic strength in male athletes. Moreover, the optimal time window for the PAP was found from 3 to 9 minutes.

Keywords: warm-up; power; flywheel; isokinetic; quadriceps; hamstrings
Introduction

Post-activation potentiation (PAP) refers to a phenomenon associated with an acute improvement in muscular performance following a warm-up strategy or a strength exercise protocol, i.e. a preload stimulus (15,16). Although its underlying mechanisms are still unknown, previous studies reported that neuromuscular, mechanical and biochemical changes could induce these temporary improvements in performance (6,21,27). The most accredited physiological explanation is associated with the phosphorylation of the myosin regulatory light chains during a muscle contraction, which leads to a greater rate of cross-bridge attachment (3,15). This is due to an increased sensitivity of the contractile proteins to calcium (Ca^{2+}), which is released from the sarcoplasmic reticulum and the subsequent muscle response (e.g. twitch force and rate of force development) results increased (1–3). Other evidence has reported that greater motor unit recruitment (higher post-synaptic potentials and H-wave) could also affect the PAP (1). These factors play a critical role in the acute improvements of mechanical power and consequent athletic performance following a preload stimulus (13).

PAP protocols have been used to acutely improve performance in competitions and training sessions (25) as a warm-up to increase the voluntary explosive actions (18). Such acute improvements in performance were shown to persist up to 10 min (1,3). In the literature, several methods to induce PAP in athletes and untrained people are described, such as dynamic or isometric strength exercise, cycling and sport specific warm-up (19,27). Previous evidence reported that dynamic-constant external load exercise protocols increased the muscular power after a bout of heavy or by light resistance exercise (1). In addition, maximal isometric voluntary contractions have induced a PAP and subsequent improvements in the rate of force development (2). It was reported that heavy resistance exercise improved repeated sprint ability in adult handball players (25) and youth athletes (19). Similar
improvements have been reported in linear sprint in adult soccer players (21) and women college sprinters (100 m) (18). Parallel back squat (1 x 5 RM) showed to potentiate performance in sprints and jumps in active men (5,28). Back squat exercise using heavy load (4 x 90% of 1RM) and moderate load (6 x 60% of 1RM) reported PAP to countermovement jump (CMJ) performance in resistance trained male subjects (3).

Eccentric overload (EOL) exercise is a methodology used to improve sports performance and it is commonly generated by flywheel devices (15,29). During an EOL exercise, the concentric phase is weight-free and the eccentric phase is enhanced by the inertia accumulated during the concentric phase (12,15). Higher electromyographic activity has been reported during a EOL bout compared with traditional weight exercise (24). EOL training has shown important practical applications for strength conditioning coaches. For example, it has been reported that EOL elicits improvements in strength and power that play a functional role in most of the required movements in sport (15,20). However, most studies published to date had a focus on chronic adaptations (20,24,30), while only a few have analyzed the acute benefits of PAP following an EOL protocol (13,29). Recent studies have reported that PAP developed by EOL improved jump and 20 m sprint performance in highly training soccer players (15), as well as meaningful improvements in horizontal velocity (5 m and 15 m) and angular velocity of knee extension in swimmers (13). Studies on PAP found positive performance improvements after strength exercises (using traditional pre-load strategies), while others have failed to confirm these results (3,18,21). These inconsistent findings could be ascribed to the several factors that affect the PAP response such as training volume, intensity, rest duration and time windows following the exercise protocol (1).

Countermovement jump (CMJ) is a method to evaluate lower-limb muscle power, as well as previous studies have reported the validity of isokinetic tests to evaluate lower-limb muscle strength (4,10,32). Particularly, both quadriceps and hamstrings strength are crucial
for several sports activities (10) and their balance may help to prevent hamstring injury (11). To date, there is not any evidence about the acute effects of EOL bout on CMJ performance and lower-limb muscle strength. Moreover, no data are available regarding the PAP time-course as well as the magnitude of the effects using a flywheel device. This information could be critical for the development of strength training strategies and power optimization before a training session or a competition. Therefore, the aim of the present study was to evaluate the effects of PAP of an EOL exercise (half squat) vs a traditional warm up on CMJ performance (jump height, peak power, impulse and force) and quadriceps and hamstrings isokinetic strength in male athletes.

