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ABSTRACT
Multiprocessor System-on-Chips (MPSoCs) computing architectures are gaining popularity due to their
high-performance capabilities and exceptional Quality-of-Service (QoS), making them a particularly well-
suited computing platform for computationally intensive workloads and applications. Nonetheless, The
scheduling and allocation of a single task set with precedence restrictions on MPSoCs have presented
a persistent research challenge in acquiring energy-efficient solutions. The complexity of this scheduling
problem escalates when subject to conditional precedence constraints between the tasks, creating what is
known as a Conditional Task Graph (CTG). Scheduling sets of Periodic Conditional Task Graphs (PCTGs)
on MPSoC platforms poses even more challenges. This paper focuses on tackling the scheduling challenge
for a group of PCTGs on MPSoCs equipped with shared memory. The primary goal is to minimize the
overall anticipated energy usage, considering two distinct power models: dynamic and static power models.
To address this challenge, this paper introduces an innovative scheduling method named Energy Efficient
Successor Tree Consistent Earliest Deadline First (EESEDF). The EESEDF approach is primarily designed
to maximize the worst-case processor utilization. Once the tasks are assigned to processors, it leverages the
earliest successor tree consistent deadline-first strategy to arrange tasks on each processor. To minimize the
overall expected energy consumption, EESEDF solves a convex Non-Linear Program (NLP) to determine
the optimal speed for each task. Additionally, the paper presents a highly efficient online Dynamic Voltage
Scaling (DVS) heuristic, which operates in O(1) time complexity and dynamically adjusts the task speeds
in real-time. We achieved the average improvement, maximum improvement, and minimum improvement
of EESEDF+Online-DVS 15%, 17%, and 12%, respectively compared to EESEDF alone. Furthermore,
in the second set of experiments, we compared EESEDF against state-of-the-art techniques LESA and
NCM. The results showed that EESEDF+Online-DVS outperformed these existing approaches, achieving
notable energy efficiency improvements of 25% and 20% over LESA and NCM, respectively. Our proposed
scheduler, EESEDF+Online-DVS, also achieves significant energy efficiency gains compared to existing
methods. It outperforms IOETCS-Heuristic by approximately 13% while surpassing BESS and CAP-Online
by impressive margins of 25% and 35%, respectively.

INDEX TERMS PCTGs, Scheduling, Shared Memory, MPSoCs, Conditional Precedence Constraints,
DVS, Green Computing

I. INTRODUCTION

REVOLUTION has been witnessed in the recent past
in integrated architecture design, shifting from single-

processor systems to multicore architectures. This shift is
driven by the limitations of traditional approaches, the impact
of power consumption, and the continued advancement fa-
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cilitated by Moore’s law. Designers are leveraging multicore
architectures to meet increasing computational requirements
while managing power consumption and design complexity
[1]. Multi-core architectures such as Multiprocessor System-
on-Chips (MPSoCs) have received intensive interest in the
embedded systems community due to their high perfor-
mance, exceptional Quality-of-Service (QoS), and low power
consumption [2], [3]. Prioritizing energy minimization in
high-performance embedded systems yield a multitude of
advantages, ranging from decreased heat dissipation and in-
creased reliability to improved performance and greater envi-
ronmental sustainability. Embracing energy-efficient design
principles is key to unlocking the full potential of modern em-
bedded systems while mitigating various challenges associ-
ated with power consumption [4]–[6]. Efficient task mapping
and scheduling can be used to achieve green computing and
reduce the carbon footprint. Task mapping and scheduling in-
volve the systematic allocation of a set of tasks to the proces-
sors in MPSoCs in a way that satisfies specific requirements,
such as optimizing power consumption or reducing overall
execution time [2], [5]. Dynamic Voltage Scaling (DVS) is
a highly effective and widely adopted technique in modern
embedded systems for achieving energy efficiency. Its ability
to dynamically adjust voltage and frequency levels based
on workload requirements makes it a valuable technique
in reducing energy consumption and enhancing the overall
performance and reliability of embedded systems [7]–[9].

