
Citation: Mohamed Mohideen, M.A.;

Nadeem, M.S.; Hardy, J.; Ali, H.; Tariq,

U.U.; Sabrina, F.; Waqar, M.; Ahmed,

S. Behind the Code: Identifying

Zero-Day Exploits in WordPress.

Future Internet 2024, 16, 256. https://

doi.org/10.3390/fi16070256

Academic Editor: Carlo Blundo

Received: 19 June 2024

Revised: 12 July 2024

Accepted: 16 July 2024

Published: 19 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Behind the Code: Identifying Zero-Day Exploits in WordPress
Mohamed Azarudheen Mohamed Mohideen 1 , Muhammad Shahroz Nadeem 2, James Hardy 1, Haider Ali 1,
Umair Ullah Tariq 3,*, Fariza Sabrina 3 , Muhammad Waqar 2 and Salman Ahmed 2

1 School of Computing, University of Derby, Derby DE22 3AW, UK;
m.mohamedmohideen1@unimail.derby.ac.uk (M.A.M.M.); j.hardy@derby.ac.uk (J.H.);
h.ali@derby.ac.uk (H.A.)

2 School of Technology, Business and Arts, University of Suffolk, Ipswich IP4 1QJ, UK;
s.nadeem3@uos.ac.uk (M.S.N.); m.waqar@uos.ac.uk (M.W.); s.ahmed@uos.ac.uk (S.A.)

3 School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia;
f.sabrina@cqu.edu.au

* Correspondence: u.tariq@cqu.edu.au

Abstract: The rising awareness of cybersecurity among governments and the public underscores
the importance of effectively managing security incidents, especially zero-day attacks that exploit
previously unknown software vulnerabilities. These zero-day attacks are particularly challenging
because they exploit flaws that neither the public nor developers are aware of. In our study, we
focused on dynamic application security testing (DAST) to investigate cross-site scripting (XSS)
attacks. We closely examined 23 popular WordPress plugins, especially those requiring user or
admin interactions, as these are frequent targets for XSS attacks. Our testing uncovered previously
unknown zero-day vulnerabilities in three of these plugins. Through controlled environment testing,
we accurately identified and thoroughly analyzed these XSS vulnerabilities, revealing their mecha-
nisms, potential impacts, and the conditions under which they could be exploited. One of the most
concerning findings was the potential for admin-side attacks, which could lead to multi-site insider
threats. Specifically, we found vulnerabilities that allow for the insertion of malicious scripts, creating
backdoors that unauthorized users can exploit. We demonstrated the severity of these vulnerabilities
by employing a keylogger-based attack vector capable of silently capturing and extracting user data
from the compromised plugins. Additionally, we tested a zero-click download strategy, allowing
malware to be delivered without any user interaction, further highlighting the risks posed by these
vulnerabilities. The National Institute of Standards and Technology (NIST) recognized these vulnera-
bilities and assigned them CVE numbers: CVE-2023-5119 for the Forminator plugin, CVE-2023-5228
for user registration and contact form issues, and CVE-2023-5955 for another critical plugin flaw.
Our study emphasizes the critical importance of proactive security measures, such as rigorous input
validation, regular security testing, and timely updates, to mitigate the risks posed by zero-day
vulnerabilities. It also highlights the need for developers and administrators to stay vigilant and
adopt strong security practices to defend against evolving threats.

Keywords: zero-day vulnerabilities; cross-site scripting; WordPress plugins; DAST; keylogger; NIST;
CVE; OWASP

1. Introduction

The current status quo in cybersecurity faces significant challenges and limitations, par-
ticularly in the detection and mitigation of zero-day vulnerabilities. Traditional approaches,
such as signature-based and heuristic-based methods, often fall short in identifying novel
threats due to their reliance on known attack patterns. Signature-based methods detect
malware by comparing the code against a database of known malware signatures. While
effective for known threats, this method fails to detect new, unknown vulnerabilities [1].

Future Internet 2024, 16, 256. https://doi.org/10.3390/fi16070256 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16070256
https://doi.org/10.3390/fi16070256
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0009-0008-6973-763X
https://orcid.org/0000-0002-8455-2499
https://orcid.org/0009-0007-5882-6541
https://doi.org/10.3390/fi16070256
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16070256?type=check_update&version=1


Future Internet 2024, 16, 256 2 of 22

Heuristic-based approaches attempt to identify malicious behavior by analyzing the charac-
teristics and behavior of software. Although more flexible, these methods still struggle with
high false-positive rates and often cannot detect sophisticated or new attack vectors [2].

Another traditional method is anomaly-based detection, which identifies deviations
from established normal behavior profiles. Although this method can potentially detect
novel attacks, it is often plagued by high false-positive rates and requires extensive training
data to establish accurate behavior profiles [3]. Moreover, these methods are inherently
reactive, providing solutions only after an attack has been identified and analyzed. Conse-
quently, zero-day attacks, which exploit unknown vulnerabilities, remain a persistent and
formidable threat. The National Institute of Standards and Technology (NIST) reports that
zero-day vulnerabilities are particularly dangerous because they exploit security gaps that
developers are unaware of, leaving systems unprotected until the vulnerability is identified
and patched [4].

Cybersecurity incidents are on the rise, leading to a greater focus on cybersecurity
research due to increased awareness. At the same time, cybercriminals are getting better at
creating new types of attacks. These attacks often use new methods to hide their activities
and target specific weaknesses in software. The software world is changing fast, with new
programs and technologies being developed all the time. As a result, new vulnerabilities
are constantly appearing, giving attackers opportunities to exploit them [5]. This creates
a never-ending game of cat and mouse between defenders and attackers. These newly
discovered vulnerabilities are known as zero-day vulnerabilities and can be used to launch
new types of attacks called zero-day attacks [6,7].

Zero-day attacks, though not common, pose a significant and serious threat due to the
limited information available at the time they occur. These attacks exploit vulnerabilities
that are unknown to the public or software developers when they are first used [8,9]. The
relationship between zero-day attacks and vulnerabilities is direct and reciprocal. The NIST
CVE database recorded 28,828 vulnerabilities in 2023 [10], highlighting the extensive nature
of potential risks.

These zero-day vulnerabilities can have a profound impact on web applications,
especially those designed for sharing and disseminating information. Websites that serve as
primary hubs for e-commerce, entertainment, and services are particularly vulnerable [11].
Platforms like WordPress simplify website development for novice users by offering pre-
built packages that streamline the process. A crucial feature of these platforms is the
inclusion of web forms, which allow users to input personal and sensitive information [12].

With WordPress holding a 42.7% market share [13], any zero-day vulnerability in this
context can have severe consequences for a large number of users, potentially compromising
the security of sensitive information. One significant area of concern is cross-site scripting
(XSS) vulnerabilities, which enable the injection and execution of malicious code within
web applications. XSS attacks are broadly categorized into three types: persistent, reflective,
and DOM-based XSS attacks [14].

Specifically, WordPress plugins that require user input can significantly increase the
risk of XSS attacks, affecting both the client side and the admin side. When malicious
scripts are inserted into these plugins, they can create potential backdoors in the system,
providing gateways for unauthorized access. These backdoors are subsequently exploited
by malicious actors to gain control over the site, steal data, or launch further attacks [15].

Traditionally, security measures in system design have focused primarily on defending
against external attackers [16]. However, insider attacks have recently emerged as a
significant concern, especially for websites with multiple administrators. Insider attacks
can be particularly damaging because they exploit the trust and access privileges of internal
users, making detection and prevention more challenging [17].

For WordPress sites, which often rely on a variety of plugins to enhance functionality,
the risk is even greater. Poorly designed plugins that fail to properly validate and sanitize
user inputs can easily become entry points for XSS attacks. Once an attacker exploits



Future Internet 2024, 16, 256 3 of 22

a vulnerability in a plugin, they can inject malicious code that compromises the entire
site [18].

Therefore, secure plugin design must now prioritize eliminating vulnerabilities on
the admin side as well. This involves implementing robust input validation and output
encoding practices, conducting thorough security testing, and regularly updating plugins
to patch known vulnerabilities [19].

The major issue tackled by this research is the identification and analysis of zero-day
vulnerabilities in WordPress plugins, which are widely used in web development. These
plugins, while enhancing functionality, often introduce security risks due to improper input
validation and outdated security practices. A significant example of such vulnerabilities is
cross-site scripting (XSS), which allows attackers to inject malicious scripts into web pages
viewed by other users [20]. The novelty of our proposed approach lies in its application of
dynamic application security testing (DAST) principles to uncover these vulnerabilities.
Unlike traditional static analysis methods, DAST involves real-time interaction with the
application, simulating attack scenarios to identify and exploit security flaws as they occur.