Methods

Experimental approach to the problem

The acute effects induced by EOL (experimental condition) vs. a traditional warm-up (control condition) on CMJ performance and isokinetic peak torque were investigated in the present randomized, cross-over study design. Each participant attended the laboratory on five separate occasions. The first one served to familiarize participants with the EOL exercise, the CMJ and the isokinetic testing procedures. Within the remaining four sessions, the participants performed one of the four testing protocols in a randomized order: CMJ tests following a standardized warm-up (control), isokinetic assessments following a standardized warm-up (control) and CMJ tests following a standardized warm-up and EOL exercise (experimental condition) and isokinetic assessments following a standardized warm-up and EOL exercise (experimental condition).
Eighteen active male were enrolled in this study (mean ± SD; age 20.2 ± 1.4 years, body mass 71.6 ± 8 kg, height 178 ± 7 cm). Inclusive criteria for participation were the absence of any injury or illness (PAR-Q), a regular training activity with a minimum of 3 training session per week and a regular participation to competitions (athletes of different sport background were enrolled such as soccer, American football, rugby). All participants were informed about the potential risks and benefits of the current procedures and signed an informed consent. The Ethics Committee of the School of Science, Technology and Engineering, University of Suffolk (UK) approved this study. All procedures were conducted according to the Declaration of Helsinki for studies involving human subjects. To calculate the sample size, statistical software (GPower, Dusseldorf, Germany) was used. Given the study 2-way ANOVA (2 group, and 6 repeated measures), a medium overall effect size \(f = 0.25 \), an \(\alpha \)-error < 0.05, and a desired power (1-\(\beta \) error) = 0.8, the total sample size resulted in fifteen participants. To prevent the effects of any possible dropout on the statistical power, eighteen participants were included.

Procedures

Body mass and height were recorded by Stadiometer (Seca 286dp, Hamberg, Germany). A standardized warm-up including 10 min of cycling at a constant power (1 W per Kg of body mass) on an ergometer (workload range of 8-2500 W, Sport Excalibur Iode, Groningen, Netherland) and dynamic mobilization was performed in both the control and experimental conditions (3).

Two sessions were performed as control where participants performed CMJ tests (control session 1) and an isokinetic test (control session 2) after the conclusion of the warm-up without any additional strength exercise. The same warm-up previously described (10 min of cycling at a constant power) was used on each occasion. CMJ tests were performed...
immediately after the end of the warm-up at 15 s, 1 min, 3 min, 5 min, 7 min and 9 min. This jump series were conducted during each of the subsequent conditions (control and experimental). Isokinetic test was performed between 3 and 9 minutes after the end of the warm-up. This time window has been utilized to optimize the effects of PAP as previously reported (2,3,27).

The experimental condition used the same procedure described for the control but involving also an EOL exercise after the warm-up. Therefore, the CMJ protocol was performed immediately after EOL exercise (experimental session 1) as well as the isokinetic evaluations (experimental session 2).

Please figure 1 here.

Counter movement jump

CMJ was assessed using a force platform (Kistler, Winterthur, Switzerland) using a sampling rate of 1000 Hz (22). The participants were instructed to stand, lower themselves to a self-selected knee flexion and immediately jump and were encouraged to maximally perform each jump. The participants were instructed to avoid any knee-flexion before the landing and to keep their hands on their hips to prevent the influence of arm movements on vertical jump performance, under the supervision of an experienced operator. The following variables were inserted into the data analysis: jump height (cm), peak power (W), impulse (NKg) and peak jumping force (N). Excellent test-retest reliability was found for each parameter: $\alpha = 0.910$, $\alpha = 0.922$, $\alpha = 0.918$, $\alpha = 0.901$. Jump height was defined as the vertical displacement achieved by the center of mass from take-off to the vertex of the flight trajectory using time in the air (TIA):

$$\text{TIA jump height} = \frac{1}{2} g \left(\frac{t}{2}\right)^2$$
where $g = 9.81 \text{ m} \cdot \text{sec}^{-2}$, $t =$ time in air (23).