Shared-memory scheduling in MPSoCs offers manifold
advantages and serves to enhance system performance while
optimizing resource utilization and scalability. For instance,
memory-shared scheduling makes it possible for several
cores to share a single memory space, which optimizes
memory access patterns. As a result, data can be cached
and distributed more wisely among cores, reducing memory
contention, and communication overhead, increasing mem-
ory access and energy efficiency [10], [11]. In task schedul-
ing, tasks are categorized into dependent task graphs and
independent task graphs. Dependent task graphs represent
tasks with dependencies, where the execution of one task is
dependent on the completion of another task. Dependent task
graphs, such as Directed Acyclic Graphs (DAGs) or Periodic
Conditional Task Graphs (PCTGs) are commonly used to
model applications with complex inter-task dependencies,
such as data processing pipelines or workflow-based appli-
cations. Independent task graphs in contrast represent tasks
that can be executed independently of each other, without any
inter-task dependencies. Tasks in independent task graphs
can often be parallelized and executed concurrently, making
them suitable for applications with parallelizable tasks, such
as scientific simulations or parallel processing applications
[5]. PCTGs play a crucial role in the realm of MPSoC
architectures, finding applications in various domains. Some
examples include real-time systems where tasks follow peri-
odic patterns and may have dependencies based on specific
conditions, such as in industrial automation, robotics, and
automotive systems. PCTGs are also instrumental in schedul-

ing periodic and condition-dependent tasks in Internet-of-
Things (IoT) applications like smart homes, smart cities, and
wearable devices, where tasks may dynamically adjust their
execution based on events or sensor inputs. Additionally,
PCTGs find effective use in multimedia streaming scenarios
where tasks within the graph exhibit inter-dependencies.
High-performance and high-efficiency scheduling for PCTGs
ensures optimal resource utilization and timely task exe-
cution, enhancing system throughput, and responsiveness.
However, it may introduce complexity in scheduling algo-
rithms and require sophisticated optimization techniques,
potentially leading to increased computational overhead and
implementation challenges [8], [12], [13].

Applications involve a set of tasks where each task is
subject to both timing and precedence constraints. Prece-
dence constraints establish the relationships between tasks in
terms of data and control dependencies. Traditionally, these
constraints are unconditional, meaning that once a task is
completed, it leads to the immediate execution of another
specific task. However, in various applications, conditional
precedence constraints are introduced, which adds complex-
ity to the scheduling process. In the case of conditional task
graphs, after the completion of a task vi, it may lead to one
of several possible tasks based on specific conditions. These
conditions create alternative execution paths, introducing
branches into the task graph. The incorporation of conditional
precedence constraints significantly increases the number of
potential scenarios that the scheduler must consider. This
growth is exponential and directly proportional to the number
of conditions present in the conditional task graph. As a
result, the task scheduling problem becomes notably more
challenging when dealing with conditional task graphs com-
pared to non-conditional task graphs. Handling conditional
task graphs efficiently and optimizing their schedules require
specialized algorithms and methodologies to explore the
multiple branching possibilities effectively. Scheduling such
graphs demands careful consideration of the dependencies
and conditions to achieve optimal performance and energy
efficiency while respecting all timing constraints. Addressing
conditional precedence constraints is crucial for accurately
modeling real-world applications, as many modern systems
involve tasks with complex dependencies and conditional
execution paths. By developing innovative scheduling ap-
proaches capable of handling conditional task graphs, re-
searchers can unlock the full potential of these advanced
applications in energy-efficient and high-performance het-
erogeneous MPSoC systems.

This research investigates the scheduling problem associ-
ated with PCTGs comprising non-preemptible tasks, imple-
mented on a MPSoC computing platform. The MPSoC is
endowed with identical processors capable of functioning at
discrete voltage levels and features shared memory. The main
objective of this investigation is to minimize the overall ex-
pected energy consumption of tasks across diverse scenarios
on processors. In pursuit of this aim, we consider two power
models: the Total Power (TP) model and the Dynamic Power
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(DP) model.