Our research provides a detailed examination of 23 popular WordPress plugins, identi-
fying critical zero-day vulnerabilities in three of them. By highlighting the mechanisms and
potential impacts of these vulnerabilities, our study offers valuable insights into the practi-
cal risks posed by these security flaws. The proposed DAST-based approach demonstrates
its effectiveness in proactively detecting and mitigating these threats, thereby offering
significant benefits to both developers and end-users by enhancing the overall security
posture of WordPress-based websites [4,20,21]. Furthermore, our approach emphasizes the
importance of continuous security testing and timely updates to mitigate the risks posed
by evolving threats in the dynamic landscape of cybersecurity [22].

One effective method for ensuring the security of web applications is through the
application of dynamic application security testing (DAST) principles [23]. Unlike static
testing methods that analyze source code, DAST involves simulating external attacks on
the application to identify vulnerabilities that malicious actors could exploit. This dynamic
approach is particularly effective in uncovering weaknesses related to input validation,
authentication, and session management.

DAST works by interacting with a running application, sending various inputs, and
observing the application’s responses. This real-time interaction allows DAST tools to detect
security flaws that might not be apparent through static code analysis alone. For example,
by submitting a wide range of input data, DAST can identify whether the application
correctly handles and sanitizes user inputs, preventing potential injection attacks such as
SQL injection or XSS [24,25].

The real strength of DAST lies in its ability to provide a comprehensive assessment of
an application’s security posture from an external attacker’s perspective. By identifying
and addressing these vulnerabilities, developers can significantly enhance the security of
their web applications, protecting them from a wide range of potential threats [26].

Therefore, keeping this in mind, we conducted a comprehensive study where DAST-
based test cases were applied to 23 WordPress plugins that require user or admin interaction
with web forms. These plugins were selected based on their widespread use and critical
functionality within the WordPress ecosystem [27], making the findings particularly rele-
vant for a broad user base. By simulating real-world attack scenarios through DAST, we
were able to assess how these plugins handle various types of input and whether they
effectively mitigate XSS risks.

The results of our tests were revealing. We discovered that XSS attacks were indeed
possible on three WordPress plugins. This vulnerability allows malicious actors to inject
harmful scripts, which can then be executed within the web application, leading to severe
security breaches. Particularly alarming was the discovery of vulnerabilities on the admin
side of the plugins. An admin-side XSS attack can be especially damaging because it can
compromise the administrative control of a website [28].



Future Internet 2024, 16, 256 4 of 22

Moreover, our findings indicated the potential for a multi-site insider attack. In
WordPress environments where multiple sites are managed under a single installation,
a vulnerability in one plugin can jeopardize the security of all sites within the network.
This type of attack exploits the trust and access privileges of administrators, making it a
significant threat [14].

Once these vulnerable plugins were identified, we demonstrated how these vulnera-
bilities could be exploited. To this end, we prepared a dummy website within a sandbox
environment, allowing us to safely perform further experiments. Our goal was to determine
if sensitive information could be extracted by attaching different attack vectors to these
compromised plugins [29].

In our detailed experimentation, we focused on two primary attack vectors: keyloggers
and truncated malware executable files. First, we tested the deployment of keyloggers to
capture sensitive information such as usernames, passwords, and other critical data entered
by users or administrators. The keyloggers were designed to silently record keystrokes and
send the captured data to an external server, highlighting the potential severity of such
an attack.

Second, we tested the zero-click download strategy by sending truncated malware
executable files to the admin side of the website. This approach is particularly insidious, as
it does not require any action from the admin or user to initiate the download of the mali-
cious file. The zero-click strategy leverages vulnerabilities in the plugins to automatically
download and execute malware, bypassing traditional security measures that rely on user
interaction to trigger downloads [30].

By employing these attack vectors, we demonstrated how attackers could exploit the
identified vulnerabilities to gain unauthorized access and extract sensitive information. The
keylogger tests confirmed that personal and confidential data could be effectively captured
and exfiltrated without detection. Similarly, the zero-click download strategy showed how
malware could be seamlessly introduced into the system, potentially leading to a complete
system compromise [31].

Our study illustrates the practical implications of DAST principles and the necessity of
proactive security testing in safeguarding web applications. By identifying and mitigating
these vulnerabilities, we can prevent potential breaches and protect sensitive information
from malicious exploitation.

Naturally, these findings were reported and acknowledged by the National Institute
of Standards and Technology (NIST) [32], resulting in the allocation of Common Vulnerabil-
ities and Exposures (CVE) numbers to the three vulnerable plugins, thereby solidifying the
significance of our work. The CVE numbers assigned are CVE-2023-5119, CVE-2023-5228,
and CVE-2023-5955. These vulnerabilities highlight the critical need for enhanced secu-
rity measures in WordPress plugins, especially those that handle user input and personal
information. The allocation of CVE numbers by NIST underscores the importance of our
findings and emphasizes the necessity for developers to prioritize security in their plugin
design and implementation.

In this paper, we make the following contributions:

1. A novel systematic approach, rooted in DAST principles, was implemented to assess
WordPress webform plugins. Additionally, mitigation strategies against the identified
vulnerabilities are provided.

2. Three zero-day vulnerabilities were discerned, officially reported, and published
under the auspices of NIST, each assigned CVE numbers: CVE-2023-5119, CVE-2023-
5228, and CVE-2023-5955.

3. Creation of a new attack vector incorporating keyloggers was devised, leveraging
these vulnerabilities to simulate an attack and extract sensitive information.

2. Literature Review

The field of cybersecurity research is rapidly advancing, with various methods, includ-
ing both traditional and AI-based approaches, being utilized for vulnerability detection.



Future Internet 2024, 16, 256 5 of 22

Traditional methods of vulnerability detection have played a crucial role in cybersecurity
over the years. These methods can be broadly categorized into signature-based, heuristic-
based, and anomaly-based detection.

Signature-based detection relies on a database of known vulnerability signatures to
identify threats. This method matches patterns in the code against known signatures,
effectively identifying previously documented vulnerabilities [1]. It is a well-established
technique but struggles with detecting new, unknown threats because it can only identify
attacks with pre-existing signatures [33]. Despite its effectiveness for known vulnerabilities,
signature-based detection is ineffective against zero-day vulnerabilities, as it relies on
existing signatures and cannot detect novel threats [1]. Notable tools that employ signature-
based detection include Snort and NetSTAT [34].

Heuristic-based detection uses algorithms to identify potentially malicious behavior
based on certain predefined rules. This approach aims to detect new, unknown vulnera-
bilities by analyzing the behavior and characteristics of software [2]. Although heuristic
methods offer some flexibility in identifying new threats, they often result in high false-
positive rates and may not effectively detect sophisticated or novel attacks [35].

Anomaly-based detection identifies deviations from established normal behavior
profiles. By monitoring for anomalies, this method can potentially detect novel attacks.
However, it often requires extensive training data to establish accurate behavior profiles
and can suffer from high false-positive rates [3]. The requirement for large amounts of
training data and the propensity for false positives are significant challenges for anomaly-
based detection methods [3]. Nevertheless, anomaly-based intrusion detection systems
(AIDS) are advantageous in detecting zero-day attacks as they do not rely on a pre-existing
signature database [34]. They create models of normal behavior and flag deviations as
potential threats, making them suitable for identifying novel attacks [36].

Despite their importance, traditional approaches face several challenges and limita-
tions. Signature-based detection is ineffective against zero-day vulnerabilities as it relies on
known signatures [1]. Heuristic-based detection suffers from high false-positive rates and
limited effectiveness against sophisticated attacks [2]. Anomaly-based detection requires
extensive training data and is prone to high false-positive rates [3]. These limitations
highlight the need for more advanced and proactive security measures.

In contrast, AI, ML, and DL approaches have been proposed to enhance vulnera-
bility detection capabilities. Regi et al. [12] investigate various detection and prevention
methods for zero-day attacks, including machine learning algorithms to identify abnormal
activities. Guo et al. [37] emphasize the limitations of traditional methods and examine
machine learning methodologies for zero-day attack detection, highlighting the challenges
of limited labeled data and proposing future research directions. El-Sayed et al. [38] and
Peppes et al. [39] explore deep learning techniques, such as support vector machines and
generative adversarial networks, for malware classification and threat detection, demon-
strating high accuracy but also noting significant challenges related to data diversity and
model adaptability.

Roumani [40] examines factors influencing the timing of patch releases for zero-day
vulnerabilities, utilizing survival analysis to highlight the impacts of various variables
on patch release timing. This study identifies gaps in fully understanding all variables
influencing patch release timings, suggesting opportunities for future research.