Isokinetic testing assessment

An isokinetic dynamometer (Biodex Medical Systems, Shirley, NY, USA) was used to measure the quadriceps and hamstrings strength. The procedures followed previous recommendations (9,17): briefly, the device was calibrated according to the manufacturer’s procedures and the center of rotation was aligned with the tested knee. The participants were seated on the dynamometer chair, with their trunks slightly reclined backwards and a hip angle of 95°. Two seatbelts secured the trunk and one strap secured the tested limb, while the untested limb was secured by an additional lever. The quadriceps peak torque was measured in concentric ($60^\circ \cdot \text{s}^{-1}$) and the hamstrings peak torque was measured in concentric ($60^\circ \cdot \text{s}^{-1}$) and eccentric ($-60^\circ \cdot \text{s}^{-1}$) modality. Each testing-modality consisted of three maximal trials and was separated by 2 min of passive recovery. Strongly standardized encouragements were provided to the participants to maximally perform each trial (11,17). The peak torque was then calculated and inserted into the data analysis. Finally, the hamstrings-to-quadriceps strength ratio, defined as the ratio between eccentric hamstrings-to-concentric quadriceps peak torque (i.e., conventional $H_{\text{conc}}:Q_{\text{conc}}$ ratio and functional $H_{\text{ecc}}:Q_{\text{conc}}$ ratio) was also calculated (11,26). The dominant limb, defined as the preferred limb used to kick the ball, was tested (2,3). *Excellent* test-retest reliability was found for all the isokinetic measurements ($\alpha = 0.900 - 0.944$)

Intervention

EOL was performed by a half squat exercise using a flywheel ergometer (D11 full, Desmotec, Biella, Italy). The PAP protocol consisted of 3 sets x 6 repetitions of half squats at
Maximal power, interspersed by 2 min of passive recovery. Each movement was evaluated by an operator that offered a feedback to the athletes during the EOL exercise. The following combined load was used for each participant: one large disk (diameter = 285 mm, mass = 1.9 Kg, inertia = 0.02 kg m⁻²) and one medium disk (diameter = 240 mm, mass = 1.1 kg, inertia = 0.008 kg m⁻²). The inertia of the machine (D11) was estimated as 0.0011 kg m⁻². The participants were instructed to perform the concentric phase as fast as possible and to control the braking phase until the knees where flexed up to approximately 90°. An investigator offered a technique feedback for each repetition. The participants received strong standardized encouragements to maximally perform each repetition.

Statistical analysis

Statistical analyses were performed by SPSS software version 20 for Windows 7, Chicago, USA. Data were presented as mean ± standard deviation (SD). The test–retest reliability was measured using an ICC (Cronbach-α) and interpreted as follows: α ≥ 0.9 = excellent; 0.9 > α ≥ 0.8 = good; 0.8 > α ≥ 0.7 = acceptable; 0.7 > α ≥ 0.6 = questionable; 0.6 > α ≥ 0.5 = poor; α < 0.5 unacceptable (10). One-way repeated measure analysis of variance (ANOVA) was used to evaluate the effects of condition (Control vs PAP) on CMJ height, peak power, impulse and force. If a meaningful F-value was found, the Bonferroni correction was applied. Paired t-test was performed between Control vs PAP for the isokinetic parameters. Robust estimates of 90% confidence interval (CI) (14) and heteroskedasticity were calculated using bootstrapping technique (randomly 1000 bootstrap samples). Significance was set at p < 0.05 and reported to indicate the strength of the evidence. The effect size (ES) was calculated and interpreted as follows: < 0.20: trivial, 0.20-0.59: small, 0.60-1.19: moderate, 1.20-1.99: large, ≥ 2.00 very large (14).
Results

The between-group analysis reported differences in CMJ height ($F = 20.8, p < 0.001$), power ($F = 11.5, p = 0.003$), impulse ($F = 6.5, p = 0.020$) and force ($F = 10.6, p = 0.005$). The post-hoc Control vs PAP conditions on jump and power data are reported in table 1, while impulse and force data are reported in table 2.

Please table 1 and table 2 here

The isokinetic analysis reported meaningful variations between the PAP and control conditions for quadriceps concentric peak torque ($t = 4.3, p = 0.001$), hamstrings concentric peak torque ($t = 3.5, p = 0.003$), hamstrings eccentric peak torque ($t = 3.5, p = 0.003$), $H_{\text{conc}}:Q_{\text{conc}}$ ratio ($t = 1.8, p = 0.083$) and $H_{\text{ecc}}:Q_{\text{conc}}$ ratio ($t = 3.8, p = 0.001$). The PAP vs control isokinetic data are reported in table 3.