The key contributions of our research and implementations
are given as follows:

• We propose a two-phase scheduling framework integrat-
ing an efficient offline scheduler and a streamlined on-
line scheduler. This framework is designed for the gen-
eralized task model of conditional task graphs (CTGs)
and the specific case of task graphs, demonstrating
its applicability and efficiency across both contexts.
The approach ensures adaptability to both the broad
constructs of CTGs and the nuanced specifics of task
graphs, highlighting its universal relevance.

• Our offline scheduler comprises two essential compo-
nents. The first is a pioneering task scheduling algorithm
tailored for the periodic conditional task graph model,
capable of creating a unified global schedule appli-
cable across all possible scenarios of periodic CTGs.
This aspect of our offline scheduler ensures its time
complexity remains within polynomial bounds. The
second component is our task-to-voltage assignment
algorithm, based on convex Non-Linear Programming
(NLP), specifically developed for the general task model
of Periodic Conditional Task Graphs. Together, this two-
part strategy significantly reduces energy consumption
while preserving operational efficiency within a poly-
nomial time, demonstrating its versatility across various
task models.

• We have developed an efficient online Dynamic Voltage
Scaling (DVS) heuristic with minimal time complexity
O(1). This heuristic is strategically designed to redis-
tribute slack in a broad spectrum of scenarios, accom-
modating both the general framework of conditional
task graphs and the specialized subset of task graphs.
This development underscores our methodology’s flexi-
bility and wide applicability.

• Our Energy-efficientiSuccessor Tree Consistenti Earli-
est Deadline First (EESEDF)iAlgorithm achieved an
average improvement of 15%, a maximum improvement
of 17%, and a minimum improvement of 12% over the
online DVS heuristic. These improvements highlight the
effectiveness of our EESEDF Algorithm in optimizing
task scheduling and reducing energy consumption. Our
novel scheduling technique, EESEDF, also outperforms
state-of-the-art LESA [14] and NCM [15] achieving
energy efficiency of 25% and 20% respectively.

• Our two-phase approach not only optimizes energy con-
sumption but also exhibits scalability. With its poly-
nomial time complexity, it is exceptionally suited for
scheduling Periodic Conditional Task Graphs (PCTGs).
Compared to BESS [16] and CAP-Online [17], our
approach achieves an average improvement of 25% over
BESS and a 35% improvement over CAP-Online in
terms of expected energy consumption. Additionally,
we have demonstrated that both these approaches fall
short in scalability, particularly for CTGs with a large

number of conditions. This shortfall is due to both ap-
proaches being exponential in the number of conditions
within CTGs.

The paper’s organization is as follows: Section II provides
an overview of the related work, highlighting the existing
literature and approaches relevant to our research. Section III
presents the power models, task models, and system models
used in our study. This section outlines the fundamental
models that form the basis of our offline scheduling approach
and energy optimization techniques. In Section IV, we delve
into the details of our novel offline scheduling algorithm
Energy Efficient Successor Tree Consistent Earliest Dead-
line First (EESEDF). This section explains the workings of
our proposed algorithm for task assignment and scheduling.
Section V presents our NLP-based approach for determining
an optimal speed assignment for each task in the scheduling
phase. The experimental results are showcased in Section VI,
illustrating the outcomes of our evaluations and providing
insights into the performance and energy efficiency of our
approach. Lastly, Section VII concludes the paper, summa-
rizing the key findings and contributions of our research.