Fuzzing is another traditional method extensively used in vulnerability detection.
Fuzzing involves providing invalid, unexpected, or random data inputs to a computer
program to find security vulnerabilities and bugs [41]. The process includes testcase gen-
eration, execution, monitoring, and analysis. Fuzzers are classified into generation-based
and mutation-based, with each having its advantages and challenges. Generation-based
fuzzers require detailed knowledge of input formats, whereas mutation-based fuzzers
modify existing valid inputs to discover vulnerabilities [41].

The summary of the related studies is presented in Table 1. Our study addresses the
challenges of traditional approaches by employing dynamic application security testing



Future Internet 2024, 16, 256 6 of 22

(DAST), which simulates real-world attack scenarios to identify vulnerabilities at runtime.
This approach is particularly effective in uncovering zero-day vulnerabilities and provides
a more comprehensive assessment of an application’s security posture [22].

Table 1. Summary of related studies.

Study Approach Key Findings Limitations Citation

Bilge and Dumitras (2013) Signature-Based Identified zero-day attacks in
the real world

Ineffective against unknown
threats [42]

Fossi et al. (2010) Signature-Based Impact of zero-day attacks on
SIDS

Ineffective against polymorphic
malware [43]

Tang et al. (2020) Signature-Based Identified patterns in malware Struggles with unknown threats [44]

Axelsson (2000) Heuristic-Based Proposed a taxonomy for
intrusion detection systems High false-positive rates [2]

Santos et al. (2019) Heuristic-Based Detects unknown malware
using heuristics High false-positive rates [45]

Deshpande and Sharma (2019) Heuristic-Based Secure cloud computing using
lightweight cryptography Limited to specific use cases [46]

Patcha and Park (2007) Anomaly-Based Overview of anomaly detection
techniques Requires extensive training data [3]

Khraisat et al. (2018) Anomaly-Based Survey of IDS techniques and
challenges High false-positive rates [34]

Butun et al. (2014) Anomaly-Based Survey of IDS in wireless sensor
networks Resource constraints [36]

Alazab et al. (2012) Anomaly-Based Profiles abnormal behavior to
detect zero-day attacks High false-positive rates [47]

Bhuyan et al. (2014) NIDS/HIDS Comparison of intrusion
detection systems

Limited ability to inspect high
bandwidth data [48]

Creech and Hu (2014) NIDS Host vs. network-based IDS Limited by network data
volume [49]

Chiba et al. (2016) Anomaly-Based
Analysis of intrusion detection
systems in cloud computing
environment

High false-positive rates [50]

Wang et al. (2021) Penetration Testing Empirical study on vulnerability
assessment Requires extensive manual effort [51]

Li et al. (2018) Fuzzing Survey on fuzzing techniques Complex defects difficult to
analyze [41]

Guo et al. (2023) ML-Based Examined ML methodologies
for zero-day detection

Limited availability of labeled
data [37]

Buczak and Guven (2016) ML-Based Survey on ML for cybersecurity Limited by dataset size [52]

El-Sayed et al. (2021) DL-Based SVM on MobileNetv2 for
malware classification

Requires diverse and extensive
datasets [38]

Peppes et al. (2023) DL-Based GANs for synthetic data
generation

Ensuring quality and
representativeness of data [39]

Aldhaheri et al. (2023) DL-Based Deep learning for intrusion
detection Computationally intensive [53]

Wei et al. (2021) Anomaly-Based Advanced anomaly detection
using AI

Requires high computational
power [54]

Felderer et al. (2019) Model-Based A model-based security testing
framework Limited scalability [55]

Ding et al. (2022) Cryptography-Based Hierarchical attribute-based
encryption for cloud security High computational cost [56]

3. Methodology

To systematically identify and assess vulnerabilities in WordPress plugins while ad-
hering to DAST principles, our approach starts with the creation of a sandbox environment



Future Internet 2024, 16, 256 7 of 22

equipped with the necessary tools and software, as detailed in Table 2. This controlled envi-
ronment allows us to dynamically analyze the plugins in real-world conditions, consistent
with DAST’s focus on runtime testing. Dummy web pages are created using the plugins
listed in Table 3, and each plugin undergoes individual testing for XSS vulnerabilities.

In line with DAST principles, which involve examining a running application’s behav-
ior, varied configuration settings are examined to assess XSS susceptibility. This includes
inserting and executing JavaScript code in the context of each plugin. Successful execution
signifies the potential for arbitrary JavaScript execution on the client side, aligning with
DAST’s objective of uncovering vulnerabilities in real time. Plugins resistant to JavaScript
execution are considered secure, whereas those that are susceptible undergo further ex-
ploitation analysis. Our exploitation efforts yield two primary types of attacks:

1. Keylogger-Based Spyware Attack: This attack captures user-entered information
from the client web page associated with the vulnerable plugin. By recording
keystrokes, the keylogger can silently steal sensitive data such as usernames, pass-
words, and personal information.

2. Malware Injection Attack: In this scenario, truncated malware payloads are delivered
to client systems using a zero-click download strategy. This approach negates the need
for any user interaction, thereby simulating realistic attack scenarios as emphasized by
DAST. The malware can execute automatically upon download, providing attackers
with unauthorized access to the client system.

Figure 1 provides detailed steps of the proposed method, reflecting DAST’s emphasis on
understanding how applications behave under attack conditions.

Table 2. The table presents the operating systems employed for creating the sandbox environment,
along with the tools and technologies.

(a) Operating System

Kali Linux (Host Machine) 2023.4
Ram 16 GB
Hard Disk size 1 TB
Processor i3
Windows 10 (Guest Machine) 22H2

(b) Tools and Technologies

Virtual Machine Manager 4.1.0
Python 3.11.8
Flask 2.2.5
Flask CORS 4.0.0
XAMPP 3.3.0
PHP 8.2.12
Visual Studio Code 1.83
WordPress 6.3.1

Exploiting XSS vulnerabilities reveals the susceptibility of client machines to malicious
attacks, in line with DAST’s focus on uncovering security gaps at runtime. Demonstrating
these attacks underscores the significant security risks posed by XSS vulnerabilities in Word-
Press plugins. Our methodology of identifying, testing, and exploiting these vulnerabilities
highlights the critical need for proactive security measures. Such measures are essential to
mitigate XSS vulnerabilities and safeguard web-based systems from potential breaches.



Future Internet 2024, 16, 256 8 of 22

Start

Insertion

No

Successful ?

Setup Sandbox
Enviornment

Create Dummy 
WordPress Web

Pages

Test Plugins for XSS
Vulnerability

Yes

Yes

Attack

Plugin Vulnerable

No

Payload

End

Plugin Safe

Code Insertion 

Javascript Code 

Setup Experimental 
Framework

Plugin Acquires
Data?

Attach Custom
Design Keylogger

Retrieve Information

Attack 1: Keylogger

Evaluate Plugin for 

Attack 2: Malware

Zero Click Malware 
Transmission

Transmit Truncated 

Figure 1. The experimental method employed to uncover vulnerabilities and exploits.



Future Internet 2024, 16, 256 9 of 22

Table 3. The table displays the comprehensive list of tested WordPress plugins along with their
version numbers.

Plugin Name Plugin Version Description

Everest Forms 2.0.3.1

Everest Forms offers a drag-and-drop interface for easy form creation. It
includes pre-designed templates, supports various field types, and
provides multi-column layouts. Features include Google reCAPTCHA
for spam protection, custom email notifications, and submission
management within the WordPress dashboard.

Wpforms Lite 1.8.4

WPForms builder plugin for WordPress is designed to simplify the
process of creating various types of forms without requiring any coding
knowledge. This plugin supports creating contact forms, feedback forms,
subscription forms, and more. It offers pre-built templates, spam
protection, and mobile responsiveness, ensuring forms look great on all
devices.

Very Simple Contact Form 14.0

VS Contact Form is a lightweight, user-friendly WordPress plugin for
creating basic contact forms. It features fields for Name, Email, Subject,
and Message, along with spam prevention via a sum field and a privacy
consent checkbox. Users can customize the form using the settings page
or by adding attributes to blocks, shortcodes, or widgets.

MW WP Form 5.0.1

MW WP Form is a WordPress plugin that enables flexible form creation
using shortcodes. It allows customization of input, confirmation,
completion, and error pages’ URLs. The plugin supports various
validation rules and offers a confirmation screen feature. Data from
forms can be saved in a database and exported as CSV files, with
visualization options for analysis. Add-ons include CAPTCHA for
enhanced security and a GUI-based form builder.

Contact Form 7 5.8

Contact Form 7 is a highly customizable WordPress plugin for managing
multiple contact forms. It allows you to tailor both form and email
content with simple markup. Key features include support for
Ajax-powered submission, CAPTCHA, and Akismet spam filtering. It is
popular for its flexibility and extensive documentation, including FAQs
and a support forum. The plugin is maintained by Takayuki Miyoshi
and is widely used with over 10 million active installations.