Please insert table 3 here

Discussion

In the literature, no evidence of the acute effects of EOL bout on CMJ performance and isokinetic strength exists to date. Moreover, no data are currently available regarding the optimal PAP time windows, as well as the magnitude of the effects following an EOL exercise. To the best of the authors’ knowledge, the current study was the first to evaluate such parameters after a squat exercise performed using an EOL. Compared to control, greater CMJ height were observed after 3 min, 5 min, 7 min, and 9 min. Similarly, peak power was greater after 1 min, 3 min, 5 min, 7 min, and 9 min. The CMJ impulse increased after 5 min, 7 min, and 9 min, as well as CMJ force after 5 min, 7 min, and 9 min. In addition, greater
quadriceps concentric peak torque, hamstrings concentric peak torque, eccentric peak torque, functional $H_{\text{ecc}}:Q_{\text{conc}}$ ratio were observed but not in conventional $H_{\text{conc}}:Q_{\text{conc}}$ ratio.

PAP is defined as a transient increase in muscle performance following a pre-load strategy (6). It was shown that neuromuscular, mechanical and biochemical mechanisms could be behind these temporary improvements in performance (21). Stiffness is related to the number and the stability of the bonds between actin and myosin filaments. Following a pre-load activity, many of these bonds are broken and the passive stiffness decreases, which can cause an improvement in performance (6). A further explanation reported in literature is related to the myosin regulatory light chains function that renders the actin–myosin interaction more sensitive to calcium and causes conformational changes of the myosin head, which during a muscle contraction leads to a greater rate of cross-bridge attachment (3,8,15).

This mechanism is due to an increased sensitivity in the contractile proteins to calcium (Ca^{2+}), which is released from the sarcoplasmic reticulum, and the subsequent muscle repose results improved (1–3,6,7). Such motivations could explain the improvement in muscle power and rate of force development following a pre-load strategy (6). Moreover, a major recruitment of higher order motor units (higher post-synaptic potentials and H-wave) through a decreased threshold of activation for the fast-twitch motoneurons during both maximal and submaximal exercise seems to increase the PAP (1,8). The current results agree with previously reported literature using an EOL bout, which has found small differences vs control in CMJ height and 20 m sprint time (15). Moreover, the present findings are in line with the higher peak force and speed reported following an EOL protocol compared to a control condition in swimming athletes (13). The differences found here support previous findings where acute positive effects of heavy traditional resistance exercise on performance in horizontal and vertical jump (28) and time on 5 m and 10 m sprint were observed in professional athletes (5). Finally, the present results agree with a previous study where a moderate increment in vertical ground
reaction force and propulsive force and a small increment in total impulse were found following an EOL-based warm-up during a change of direction exercise (15). Therefore, based on the current results and previous evidence, an EOL bout is a valid exercise to stimulate PAP and consequently to over-stimulate the lower-limb muscle power.

The current study has not observed any PAP vs. Control difference in jump height, peak power, impulse and peak force at 15 s, as well as in impulse and peak force at 1 min. The current findings agree with a previous study that found a decrement in CMJ height immediately after a back squat exercise (3). This supports that PAP could be related to time-dependent factors (13,27). Following a conditioning activity (e.g. pre-load), fatigue is dissipated quicker than PAP, thus potentiation allows subsequent increments in performance (e.g. power) (1). The acute fatigue following the EOL exercise could have affected the jump kinematic, as previously reported in swimmers (13). Fatigue is more dominant in the early stage of recovery but it diminishes at a quicker rate than PAP, therefore the potentiation of performance may be realized during the following recovery period (1). Previous evidence reported that the optimal time to the PAP development is from 3 to 10 min after the exercise (3,5). The present study supports such data, reporting a moderate difference vs control in CMJ height and a small one in peak power after 3 min of passive recovery. However, impulse and peak force differed from control mainly after 5 min of passive recovery. This would support that an optimal time window to maximize the performance after the PAP exists (28).

The present study utilized an isokinetic device to evaluate the effects of the PAP on the lower-limb muscle strength. This study found a trivial meaningful difference in quadriceps concentric and small differences in hamstrings concentric and eccentric peak torque vs control. However, since this is the first study that investigated these specific acute isokinetic strength responses, a direct comparison with previous literature is challenging. The strength difference reported in the current study following an EOL PAP protocol vs control
could be explained considering the high muscle activation (e.g. increased neural drive) and the mechanical stress obtained by EOL exercise (20,24,29). An enhanced neural drive could be related to a superior motor cortex activation compensating for the spinal inhibition during eccentric phase (31). The positive effect of PAP on lower-limb muscle strength could have several practical implications, since the lower-limb isokinetic peak torque was found to be correlated with changes of direction, sprinting and jumping abilities in elite soccer players (10).