II. RELATED WORK
Aydin et al. introduced an energy-efficient scheduling al-
gorithm, utilizing Dynamic Voltage and Frequency Scaling
(DVFS) for independent real-time tasks with diverse power
consumption characteristics on multiprocessor systems. The
scheduling problem was formulated as a Nonlinear Pro-
gramming (NLP) task, optimizing task speeds while ensur-
ing optimality [18]. Other research studies have also ex-
plored DVFS techniques for energy optimization. For in-
stance, Zhang et al. in [19] presented the Shuffled Frog
Leaping Algorithm (SFLA), a meta-heuristic scheduling al-
gorithm that combines Particle Swarm Optimization (PSO)
and Memetic algorithms, and compared its energy efficiency
with Genetic Algorithms (GA). Additionally, Kumar et al. in
[20] integrated task mapping and voltage assignment using
GA within a single optimization loop, leveraging DVFS
to reduce dynamic energy consumption while maintaining
an acceptable performance trade-off. Moreover, Wang et al.
focused on preemptive periodic independent task scheduling
through Discrete Event System (DES) supervisory control
[21]. Furthermore, Liu et al. [22] deployed the Weighted
Earliest Finish Time (WEFT) algorithm for task mapping and
executing tasks with the minimum possible earliest comple-
tion time. These investigations in [18]–[22] aimed to reduce
energy consumption for independent tasks operating on MP-
SoC architectures, without explicitly considering precedence
constraints.

Several other studies have been conducted to optimize
energy consumption and improve performance in heteroge-
neous MPSoC systems with various scheduling and voltage
assignment techniques. Chen et al. in [23] formulated en-
ergy consumption-constrained scheduling as an optimization
problem to reduce the schedule duration of workflows. First,
they modeled the workflows and energy consumption of

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3403418

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



processors. They also devised a novel scheduling algorithm
based on energy difference coefficients, coupled with an en-
hanced energy per-assignment strategy. This approach aims
to generate an allocation of processors, frequencies, and start
times for each task that approximates optimality while ensur-
ing compliance with data dependency and energy limitation
constraints. An integrated approach was developed by Ali
et al. for task mapping, scheduling, and voltage assignment
on Network-on-Chip (NoC) based heterogeneous MPSoCs.
They introduced a heuristic named EIMSVS to reduce both
the processing and communication energies [24]. Abd Ishak
et al. in [25] investigated non-preemptive scheduling for tasks
with precedence constraints and individual deadlines. They
used NLP and Integer Linear Programming (ILP) techniques
to assign optimal voltages to tasks and communications on
NoC links, aiming to minimize energy consumption. Ali
et al. in [7] developed an energy-efficient task scheduling
approach using the CITM-VA meta-heuristic. This method
integrated DVFS and Dynamic Power Management (DPM)
techniques to achieve maximum energy savings by consid-
ering contention at NoC links. Ding et al. introduced the
HGAAP heuristic for task mapping on heterogeneous mul-
tiprocessor architectures. The goal was to optimize energy
consumption by finding efficient task mappings [26]. Tariq et
al. in [27] performed energy-efficient and contention-aware
static scheduling for tasks with precedence and deadline
constraints on NoC-based MPSoCs with DVFS-enabled pro-
cessors. They designed the ARSH-FATI metaheuristic that
collectively performed task mapping, scheduling, and volt-
age scaling, resulting in superior performance. Additionally,
they developed the EECDF scheduling algorithm, which
considered communication contention awareness. However,
it is important to note that these studies focused mainly on
MPSoC systems with tasks having precedence constraints,
and their approaches aimed to optimize energy consumption
and performance in different ways. Each of these research
works contributed valuable insights to the field of energy-
efficient scheduling in heterogeneous MPSoCs, helping to
address the challenges of modern embedded systems. Xie et
al. in [28] designed a scheduling algorithm known as fairness
on multiple HEFT (F-MHEFT). They optimized scheduling
applications based on multiple DAGs, aiming to achieve both
high performance and meet stringent timing constraints. The
authors focused on fairness and prioritizing meeting timing
constraints for applications.