Mail chimp For WP 4.9.7

Mailchimp plugin facilitates the growth of email lists through the
creation of customizable, mobile-optimized sign-up forms. It integrates
effectively with various plugins such as WooCommerce, Contact Form 7,
and Gravity Forms. Notable features include straightforward Mailchimp
account connectivity, extensive customization capabilities, and support
for multiple form types.

Ninja Forms 3.7.0

Ninja Forms plugin is a versatile form builder for WordPress that
supports a wide range of functionalities. It includes 24+ free
drag-and-drop fields, customizable fields, and extensive submission
management features. Users can create various form types such as
contact forms, payment forms, and surveys.

Fluent Form 5.0.8

Fluent Forms plugin for WordPress is a user-friendly, customizable form
builder with a drag-and-drop interface. It supports a wide range of
forms, including contact, payment, quiz, and survey forms. Key features
include smart conditional logic, reusable templates, multi-column
layouts, and integration with third-party services.

Country and Phone Field
Contact Form 7 2.4.6

Country and Phone Field Contact Form 7 plugin is an add-on for the
Contact Form 7 plugin. It introduces two new form tag fields: a country
dropdown list with country flags and a country phone extension list.
These fields enhance the Contact Form 7 forms by allowing users to
select their country and corresponding phone number extension easily.



Future Internet 2024, 16, 256 10 of 22

Table 3. Cont.

Plugin Name Plugin Version Description

Profile Builder 3.9.9

Profile Builder plugin for WordPress is a comprehensive solution for
creating user registration forms and user profiles and managing user
roles. It offers front-end user registration, login, and profile editing
forms with custom fields, content restriction based on user roles, and a
built-in Role Editor.

Kali Forms 2.1.2

Kali Forms plugin for WordPress is a versatile, drag-and-drop form
builder designed for ease of use and performance. It features
customizable form templates for various purposes, such as contact,
feedback, payment, and appointment forms. The plugin is
mobile-responsive, integrates seamlessly with Google reCAPTCHA for
spam protection, and is built on React for optimal performance.

Constant Contact Forms 2.2.0

Constant Contact Forms plugin integrates WordPress websites with
Constant Contact, enabling users to create customizable sign-up forms
that capture email addresses and sync them with Constant Contact lists.
It offers a user-friendly drag-and-drop form builder and allows seamless
management of email marketing efforts from the WordPress dashboard.

Contact Form Clean and
Simple 4.7.10

Contact Form Clean and Simple plugin is a straightforward,
AJAX-enabled contact form for WordPress that includes features such as
Google reCAPTCHA, Akismet spam filtering, and Twitter Bootstrap
styling. It is designed for ease of use with minimal setup, ensuring safety
by stripping all user inputs to avoid XSS vulnerabilities. The plugin
supports client-side validation and seamless integration with any
WordPress theme.

Quick Contact Form 8.0.6.8

Quick Contact Form plugin is a GDPR-compliant, drag-and-drop contact
form builder. It offers essential features such as CAPTCHA for spam
protection, email notifications, an auto-responder, and message storage
within the WordPress dashboard. The plugin is designed for ease of use
with no configuration needed beyond setting up an email address and
adding a shortcode to pages.

Contact Form by Supsystic 1.7.26

Contact Form by Supsystic plugin is a versatile contact form builder that
features a drag-and-drop editor, making it accessible without coding
knowledge. Key functionalities include Google reCAPTCHA, unlimited
fields and forms, conditional logic, A/B testing, and multi-language
support. The plugin supports embedding forms in popups, offers
extensive customization options, and provides detailed statistics on form
submissions. It is designed to be responsive and mobile-friendly,
ensuring optimal performance across all devices.

Contact Form Query 1.7.7

Contact Form Query plugin for WordPress adds a contact form to your
site, allowing you to receive message notifications via email and the
WordPress Admin Panel. It features a dashboard widget for viewing
recent messages, spam prevention via keyword blocking and
CAPTCHA, and customizable form design. Additional functionalities
include message filtering, search capabilities, and the ability to add notes
or mark messages as answered.

WS Form 1.9.162

WS Form LITE plugin is a powerful drag-and-drop contact form builder,
offering features such as unlimited forms and submissions, accessibility
compliance, Google reCAPTCHA, and mobile-friendly designs. It
supports multiple page builders and frameworks like Bootstrap and
Foundation. The PRO version includes advanced features like
conditional logic, e-commerce integration, and extensive third-party
service integrations.



Future Internet 2024, 16, 256 11 of 22

Table 3. Cont.

Plugin Name Plugin Version Description

Snow Monkey Forms 6.0.0

Snow Monkey Forms plugin is a robust mail form solution for the
WordPress block editor. It allows users to create and manage forms
seamlessly within the block editor environment. Key features include
drag-and-drop form building, Google reCAPTCHA integration for spam
protection, and support for various form elements such as checkboxes,
radio buttons, and select options.

Bit Form 2.4.1

Bit Form plugin is a powerful, drag-and-drop form builder that allows
users to create various forms including multi-step contact forms,
payment forms, and quizzes. It supports over 35 customizable fields,
advanced features like conditional logic, SMTP, reCAPTCHA, and
payment integrations with PayPal, Razorpay, and Stripe. The plugin is
lightweight, ensuring minimal impact on page speed, and offers
extensive integrations with third-party services.

Simple Basic Contact Form 2022120

Simple Basic Contact Form plugin for WordPress is a straightforward,
secure, and easy-to-use contact form solution. It allows users to display
forms using shortcodes or template tags, sends plain-text messages, and
provides spam protection with CAPTCHA and keyword blocking. The
plugin is lightweight, customizable through its settings, and performs
well with minimal impact on site speed. It supports both PHP’s mail()
and WordPress’s wp_mail() functions for sending emails.

Forminator Pro 1.26.0

Forminator plugin is a comprehensive form builder that allows users to
create a variety of forms, including contact forms, payment forms, and
quizzes, using a drag-and-drop interface. It supports Stripe and PayPal
integrations, GDPR compliance, and provides real-time interactive polls
and quizzes. The plugin also offers advanced features like conditional
logic, multi-step forms, and various third-party integrations. Forminator
includes features for developers to extend its functionality through
its API.

User Registration 3.0.4.1

User Registration plugin is a powerful, drag-and-drop form builder for
creating custom registration and login forms. It includes features like
spam protection with Google reCAPTCHA, customizable email
notifications, user role assignment, and a built-in user profile account
page. The plugin supports Gutenberg and Elementor and offers
premium add-ons for advanced functionalities like multi-step forms,
content restriction, and payment integration.

Contact Form Email 1.3.42

Contact Form to Email plugin allows users to create and manage contact
forms, sending submissions via email and saving them to a database. It
features a drag-and-drop form builder, CAPTCHA for spam protection,
and options for exporting data to CSV/Excel. The plugin supports
customizable email notifications, and automatic email reports, and
provides a printable list of messages. It also offers classic and AJAX form
submission methods and supports GDPR compliance.

4. Experimental Framework

In this section, we explain our experimental setup designed to investigate the zero-day
vulnerabilities that enable XSS attacks on WordPress plugins. As shown in Table 2, we
conducted experiments involving port scanning and keylogger implementation within a
Windows 10 sandbox environment. This setup was created to closely mimic real-world
conditions, showing how these techniques might be used to extract data from networked
machines. Using a custom keylogger written in JavaScript and leveraging the XSS attack
vector, we successfully extracted sensitive information by running a Flask server on a Kali
Host Machine.

Creating a controlled sandbox environment was a key part of our methodology. Table 2
lists the tools and technologies we used in this sandbox to replicate an operational environ-



Future Internet 2024, 16, 256 12 of 22

ment accurately. This setup allowed us to test and analyze the plugins under conditions
that closely resemble actual use.

We selected 23 popular WordPress webform plugins, detailed in Table 3, for our
experiments. These plugins are specifically designed to handle user data input, including
forms, surveys, and personal information submissions. This functionality is critical as it
involves direct interaction with users, making it a prime target for malicious exploitation.
The plugins are responsible for gathering, processing, and storing user data, which can
include sensitive personal information. We integrated these plugins into a custom-built
website, which served as the target or victim site for our experiments. This integration
was crucial to ensure that our findings would be applicable to real-world WordPress
environments, reflecting the typical usage scenarios where user input is a fundamental
aspect of the plugin’s operation.