Interestingly, a moderate and a small difference in the $H_{\text{conc}}:Q_{\text{conc}}$ and $H_{\text{ecc}}:Q_{\text{conc}}$ ratio respectively was observed vs control, i.e. the hamstrings concentric and eccentric peak torque improved more than the quadriceps concentric peak torque. This might depend on the greater overload demanded during the eccentric than the concentric phase (20). Indeed, a greater hamstrings vs quadriceps activity was reported during the eccentric vs concentric phase of a squat exercise (33). Consequently, the enhanced-eccentric phase may have highlighted this specific hamstring vs quadriceps activity. These findings are particularly interesting since the hamstrings-to-quadriceps strength ratio has been linked to injury risk and sport-specific performance (10,11). Since fatigue was shown to decrease the $H_{\text{ecc}}:Q_{\text{conc}}$ ratio (11), the current results may offer a temporary protection for both training sessions and performance enhancing the strength of the hamstrings (11). However, some negative effects associated with the temporary fatigue following an EOL PAP protocol (1,2), as well as the short-term muscle damage induced by the eccentric exercise should be considered (12).

The current study presents some limitations. Firstly, the present study involved active men only. Therefore, wider generalization cannot be inferred and the results could not be extended to other specific populations (e.g. elite female athletes). Secondly, vertical jump has been estimated using TIA and not calculated by kinematic data. Additionally, it was shown that the fitness level may account for the amount of the PAP response. Indeed, a previous
study found major benefits in strength-trained vs recreational active participants (5). Future
studies could replicate the current procedures enrolling a different population. Moreover,
future studies are necessary to better evaluate the PAP effects on sport-specific performance
considering that PAP response presents large variability among subjects, as well as the known
responder versus non-responder phenomenon (3,5).

In conclusion, the present study suggests that an EOL bout increases the jump height, peak
power, impulse and peak force during a CMJ, as well as the quadriceps and hamstrings
isokinetic strength in male athletes. Moreover, the optimal time window for the PAP was
found here from 3 to 9 minutes, although some increments could be possible after 1 min of
passive recovery.

Practical applications

The present outcomes could be utilized by coaches to optimize strength and power
development during training sessions (e.g. contrast training) and before the competition where
great power and strength are required (3,4,27). During contrast training, a high intensity
exercise (e.g. squat) can be associated with a plyometric or jump activity involving the same
muscle groups (27). The rationale of such training is to utilize the PAP developed during the
preload exercise to improve the performance of the movements selected (e.g. jumps and
sprints), which incorporated into long-term training programs could induce superior chronic
neuromuscular adaptations (3,5). Moreover, authors underline the importance to consider the
PAP time window reported in this study to optimize contrast training methodologies and
acute athletes’ performance. Therefore, coaches should consider a rest period of 3 minutes to
optimize the contrast training strategies. Indeed, a minimal recovery period following an EOL
exercise seems to have a critical importance for jump performance and muscle strength.
References