More recently Chen et al. developed a List-based Energy-
aware Scheduling Algorithm (LESA) that incorporates task
prioritization and weight-based energy distribution strategies.
This algorithm deploys DVFS to assign discrete speed levels
to the tasks while seeking an approximate optimal schedule
by considering the task dependencies and energy constraints
of the system [14]. Maurya et al. in [15] introduced an en-
hanced version of the Not Changing Makespan (NCM) sub-
algorithm within the Energy Aware Service Level Agreement
(EASLA) task scheduling framework. The improved algo-
rithm is tailored for DVFS-enabled heterogeneous cluster

systems and incorporates the Predict Earliest Finish Time
(PEFT) algorithm to efficiently compute the schedule length.
This approach aimed to optimize energy consumption while
maintaining the desired level of performance for task execu-
tion. Roy et al. [29] addressed the challenge of scheduling
periodic real-time applications, each represented as DAG,
on a distributed platform with heterogeneous processors
connected by shared buses. It leverages DVFS to minimize
energy consumption while ensuring that DAG instances meet
their deadlines within a hyperperiod. Initially formulated as
a constraint optimization problem and developed a three-
phase list-based hierarchical scheduling algorithm named
Slack Aware Frequency Level Allocator (SAFLA). In another
study, Roy et al. [30] explored the challenge of scheduling
tasks represented as DAG. An optimal solution utilizing ILP
is initially introduced for execution on distributed hetero-
geneous processors connected by shared buses. However,
the ILP approach proves computationally intensive and im-
practical for moderately large problems. Therefore, a low-
overhead heuristic algorithm named the Contention Cog-
nizant Task and Message Scheduler (CC-TMS) is developed.
This algorithm offered efficient and fast solutions within
a reasonable time frame. Devaraj and Sarkar presented an
approach for generating fault-tolerant schedules for real-
time tasks represented as precedence-constrained task graphs
running on multicore systems. It also outlines strategies to
optimize these schedules, maximizing fault tolerance and
minimizing peak-power dissipation [31]. Sharma et al. in-
troduced a heuristic method called ETA-HP designed to
optimize energy and temperature efficiency when schedul-
ing real-time periodic tasks on a heterogeneous multicore
system with DVFS capability. This technique consists of
four stages: Deadline Partitioning, Task-to-Core Allocation,
Temperature-Aware Scheduling, and Energy-Aware Schedul-
ing [32]. Moulik et al. developed a heuristic approach, called
CEAT for scheduling real-time periodic tasks on a hetero-
geneous multicore platform with DVFS support, focusing
on energy efficiency. The proposed strategy involves three
main stages: Deadline Partitioning, Task-to-Core Allocation,
and Energy-Aware Scheduling [33]. Several related studies
have explored temperature-aware and energy-efficient sched-
ulers for multicore processors. These include works such
as [34]–[36] which have proposed various techniques to
optimize task scheduling considering both temperature and
energy consumption on multicore architectures. However,
these scheduling techniques presented in [7], [14], [15], [23]–
[36] do not consider PCTGs do not consider PCTGs.

The energy minimization problem for tasks with condi-
tional precedence constraints has seen only a few proposed
approaches. One such approach, presented by Shin and Kim
in [37] focuses on scheduling conditional task graphs while
considering energy minimization through DVS. However,
their solution does not address task mapping and assumes
it is fixed. They use an insertion-based approach for task
ordering, considering mutual exclusion relations between
tasks. Walsh in [38] proposed a stochastic non-linear model
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for task speed assignment to minimize energy consumption,
resulting in a schedule represented in a table format with
tasks assigned at different speeds and start times based on
conditions. Unfortunately, the size of the schedule table
grows exponentially with the number of conditions, leading
to the problem of finding an optimal schedule table becoming
P-Space complete. Another technique proposed by Wu et al.
[39] utilizing DVS for energy consumption minimization.
They use the schedule table from [40] to identify the avail-
able slack time in worst-case scenarios. Furthermore, they
demonstrate that combining their DVS-based technique with
a genetic algorithm for task mapping can yield additional
energy savings. However, their approach assumes that all
branches are equally taken, which may not be realistic in
practice. Additionally, the size of the schedule table still
grows exponentially with the number of conditions, and the
genetic algorithm-based mapping can result in very high
complexity due to the task speed assignment and ordering
being handled by the inner loop of the algorithm for the
entire conditional task graph [16]. In summary, the limited
existing approaches for minimizing energy consumption in
tasks with conditional precedence constraints suffer from
challenges related to the exponential growth in schedule table
size with the number of conditions and high complexity
when using genetic algorithms for task mapping. Developing
more efficient algorithms to address these issues remains an
ongoing research area. Malani et al. in [17] introduced an
online scheduling algorithm named CAP-Online, designed
for conditional task graphs (CTGs) with a shared deadline,
operating under the dynamic power model. In this algorithm,
when a task is scheduled, it calculates the critical path,
identifies the available slack time for that task, and then
stretches it to make use of the available slack. However,
since CAP-Online needs to enumerate all the paths of the
conditional graph, its time complexity grows exponentially
as the number of tasks increases. Tariq and Wu and Tariq
et al. in [3], [41] proposed an energy-efficient priority-based
list scheduler for scheduling CTGs on MPSoCs. They use
successor-tree-consistent-deadline as a priority for each task
and employ NLP-based dynamic voltage scaling algorithms
to assign voltage to tasks. Additionally, techniques presented
in [3] assume that processors operate at discrete frequency
levels whereas the approach in [41] considers processors op-
erate at continuous frequency levels. The methods proposed
by [3], [16], [17], [41] are tailored for the scheduling of CTGs
on MPSoCs. However, a pressing requirement exists for an
energy-efficient approach to schedule PCTGs on MPSoCs.
TABLE 1 comprehensively summarizes the literature on task
scheduling techniques on multiprocessor systems.