Figure 2 shows the process followed to test vulnerabilities. Each plugin was rigorously
tested to identify vulnerabilities that could be exploited through XSS attacks. We did this
by dynamically inserting and executing JavaScript code within each plugin to see how they
handled potentially harmful inputs. If the scripts were executed successfully, it indicated
that the plugin had vulnerabilities that attackers could use to inject malicious code, create
backdoors, or steal sensitive data.

Start

Re-test Application

Report Findings and 

End

Application

Generate Report

Environment

Manual Testing

Reconnaissance

Run Scan: Analyze
and prioritize 

Remediate

Identify Target Configure Testing 

Vulnerabilities

Perform Inital 

Figure 2. A typical DAST process followed to test vulnerabilities.

5. Exploitation Phase Analysis and Assessment

After the installation and setup processes were complete, we moved on to thoroughly
testing WordPress plugins. The proposed testing method successfully revealed zero-day
vulnerabilities in three plugins: “Forminator Pro”, “User Registration”, and “Contact Form
Email”. These vulnerabilities allowed XSS attacks that enabled unauthorized access to
sensitive information submitted through these forms.

In a controlled sandbox environment, mock web pages were created using the plugins
listed in Table 2. These simulated web forms were designed with typical elements like text
labels, text boxes, and buttons. After configuration, the forms were deployed and accessed
via web browsers on the local server.

To evaluate the vulnerability of these web pages to malicious payloads, we sent these
payloads through the mentioned plugins. To prevent infecting our systems, truncated
versions of the malware, specifically designed to run in a sandbox, were used. This
precaution was applied to both the client and admin interfaces to ensure a comprehensive
assessment of vulnerabilities across the entire web application.

For the “Forminator” plugin, the “Submission Behavior” option was configured to
“Redirect user to URL”, embedding the JavaScript into the submission process. Similarly, in



Future Internet 2024, 16, 256 13 of 22

the “User Registration” plugin, the JavaScript code was appended to the “Redirect After
Registration” option using the External URL selection. Finally, for the “Contact Form Email”
plugin, the JavaScript code was incorporated into the “On submit action” event within
the “Stay on the page & display a classic JavaScript alert box” setting. Figure 3 shows the
specific locations in the configuration where changes were made to allow JavaScript code
execution and exploit the XSS vulnerability.

Figure 3. The JavaScript code added to the plugin enabling XSS attack.

After confirming the plugins’ susceptibility to XSS, the next step was to assess the
extent of the exploitability of this vulnerability. Because these web forms often collect
sensitive personal information, we aimed to integrate a keylogger into these forms to
exploit the vulnerability, capture sensitive information, and probe target ports via XSS.
This required detailed planning and execution, often necessitating advanced techniques to
infiltrate systems and extract critical data. To facilitate this, we set up a custom Flask server
(listed in Table 2) on the host machine.

In this study, three distinct tasks were conducted to evaluate system vulnerabilities:
port scanning, installing a keylogger on the client interface, and transmitting malware.
The keylogger was strategically deployed within the “Forminator” and “User Registration”
plugins to extract sensitive information. However, due to the specific functionality of
the “Contact Form Email” plugin, a different approach was necessary. This approach
focused on examining its potential to introduce malware rather than focusing exclusively
on data retrieval.

As an example, Figure 4 illustrates how the “User Registration” plugin processes user
registration information. This plugin is commonly used to collect essential details from
new users, such as usernames, passwords, and email addresses. When subjected to our
XSS vulnerability tests, the plugin revealed a significant flaw. Specifically, it triggered the
execution of malicious JavaScript code, as shown in Figure 5. This JavaScript code demon-
strates how an attacker could exploit this vulnerability to inject harmful scripts into the user
registration process. The ability of the plugin to process and accept user inputs without
proper sanitization or validation allows these scripts to execute. This scenario can lead to
severe consequences, such as unauthorized data access, session hijacking, or the compro-
mise of user credentials. The vulnerability essentially creates a backdoor for attackers to
manipulate the registration process and gain unauthorized access to sensitive information.

We also demonstrate that these vulnerabilities can be exploited to attach a keylogger,
thereby easily capturing registration credentials. Specifically, on the admin side, an insider
could effortlessly extract login credentials for other administrators, as shown in Figure 6.
This poses a significant challenge, particularly for multi-site WordPress installations. In a
multi-site setup, the risk is magnified because compromising one admin’s credentials can
potentially lead to the compromise of the entire network of sites.



Future Internet 2024, 16, 256 14 of 22

Our findings highlight the critical importance of securing both user-facing and admin-
facing components of WordPress plugins. Proactive security measures, including thorough
input validation, regular security audits, and prompt patching of identified vulnerabilities,
are essential to protect against such insider threats. Ensuring that all admin interactions
are secure and free from exploitable vulnerabilities is crucial in maintaining the overall
security and integrity of multi-site WordPress environments.

Overall, this case highlights the importance of proactive security measures in the
development and deployment of WordPress plugins, reinforcing the need for continuous
monitoring and improvement to protect against evolving cyber threats.

The pseudo-code for the keylogger attached to the client side is presented in
Algorithm 1, providing a comprehensive outline of the keylogger’s operation, detailing
the steps involved in capturing and transmitting sensitive information from the target
system to the attacker’s server. Algorithm 2 shows the code executed on the server side,
responsible for retrieving the data captured by the keylogger, filtering, and storing it for
future use.

Figure 4. User registration web form with XSS.

Figure 5. The XSS triggered the JavaScript code execution, shows that a more potent javascript can be
executed as well.

Algorithms 3 and 4 are specifically deployed within the context of the “Contact
Email Plugin” to propagate malware payloads to the client interface by exploiting the
XSS vulnerability. A notable advantage of this code is its inherent capability to trigger
the download of the malicious payload without necessitating any user interaction. This
automatic initiation of the download process effectively initiates the zero-click functionality,
thereby facilitating the seamless download of the truncated malware to the client system.

Figure 7 demonstrates how we were able to use JavaScript code to pass a malware file
onto the user. For this test case, we ensured that the downloaded file was visible to the user,
though this method can be made much more covert. This type of attack is often deployed
by compromised websites to deliver malware without the user’s knowledge.



Future Internet 2024, 16, 256 15 of 22

In our controlled environment, the malware download was executed through a script
embedded in a vulnerable plugin. By exploiting the XSS vulnerability, the script initiated
an automatic download of the malware file. This approach bypasses the need for user
interaction, making it a particularly insidious method of attack. The visible download in
our test case was intentional to clearly demonstrate the attack’s feasibility.

Such malware files can then be used in an advanced persistent threat (APT) manner
to attack more systems and gain access privileges on both client and admin machines.
Once the malware is installed, it can perform various malicious activities, such as logging
keystrokes, capturing screenshots, stealing sensitive data, or even creating a backdoor for
future access.

Algorithms 1–4 retrieve sensitive information entered in WordPress plugins. Ad-
ditionally, port scanning enables the retrieval of specific information about the client
machine, which can be further exploited to add new attack vectors. This is illustrated
in Figures 8 and 9, which provide detailed insights into the information we were able to
extract in our sandbox environment.

In summary, we selected 23 WordPress webform plugins for our experiments due
to their widespread use, particularly focusing on plugins that handle user data input
through forms, surveys, and personal information submissions. Testing in a controlled
sandbox environment revealed zero-day vulnerabilities in three plugins: “Forminator
Pro”, “User Registration”, and “Contact Form Email”. These vulnerabilities allowed XSS
attacks that could capture sensitive information. By simulating typical user interactions
and deploying malicious payloads, we demonstrated how these vulnerabilities could be
exploited to insert keyloggers, transmit malware, and compromise both user-facing and
admin-facing components of WordPress plugins, highlighting the critical need for robust
security measures in plugin development. To this end, we provided a detailed pseudo-code
of the attack vector and showcased how these vulnerabilities were found and exploited.

Figure 6. A keylogger being attached to the plugin from the admin side, showcasing how easy it is
for an insider to affect web applications with malicious code.

Figure 7. Malware file successfully download on the client side through XSS vulnerability.



Future Internet 2024, 16, 256 16 of 22

Algorithm 1 Keylogger functionality.

1: Print “Script started” to the console
2: if data transmission function does not have an ‘originalSend’ property then
3: Assign data transmission function to data transmission function.originalSend
4: Redefine data transmission function to a new function that takes ‘body’ as a param-

eter:
5: Declare dataToSend
6: if ‘body’ is an instance of structured data then
7: Initialize formDataObject as an empty object
8: for each key-value pair in ‘body’ do
9: Assign each value to formDataObject with its corresponding key

10: end for
11: Convert formDataObject to a JSON string and assign to dataToSend
12: Display an alert with “Captured Data”: followed by dataToSend
13: else
14: Assign ‘body’ to dataToSend
15: Display an alert with “Captured Data”: followed by dataToSend
16: end if
17: Get session identifiers from the environment and assign to cookieData
18: Create payload object containing dataToSend and cookieData
19: Send a POST request to http://attacker_server:8000 with:
20: - Header: ‘Content-Type’ set to ‘application/json’
21: - Body: JSON string of the payload
22: Call the original data transmission function ‘send’ method with ‘body’
23: end if

Algorithm 2 Server keylogger information retrieval.