7. Bishop, D. Warm up II: performance changes following active warm up and how to

28. Scott, SL and Docherty, D. Acute effects of heavy preloading on vertical and

Table 1. Summary of Control and PAP jump and power data (n = 18). Data are presented in mean ± SDs.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control</th>
<th>PAP</th>
<th>Delta difference</th>
<th>Effect size</th>
<th>p-level</th>
<th>Effect size assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SDs</td>
<td>Mean ± SDs</td>
<td>(90% CI)</td>
<td>(90% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jumps height</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jump 15 s (cm)</td>
<td>32.9 ± 6.3</td>
<td>32.1 ± 7.0</td>
<td>-0.8 (-1.7; 0.1)</td>
<td>-0.12 (-0.24; -0.02)</td>
<td>0.096</td>
<td>Trivial</td>
</tr>
<tr>
<td>Jump 1 min (cm)</td>
<td>32.6 ± 5.7</td>
<td>35.3 ± 8.5</td>
<td>2.6 (0.9; 4.6)</td>
<td>0.47 (0.08; 0.86)</td>
<td>0.053</td>
<td>Small</td>
</tr>
<tr>
<td>Jump 3 min (cm)</td>
<td>33.4 ± 6.3</td>
<td>37.7 ± 8.7</td>
<td>4.2 (2.5; 6.1)</td>
<td>0.68 (0.35; 1)</td>
<td>0.002</td>
<td>Moderate</td>
</tr>
<tr>
<td>Jump 5 min (cm)</td>
<td>32.3 ± 6.2</td>
<td>36.9 ± 7.8</td>
<td>4.5 (2.1; 5.6)</td>
<td>0.58 (0.24; 0.92)</td>
<td>0.008</td>
<td>Small</td>
</tr>
<tr>
<td>Jump 7 min (cm)</td>
<td>32.1 ± 6.2</td>
<td>36.1 ± 8.2</td>
<td>3.9 (2.4; 5.6)</td>
<td>0.57 (0.18; 0.96)</td>
<td>0.022</td>
<td>Small</td>
</tr>
<tr>
<td>Jump 9 min (cm)</td>
<td>32.6 ± 6.3</td>
<td>37.2 ± 8.4</td>
<td>5.1 (3.9; 6.5)</td>
<td>0.61 (0.32; 0.9)</td>
<td>0.002</td>
<td>Moderate</td>
</tr>
<tr>
<td>Peak power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power 15 s (W)</td>
<td>3137 ± 646</td>
<td>3102 ± 575</td>
<td>-37 (-141; 91)</td>
<td>0.05 (-0.10; 0.20)</td>
<td>0.577</td>
<td>Trivial</td>
</tr>
<tr>
<td>Power 1 min (W)</td>
<td>3184 ± 654</td>
<td>3324 ± 623</td>
<td>139 (48; 239)</td>
<td>0.22 (0.05; 0.39)</td>
<td>0.040</td>
<td>Small</td>
</tr>
<tr>
<td>Power 3 min (W)</td>
<td>3108 ± 653</td>
<td>3297 ± 595</td>
<td>189 (92; 293)</td>
<td>0.44 (0.18; 0.7)</td>
<td>0.009</td>
<td>Small</td>
</tr>
<tr>
<td>Power 5 min (W)</td>
<td>3018 ± 514</td>
<td>3277 ± 566</td>
<td>253 (164; 334)</td>
<td>0.40 (0.21; 0.59)</td>
<td>0.002</td>
<td>Small</td>
</tr>
<tr>
<td></td>
<td>Power 7 min (W)</td>
<td>Power 9 min (W)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>3037 ± 557</td>
<td>3050 ± 554</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>±(mm)</td>
<td>3208 ± 597</td>
<td>3221 ± 587</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171 (72; 274)</td>
<td>172 (86; 270)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.29 (0.11; 0.47)</td>
<td>0.30 (0.13; 0.47)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.011</td>
<td>0.008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>Small</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PAP = Post-activation potentiation; SD = Standard deviations; CI = Confidence intervals; cm = centimetres; s = seconds; min = minutes; W = watt.
Table 2. Summary of Control and PAP impulse and force data (n = 18). Data are presented in mean ± SDs.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control Mean ± SDs</th>
<th>PAP Mean ± SDs</th>
<th>Delta difference (90% CI)</th>
<th>Effect size (90% CI)</th>
<th>p-level</th>
<th>Effect size assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jump impulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulse 15 s (N·m)</td>
<td>177.5 ± 33.4</td>
<td>173.9 ± 39.5</td>
<td>-3.6 (-9.3; 2.6)</td>
<td>-0.10 (-0.25; 0.05)</td>
<td>0.263</td>
<td>Trivial</td>
</tr>
<tr>
<td>Impulse 1 min (N·m)</td>
<td>178.3 ± 39.3</td>
<td>182.9 ± 35.3</td>
<td>4.6 (0.18; 9.1)</td>
<td>0.13 (-0.01; 0.26)</td>
<td>0.105</td>
<td>Trivial</td>
</tr>
<tr>
<td>Impulse 3 min (N·m)</td>
<td>178.5 ± 34.4</td>
<td>182.1 ± 36.8</td>
<td>3.6 (-2.4; 9.6)</td>
<td>0.11 (-0.08; 0.3)</td>
<td>0.330</td>
<td>Trivial</td>
</tr>
<tr>
<td>Impulse 5 min (N·m)</td>
<td>176.6 ± 33.7</td>
<td>185.6 ± 37.7</td>
<td>9.0 (5.2; 13.4)</td>
<td>0.26 (0.08; 0.44)</td>
<td>0.021</td>
<td>Small</td>
</tr>
<tr>
<td>Impulse 7 min (N·m)</td>
<td>175.3 ± 32.4</td>
<td>184.9 ± 38.9</td>
<td>9.6 (4.3; 15.3)</td>
<td>0.27 (0.09; 0.45)</td>
<td>0.016</td>
<td>Small</td>
</tr>
<tr>
<td>Impulse 9 min (N·m)</td>
<td>175.5 ± 33.4</td>
<td>184.8 ± 38.2</td>
<td>9.3 (4.4, 14.7)</td>
<td>0.27 (0.07; 0.47)</td>
<td>0.029</td>
<td>Small</td>
</tr>
<tr>
<td>Jump force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force 15 s (N)</td>
<td>1586 ± 355</td>
<td>1540 ± 386</td>
<td>-46 (-77; -24)</td>
<td>-0.12 (-0.23; -0.01)</td>
<td>0.066</td>
<td>Trivial</td>
</tr>
<tr>
<td>Force 1 min (N)</td>
<td>1579 ± 370</td>
<td>1605 ± 393</td>
<td>25 (1; 53)</td>
<td>0.07 (-0.01; 0.15)</td>
<td>0.130</td>
<td>Trivial</td>
</tr>
<tr>
<td>Force 3 min (N)</td>
<td>1566 ± 348</td>
<td>1601 ± 390</td>
<td>34 (6; 60)</td>
<td>0.09 (0.01; 0.18)</td>
<td>0.088</td>
<td>Trivial</td>
</tr>
<tr>
<td>Force 5 min (N)</td>
<td>1530 ± 300</td>
<td>1615 ± 376</td>
<td>85 (41; 130)</td>
<td>0.25 (0.08; 0.42)</td>
<td>0.021</td>
<td>Small</td>
</tr>
<tr>
<td>Force 7 min (N)</td>
<td>1518 ± 366</td>
<td>1604 ± 411</td>
<td>85 (46; 129)</td>
<td>0.23 (0.11; 0.35)</td>
<td>0.005</td>
<td>Small</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Force 9 min (N)</td>
<td>1532 ± 346</td>
<td>1597 ± 413</td>
<td>64 (28; 104)</td>
<td>0.18 (0.06; 0.31)</td>
<td>0.026</td>
<td>Trivial</td>
</tr>
</tbody>
</table>