In summary, our novel scheduling algorithms focus on the
energy-aware scheduling problem for dependent tasks, par-
ticularly PCGTs in multiprocessor systems to increase energy
efficiency and overall performance using novel heuristics.

III. SYSTEM MODELS
The target MPSoC is composed of a set P =
pe1, pe2, ......., pem consisting of m identical processors as
depicted in FIGURE 1. Each processor pei is equipped with
DVFS capabilities. This feature enables each processor to
operate at a discrete set of k finite frequency levels, de-
noted as [f1, f2, . . . , fk]. The total power consumption of a
processor, pei, is determined by considering both dynamic
power due to switching activity and static power resulting
from leakage. This total power can be computed using the
following equation (1), as presented in [42]:

Ptot = Ceff .V
2
dd.f + Lg.(Vdd.K3.e

K4.Vdd .eK5.Vbs

+ |Vbs|.Ij) (1)

Here, Ceff .V
2
dd.f represents the dynamic power, where

Ceff is the effective capacitance, Vdd denotes the supply
voltage, and f represents the frequency at which the proces-
sor operates. The term Lg denotes the number of logic gates
in the circuit. The equation also includes parameters K3,
K4, and K5, which are specific to the processor technology
being used. The values of these parameters depend on the
manufacturing process and the characteristics of the pro-
cessors. Additionally, Vbs represents the body-bias voltage,
and Ij is the body junction leakage current. These terms are
associated with the static power component due to leakage.
For a comprehensive understanding of the power model and
its intricacies, further details can be referred to in the original
work presented in [42]. In essence, this power model serves
as a crucial tool in assessing the total power consumption
of each processor within the MPSoC considering both dy-
namic and static power contributions. By leveraging DVFS
capabilities the system can dynamically adjust the frequency
and voltage of each processor to achieve energy-efficient
operation while meeting the performance requirements.
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FIGURE 1: Shared-Memory MPSoC Platform

In this study, we consider a set of applications denoted by
Γ = τ1, τ2, . . . , τn. These are n independent periodic appli-
cations. Each application, denoted as τi ∈ Γ, is described by
a 3-tuple (Gi, Di, Ti). The components of this tuple are as
follows:
Gi = (Vi, Ei, Ai) represents a CTG. A CTG is a DAG

with the following characteristics:
• Vi = vi,1, vi,2, . . . , vi,k is a set of vertices, where

each vertex vi,j ∈ Vi represents a task. A task vi,j
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TABLE 1: Summary of Literature on Task Scheduling Techniques

Reference Task Model Approach Limitations

[18]–[22] Independent Offline Minimize energy usage for independent tasks running on multicore architectures
without explicitly considering task dependencies or order of execution.