1: Import required libraries:
2: Import web framework and request handling capabilities.
3: Import cross-origin resource sharing handling capabilities.
4:
5: Initialize the web application:
6: Create an instance of the web framework.
7: Apply settings to the app to enable cross-origin requests.
8:
9: Define routing and functionality for handling data:

10: Create a route at the root URL that listens to both GET and POST methods.
11: Define a function receive_data():
12: if the method is POST then
13: Retrieve JSON data from the request.
14: if ‘form’ is in the data then
15: Make a copy of the data.
16: Remove ‘ur-redirect-url’ from the form data in the copy.
17: Print the filtered data.
18: else
19: Print the received data.
20: Return a confirmation message “Data Received”.
21: end if
22: else
23: if the method is GET then
24: Return “Server is Running”.
25: end if
26: Execute the app if this is the main script:
27: Run the app on a specified host and port if the script is the main program being

executed.



Future Internet 2024, 16, 256 17 of 22

Algorithm 3 Malware distribution injected in plugin.

1: function ANONYMOUS SELF-INVOKING FUNCTION
2: Create a new hyperlink element
3: Set the destination URL of the hyperlink to the attacker’s server
4: Set the download attribute of the hyperlink to the intended malware file name
5: Append the hyperlink to the document’s body
6: Trigger a click event on the hyperlink to initiate download
7: Remove the hyperlink from the document’s body after triggering
8: end function

Algorithm 4 Malware distribution—server side.

1: Import necessary libraries:
2: Import web framework and file transmission capabilities
3:
4: Initialize web application:
5: Create an instance of the web application class
6:
7: Define routing and functionality for the app:
8: Create a route ‘/download-file’ that listens to GET requests
9: Define a function download_file():

10: Specify the path to the malware file (e.g., ‘path_to_malware/malware.exe’)
11: Use a function to send the file to the client as an attachment
12:
13: Start the application if this script is the main program:
14: If the script is executed as the main program, run the application on a specified port

(e.g., 8000)

Figure 8. Sample output showcasing sensitive user information captured by the keylogger.



Future Internet 2024, 16, 256 18 of 22

Figure 9. Sample output displaying the system specifications of the user machine.

6. Challenges and Future Work

The proposed method for identifying zero-day vulnerabilities in WordPress plugins
through DAST faces several challenges and limitations that need to be addressed. These
challenges are inherent to the nature of web security and the specifics of the DAST approach.

First, scalability is a primary challenge. As the number of plugins and the complexity
of web applications grow, the time and resources required to perform thorough security
testing increase significantly. This can lead to longer testing cycles and potentially delayed
identification of vulnerabilities. Managing this scalability requires optimizing DAST tools
to handle large-scale applications efficiently. Implementing horizontal scaling techniques,
such as those using Kubernetes for parallel processing, can significantly improve scanning
speed and efficiency.

Second, DAST tools generates false positives (incorrectly identifying benign behav-
ior as malicious) and false negatives (failing to detect actual vulnerabilities). This can
result in unnecessary remediation efforts or, worse, leaving vulnerabilities unaddressed.
Fine-tuning the testing parameters and incorporating more sophisticated heuristics can
help mitigate these issues but cannot eliminate them entirely. Utilizing AI-enabled ver-
ification mechanisms can help reduce false positives and improve the accuracy of the
detection process.

Another significant challenge is the dynamic nature of web applications. Web applica-
tions are highly dynamic, with frequent updates and changes in code and configurations.
This dynamism can render previously identified vulnerabilities obsolete or introduce new
vulnerabilities. Continuous monitoring and repeated testing are essential but also resource-
intensive, demanding a robust infrastructure to maintain ongoing assessments. Integrating
DAST tools with continuous integration/continuous deployment (CI/CD) pipelines can
facilitate continuous security testing and ensure timely identification of vulnerabilities as
part of the development process.

Complex attack vectors present another challenge. Modern web applications, includ-
ing WordPress plugins, often involve complex interactions between various components
and third-party services. Identifying vulnerabilities in such interconnected environments
requires comprehensive testing that considers all potential attack vectors. This complexity



Future Internet 2024, 16, 256 19 of 22

can make it difficult to ensure complete coverage, necessitating advanced testing strategies.
Utilizing tools that can dynamically generate unique data and track various headers and
tokens can enhance the comprehensiveness of the security assessments.

User and developer awareness is crucial for effective vulnerability management. Users
must keep their plugins and applications updated, whereas developers need to follow best
security practices during development. Ensuring this level of awareness and compliance
is a significant challenge, as it involves ongoing education and vigilance. Providing
user-friendly guidelines and tools for maintaining secure configurations can enhance
overall security.

Resource constraints are a major limitation, particularly for smaller organizations.
Conducting thorough DAST requires significant computational resources and expertise.
Small organizations or individual developers may lack the resources to implement com-
prehensive security testing, leading to potential gaps in vulnerability detection. Offering
cloud-based DAST solutions that can be scaled according to the organization’s needs can
help mitigate resource constraints and provide access to robust security testing capabilities.

In light of these challenges, future work should focus on several key areas to enhance
the DAST approach. Developing more advanced automation techniques can help scale the
DAST approach to handle larger and more complex applications. This includes automated
test case generation, execution, and result analysis.

Integrating DAST tools with continuous integration/continuous deployment (CI/CD)
pipelines can facilitate continuous security testing, ensuring that vulnerabilities are identi-
fied and addressed promptly as part of the development process. Enhancing collaboration
between security experts and developers can lead to better integration of security practices
into the development lifecycle, reducing the overall security risk.

Although the current method does not use machine learning, exploring advanced
heuristics and AI techniques can help improve the accuracy and efficiency of DAST tools. These
technologies can assist in identifying patterns and anomalies that might indicate vulnerabilities.

Developing comprehensive threat models that consider the entire ecosystem of a
web application can improve the coverage and effectiveness of security testing. This
includes understanding potential attack vectors and their impact on different components
of the application.

Finally, educating users on the importance of regular updates and security best prac-
tices can mitigate risks associated with outdated or poorly configured plugins. Developing
user-friendly guidelines and tools for maintaining secure configurations can enhance
overall security.

By addressing these challenges and pursuing the proposed future work, we can
enhance the effectiveness and reliability of DAST for identifying zero-day vulnerabilities in
WordPress plugins, thereby improving the overall security posture of web applications.

7. Conclusions

Dynamic application security testing (DAST) operates by interacting with a running
application, sending various inputs, and observing the application’s responses. This real-
time interaction allows DAST tools to detect security flaws that might not be apparent
through static code analysis alone. By submitting a wide range of input data, DAST
can identify whether the application correctly handles and sanitizes user inputs, thereby
preventing potential injection attacks such as SQL injection or cross-site scripting (XSS).
The true strength of DAST lies in its ability to provide a comprehensive assessment of an
application’s security posture from an external attacker’s perspective. By identifying and
addressing these vulnerabilities, developers can significantly enhance the security of their
web applications, protecting them from a wide range of potential threats.

In our comprehensive study, we applied DAST-based test cases to 23 WordPress plu-
gins that require user or admin interaction with web forms. These plugins were selected
based on their widespread use and critical functionality within the WordPress ecosystem.
By simulating real-world attack scenarios through DAST, we assessed how these plugins



Future Internet 2024, 16, 256 20 of 22

handle various types of input and whether they effectively mitigate XSS risks. The results
revealed that XSS attacks were possible on three WordPress plugins, exposing significant
security vulnerabilities, particularly on the admin side. Additionally, our findings indi-
cated the potential for a multi-site insider attack, exploiting administrative privileges to
compromise the security of all sites within a network. Following these discoveries, we
reported our findings to the National Institute of Standards and Technology (NIST), re-
sulting in the allocation of Common Vulnerabilities and Exposures (CVE) numbers to the
three vulnerable plugins. This acknowledgment underscores the critical need for enhanced
security measures in WordPress plugins and emphasizes the necessity for developers to
prioritize security in their design and implementation.