PAP = Post-activation potentiation; SD = Standard deviations; CI = Confidence intervals; cm = centimetres; s = seconds; min = minutes; N = Newton.
Table 3. Summary of Control and PAP Isokinetic data (n = 18). Data are presented in mean ± SDs.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Control Mean ± SDs</th>
<th>PAP Mean ± SDs</th>
<th>Delta difference (90% CI)</th>
<th>Effect size (90% CI)</th>
<th>p-level</th>
<th>Effect size assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Torque</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(60°·s⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quad Conc (Nm·Kg⁻¹)</td>
<td>205 ± 53</td>
<td>212 ± 53</td>
<td>7.7 (4.6; 10.9)</td>
<td>0.13 (0.07; 0.19)</td>
<td>0.001</td>
<td>Trivial</td>
</tr>
<tr>
<td>Ham Conc (Nm·Kg⁻¹)</td>
<td>124 ± 35</td>
<td>133 ± 37</td>
<td>9.6 (4.8;14.4)</td>
<td>0.24 (0.12; 0.36)</td>
<td>0.003</td>
<td>Small</td>
</tr>
<tr>
<td>Ham Ecc (Nm·Kg⁻¹)</td>
<td>147 ± 55</td>
<td>159 ± 52</td>
<td>12.1 (6.1; 18.1)</td>
<td>0.22 (0.11; 0.33)</td>
<td>0.003</td>
<td>Small</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(60°·s⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional ratio</td>
<td>0.60 ± 0.05</td>
<td>0.63 ± 0.09</td>
<td>0.03 (0.01; 0.05)</td>
<td>0.6 (0.03; 1.2)</td>
<td>0.083</td>
<td>Moderate</td>
</tr>
<tr>
<td>Functional ratio</td>
<td>0.71 ± 0.14</td>
<td>0.78 ± 0.14</td>
<td>0.07 (0.03; 0.09)</td>
<td>0.21 (0.12; 0.3)</td>
<td>0.001</td>
<td>Small</td>
</tr>
</tbody>
</table>

PAP = Post-activation potentiation; Quad = Quadriceps; Ham = Hamstring; Conc = Concentric; Ecc = Eccentric; SD = Standard deviations; CI = Confidence intervals; s = seconds.
Figure 1. Experimental and control procedure