Author Contributions: Conceptualization, M.A.M.M., H.A.; Methodology, M.A.M.M., M.S.N., H.A.
and U.U.T.; Software, M.A.M.M., M.S.N., H.A. and U.U.T.; Validation, M.A.M.M. and H.A.; Investiga-
tion, M.A.M.M.; Data curation, M.A.M.M., M.S.N., J.H., H.A., U.U.T. and S.A.; Writing—original draft,
M.A.M.M., M.S.N., J.H., H.A., U.U.T., F.S., M.W. and S.A.; Writing—review & editing, M.A.M.M.,
M.S.N., J.H., H.A., U.U.T., F.S., M.W. and S.A.; Visualization, M.A.M.M., M.S.N., J.H., U.U.T., F.S. and
M.W.; Supervision, H.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All required data is either publically available and can be accessed or is
given in the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bilge, L.; Dumitraş, T. Before we knew it: An empirical study of zero-day attacks in the real world. In Proceedings of the 2012

ACM Conference on Computer and Communications Security, New York, NY, USA, 16–18 October 2012; CCS ’12; pp. 833–844.
[CrossRef]

2. Axelsson, S. Intrusion Detection Systems: A Survey and Taxonomy. 2000. Available online: https://citeseerx.ist.psu.edu/
document?repid=rep1&type=pdf&doi=7a15948bdcb530e2c1deedd8d22dd9b54788a634 (accessed on 2 April 2024).

3. Patcha, A.; Park, J.M. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Comput.
Netw. 2007, 51, 3448–3470. [CrossRef]

4. Zero Day Attack—Glossary|CSRC—csrc.nist.gov. Available online: https://csrc.nist.gov/glossary/term/zero_day_attack
(accessed on 5 July 2024).

5. Hindy, H.; Atkinson, R.; Tachtatzis, C.; Colin, J.N.; Bayne, E.; Bellekens, X. Utilising Deep Learning Techniques for Effective
Zero-Day Attack Detection. Electronics 2020, 9, 1684. [CrossRef]

6. Alawida, M.; Omolara, A.E.; Abiodun, O.I.; Al-Rajab, M. A deeper look into cybersecurity issues in the wake of COVID-19: A
survey. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 8176–8206. [CrossRef] [PubMed]

7. Jimmy, F. Cyber security Vulnerabilities and Remediation through Cloud Security Tools. J. Artif. Intell. Gen. Sci. (JAIGS) 2024,
2, 196–233.

8. Ali, S.; Rehman, S.U.; Imran, A.; Adeem, G.; Iqbal, Z.; Kim, K.I. Comparative Evaluation of AI-Based Techniques for Zero-Day
Attacks Detection. Electronics 2022, 11, 3934. [CrossRef]

9. Sahu, S.; Mehtre, B.M. Network Intrusion Detection System Using J48 Decision Tree. In Proceedings of the 2015 International
Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, India, 10–13 August 2015. [CrossRef]

10. Petrosyan, A. Number of Common IT Security Vulnerabilities and Exposures (CVEs) Worldwide from 2009 to 2024 YTD. Statista,
2024. Available online: https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
(accessed on 10 April 2024).

11. Guo, H.; Chen, S.; Xing, Z.; Li, X.; Bai, Y.; Sun, J. Detecting and Augmenting Missing Key Aspects in Vulnerability Descriptions.
ACM Trans. Softw. Eng. Methodol. 2022, 31, 1–27. [CrossRef]

12. Regi, S.; Arora, G.; Gangadharan, R.; Bathla, R.; Pandey, N. Case study on detection and prevention methods in zero day attacks.
In Proceedings of the 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and
Future Directions) (ICRITO), Noida, India, 13–14 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–4.

13. Noonan, C.F.; Piatt, A.W. Global Social Media Directory. A Resource Guide; Technical Report; Pacific Northwest National Lab.
(PNNL): Richland, WA, USA, 2015.

14. Niakanlahiji, A.; Jafarian, J.H. Webmtd: Defeating cross-site scripting attacks using moving target defense. Secur. Commun. Netw.
2019, 2019, 1–13. [CrossRef]

15. Sayed, A.; Anwar, A.H.; Kiekintveld, C.; Bošanský, B.; Kamhoua, C.A. Cyber Deception against Zero-Day Attacks: A Game Theoretic
Approach; Springer: Cham, Switherland, 2023. [CrossRef]

http://doi.org/10.1145/2382196.2382284
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7a15948bdcb530e2c1deedd8d22dd9b54788a634
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7a15948bdcb530e2c1deedd8d22dd9b54788a634
http://dx.doi.org/10.1016/j.comnet.2007.02.001
https://csrc.nist.gov/glossary/term/zero_day_attack
http://dx.doi.org/10.3390/electronics9101684
http://dx.doi.org/10.1016/j.jksuci.2022.08.003
http://www.ncbi.nlm.nih.gov/pubmed/37521180
http://dx.doi.org/10.3390/electronics11233934
http://dx.doi.org/10.1109/icacci.2015.7275914
https://www.statista.com/statistics/500755/worldwide-common-vulnerabilities-and-exposures/
http://dx.doi.org/10.1145/3498537
http://dx.doi.org/10.1155/2019/2156906
http://dx.doi.org/10.1007/978-3-031-26369-9_3


Future Internet 2024, 16, 256 21 of 22

16. Sharma, G.; Vidalis, S.; Menon, C.; Anand, N. Analysis and Implementation of Semi-Automatic Model for Vulnerability
Exploitations of Threat Agents in NIST Databases. Multimed. Tools Appl. 2022, 82, 16951–16971. [CrossRef] [PubMed]

17. Georgescu, T.M.; Iancu, B.; Zurini, M. Named-Entity-Recognition-Based Automated System for Diagnosing Cybersecurity
Situations in IoT Networks. Sensors 2019, 19, 3380. [CrossRef]

18. Mesa, O.; Vieira, R.; Viana, M.; Durelli, V.H.; Cirilo, E.; Kalinowski, M.; Lucena, C. Understanding vulnerabilities in plugin-based
web systems: An exploratory study of wordpress. In Proceedings of the 22nd International Systems and Software Product Line
Conference-Volume 1, Gothenburg, Sweden, 10–14 September 2018; pp. 149–159.

19. Ahmed, S.; Singh, M.; Doherty, B.; Ramlan, E.; Harkin, K.; Bucholc, M.; Coyle, D. An Empirical Analysis of State-of-Art
Classification Models in an IT Incident Severity Prediction Framework. Appl. Sci. 2023, 13, 3843. [CrossRef]

20. OWASP Top Ten|OWASP Foundation—owasp.org . Available online: https://owasp.org/www-project-top-ten/ (accessed on
5 July 2024).

21. Landwehr, C.E.; Bull, A.R.; McDermott, J.P.; Choi, W.S. A taxonomy of computer program security flaws. ACM Comput. Surv.
1994, 26, 211–254. [CrossRef]

22. Jajodia, S.; Liu, P.; Swarup, V.; Wang, C. Cyber Situational Awareness; Springer: Berlin/Heidelberg, Germany, 2009.
23. Rangnau, T.; Buijtenen, R.V.; Fransen, F.; Turkmen, F. Continuous security testing: A case study on integrating dynamic security

testing tools in CI/CD pipelines. In Proceedings of the 2020 IEEE 24th International Enterprise Distributed Object Computing
Conference (EDOC), Eindhoven, The Netherlands, 5–8 October 2020; pp. 145–154.

24. Jahanshahi, R.; Doupé, A.; Egele, M. You Shall Not Pass: Mitigating SQL Injection Attacks on Legacy Web Applications. In
Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, Taipei, Taiwan, 5–9 October 2020.
[CrossRef]

25. Marquardt, F.; Buhl, L. Déjà vu? client-side fingerprinting and version detection of web application software. In Proceedings of
the 2021 IEEE 46th Conference on Local Computer Networks (LCN), Edmonton, AB, Canada, 4–7 October 2021. [CrossRef]

26. Landauer, M.; Skopik, F.; Frank, M.; Hotwagner, W.; Wurzenberger, M.; Rauber, A. Maintainable log datasets for evaluation of
intrusion detection systems. IEEE Trans. Dependable Secur. Comput. 2022, 20, 3466–3482. [CrossRef]

27. Felderer, M.; Büchler, M.; Johns, M.; Brucker, A.D.; Breu, R.; Pretschner, A. Security Testing. Adv. Comput. 2016, 101, 1–51.
[CrossRef]

28. Medeiros, I.; Neves, N.; Correia, M. Detecting and Removing Web Application Vulnerabilities with Static Analysis and Data
Mining. IEEE Trans. Reliab. 2016, 65, 54–69. [CrossRef]

29. Riom, T.; Sawadogo, A.D.; Allix, K.; Bissyandé, T.F.; Moha, N.; Klein, J. Revisiting the VCCFinder Approach for the Identification
of Vulnerability-Contributing Commits. Empir. Softw. Eng. 2021, 26, 46. [CrossRef]

30. Zoppi, T.; Ceccarelli, A.; Capecchi, T.; Bondavalli, A. Unsupervised Anomaly Detectors to Detect Intrusions in the Current Threat
Landscape. ACM/IMS Trans. Data Sci. 2021, 2, 1–26. [CrossRef]

31. Ekong, A.P. Securing Against Zero-Day Attacks: A Machine Learning Approach for Classification and Organizations’ Perception
of Its Impact. J. Inf. Syst. Inform. 2023, 5, 1123–1140. [CrossRef]

32. NVD. National Vulnerability Database. NIST, 2022. Available online: https://nvd.nist.gov/vuln (accessed on 12 April 2024).
33. What Is Signature-Based Detection?|Corelight—corelight.com. Available online: https://corelight.com/resources/glossary/

signature-based-detection (accessed on 5 July 2024).
34. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.

Cybersecurity 2019, 2, 1–22. [CrossRef]
35. What Is Malware Detection?|A Comprehensive Guide—sentinelone.com. Available online: https://www.sentinelone.com/

cybersecurity-101/what-is-malware-detection/ (accessed on 5 July 2024).
36. Butun, I.; Morgera, S.D.; Sankar, R. A Survey of Intrusion Detection Systems in Wireless Sensor Networks. IEEE Commun. Surv.

Tutor. 2014, 16, 266–282. [CrossRef]
37. Guo, Y. A review of Machine Learning-based zero-day attack detection: Challenges and future directions. Comput. Commun.

2023, 198, 175–185. [CrossRef]
38. El-Sayed, R.; El-Ghamry, A.; Gaber, T.; Hassanien, A.E. Zero-day malware classification using deep features with support vector

machines. In Proceedings of the 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS),
Cairo, Egypt, 5–7 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 311–317.

39. Peppes, N.; Alexakis, T.; Adamopoulou, E.; Demestichas, K. The effectiveness of zero-day attacks data samples generated via
GANs on deep learning classifiers. Sensors 2023, 23, 900. [CrossRef] [PubMed]

40. Roumani, Y. Patching zero-day vulnerabilities: An empirical analysis. J. Cybersecur. 2021, 7, tyab023. [CrossRef]
41. Li, J.; Zhao, B.; Zhang, C. Fuzzing: A survey. Cybersecurity 2018, 1, 1–13. [CrossRef]
42. Bilge, L.; Dumitras, T. Investigating zero-day attacks. Login 2013, 38, 6–13.
43. Fossi, M.; Egan, G.; Haley, K.; Johnson, E.; Mack, T.; Adams, T.; Blackbird, J.; Low, M.K.; Mazurek, D.; McKinney, D.; et al.

Symantec Internet Security Threat Report Trends for 2010. 2011. Volume XVI. Available online: https://icscsi.org/library/
Documents/Threat_Intelligence/Symantec%20-%20Internet%20Security%20Threat%20Report%20-%202011.pdf (accessed on 15
July 2024).

http://dx.doi.org/10.1007/s11042-022-14036-y
http://www.ncbi.nlm.nih.gov/pubmed/36339055
http://dx.doi.org/10.3390/s19153380
http://dx.doi.org/10.3390/app13063843
https://owasp.org/www-project-top-ten/
http://dx.doi.org/10.1145/185403.185412
http://dx.doi.org/10.1145/3320269.3384760
http://dx.doi.org/10.1109/lcn52139.2021.9524885
http://dx.doi.org/10.1109/TDSC.2022.3201582
http://dx.doi.org/10.1016/bs.adcom.2015.11.003
http://dx.doi.org/10.1109/TR.2015.2457411
http://dx.doi.org/10.1007/s10664-021-09944-w
http://dx.doi.org/10.1145/3441140
http://dx.doi.org/10.51519/journalisi.v5i3.546
https://nvd.nist.gov/vuln
https://corelight.com/resources/glossary/signature-based-detection
https://corelight.com/resources/glossary/signature-based-detection
http://dx.doi.org/10.1186/s42400-019-0038-7
https://www.sentinelone.com/cybersecurity-101/what-is-malware-detection/
https://www.sentinelone.com/cybersecurity-101/what-is-malware-detection/
http://dx.doi.org/10.1109/SURV.2013.050113.00191
http://dx.doi.org/10.1016/j.comcom.2022.11.001
http://dx.doi.org/10.3390/s23020900
http://www.ncbi.nlm.nih.gov/pubmed/36679705
http://dx.doi.org/10.1093/cybsec/tyab023
http://dx.doi.org/10.1186/s42400-018-0002-y
https://icscsi.org/library/Documents/Threat_Intelligence/Symantec%20-%20Internet%20Security%20Threat%20Report%20-%202011.pdf
https://icscsi.org/library/Documents/Threat_Intelligence/Symantec%20-%20Internet%20Security%20Threat%20Report%20-%202011.pdf


Future Internet 2024, 16, 256 22 of 22

44. Tang, Y.; Chen, S. Defending against internet worms: A signature-based approach. In Proceedings of the Proceedings IEEE
24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, FL, USA, 13–17 March 2005; IEEE:
Piscataway, NJ, USA, 2005; Volume 2, pp. 1384–1394.

45. Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode sequences as representation of executables for data-mining-based
unknown malware detection. Inf. Sci. 2013, 231, 64–82. [CrossRef]

46. Deshpande, P.S.; Sharma, S.C.; Peddoju, S.K. Security and Data Storage Aspect in Cloud Computing; Springer: Berlin/Heidelberg,
Germany, 2019; Volume 52.

47. Alazab, M.; Venkatraman, S.; Watters, P.; Alazab, M.; Alazab, A. Cybercrime: The case of obfuscated malware. In Proceedings
of the Global Security, Safety and Sustainability & e-Democracy: 7th International and 4th e-Democracy, Joint Conferences,
ICGS3/e-Democracy 2011, Thessaloniki, Greece, 24–26 August 2011; Revised Selected Papers; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 204–211.

48. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. Network Anomaly Detection: Methods, Systems and Tools. IEEE Commun. Surv.
Tutor. 2014, 16, 303–336. [CrossRef]

49. Creech, G.; Hu, J. A Semantic Approach to Host-Based Intrusion Detection Systems Using Contiguousand Discontiguous System
Call Patterns. IEEE Trans. Comput. 2014, 63, 807–819. [CrossRef]

50. Chiba, Z.; Abghour, N.; Moussaid, K.; El Omri, A.; Rida, M. A survey of intrusion detection systems for cloud computing
environment. In Proceedings of the 2016 International Conference on Engineering & MIS (ICEMIS), Agadir, Morocco, 22–24
September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–13.

51. Wang, L.; Abbas, R.; Almansour, F.M.; Gaba, G.S.; Alroobaea, R.; Masud, M. An empirical study on vulnerability assessment and
penetration detection for highly sensitive networks. J. Intell. Syst. 2021, 30, 592–603. [CrossRef]

52. Buczak, A.L.; Guven, E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE
Commun. Surv. Tutor. 2016, 18, 1153–1176. [CrossRef]

53. Aldhaheri, A.; Alwahedi, F.; Ferrag, M.A.; Battah, A. Deep learning for cyber threat detection in IoT networks: A review. Internet
Things Cyber-Phys. Syst. 2023, 4, 110–128. [CrossRef]

54. Wei, Y.; Jang-Jaccard, J.; Sabrina, F.; Singh, A.; Xu, W.; Camtepe, S. Ae-mlp: A hybrid deep learning approach for ddos detection
and classification. IEEE Access 2021, 9, 146810–146821. [CrossRef]

55. Felderer, M.; Zech, P.; Breu, R.; Büchler, M.; Pretschner, A. Model-based security testing: A taxonomy and systematic classification.
Softw. Test. Verif. Reliab. 2016, 26, 119–148. [CrossRef]

56. Ding, J.; Yan, B.; Wang, G.; Zhang, L.; Han, Y.; Yu, J.; Yao, Y. Blockchain-Aided Hierarchical Attribute-Based Encryption for Data
Sharing. In Proceedings of the International Conference on Wireless Algorithms, Systems, and Applications, Dalian, China, 24–26
November 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 364–376.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ins.2011.08.020
http://dx.doi.org/10.1109/SURV.2013.052213.00046
http://dx.doi.org/10.1109/TC.2013.13
http://dx.doi.org/10.1515/jisys-2020-0145
http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.1016/j.iotcps.2023.09.003
http://dx.doi.org/10.1109/ACCESS.2021.3123791
http://dx.doi.org/10.1002/stvr.1580

	Introduction
	Literature Review
	Methodology
	Experimental Framework
	Exploitation Phase Analysis and Assessment
	Challenges and Future Work
	Conclusions
	References