[7], [14], [15], [23]–[36] TG Offline While these methods effectively lower energy consumption in multicore architectures
however they overlook conditional precedence constraints.

[37]–[40] CTG Offline

The exponential increase in schedule table size with the growth of conditions, coupled with
the complexity involved in utilizing genetic algorithms for task mapping, renders these
approaches unsuitable for PCTGs. Additionally, the time complexity of these approaches is
exponential in the number of conditions in CTGs, making them ill-suited for PCTGs
due to the large number of conditions.

[3] CTG Offline
A promising offline scheduler, designed for CTGs for deployment on heterogeneous systems,
operates within polynomial time. However, this offline scheduler is missing an efficient online
counterpart required for effectively distributing slack that becomes available during runtime.

[41] CTG Hybrid Tailored for the continuous speed processor model, this approach introduces both an offline
and an online scheduler for scheduling a single CTG on an MPSoC platform.

[16], [17] CTG Hybrid

The offline and online schedulers are specifically developed for single CTGs, featuring
a time complexity that is exponential in the number of conditions within CTGs. This design
limitation restricts their straightforward extension for scheduling PCTGs, rendering them
unsuitable for PCTG scheduling.

corresponds to a sequential unit of execution and has a
worst-case execution time denoted by wi,j at maximum
processor frequency.

• Ei ⊂ Vi × Vi is a set of directed edges that represent
the dependencies among tasks. For example, an edge
(vi,j , vi,k) indicates that task vij must be completed
before task vi,k.

• Ai is a set of triplets (ei,j , ci,j , p(ci,j)), where ei,j ∈ Ei.
The components ci,j and p(ci,j) represent the condition
associated with ei,j and its probability, respectively.

The parameters Di,j and Ti are positive integers that
denote the relative deadline of jth task of τi and period of τi,
respectively. It holds that Di,j ≤ Ti. In the context of a CTG
τi ∈ Γ, a node is considered a source node if its in-degree is
zero, while a node is classified as a sink node if its out-degree
is zero. We assume that each τi possesses a single source
node vsource and a single sink node vsink. If this condition is
not met, we add dummy nodes vsource and vsink with worst-
case execution times set to zero. Additionally, we connect
vsource to all source nodes and establish connections from
all sink nodes to vsink.

In a CTG, the edges are categorized as either conditional
or unconditional. A conditional edge is linked to a condition
that determines whether the subsequent task will be executed.
In contrast, an unconditional edge has no such associated
condition. Every non-sink node in a CTG is considered a
FORK node. A FORK node with multiple outgoing edges
can be classified as either an AND-FORK node or an OR-
FORK node. In an OR-FORK node, all outgoing edges rep-
resent conditional edges with mutually exclusive conditions,
ensuring that only one of the immediate successors will be
executed. The probabilities associated with all the condi-
tional edges of an OR-FORK node add up to one. An AND-

FORK node, on the other hand, has all its outgoing edges as
unconditional edges, meaning that all immediate successors
will be executed without any conditional restrictions.

Additionally, any non-source node in a CTG is also a
JOIN node. A JOIN node with multiple incoming edges
can be either an AND-JOIN node or an OR-JOIN node.
In the case of an OR-JOIN node, all the parent nodes are
mutually exclusive, meaning that only one among them will
be executed. An AND-JOIN node is defined by having all its
parent tasks executed.

OR-FORK and OR-JOIN nodes are always present in pairs
and are collectively referred to as a conditional construct,
enabling the modeling of conditional constructs such as if-
then-else.

The properties of OR-FORK and OR-JOIN Nodes in Con-
ditional Task Graphs are.

• Correspondence and Traversal: An OR-FORK node
with k children (where k > 1) corresponds to an OR-
JOIN node with exactly k parents. Notably, the OR-
JOIN node does not directly succeed the OR-FORK
node. Nevertheless, regardless of the path taken, any
traversal starting from the OR-FORK node will in-
evitably lead to the OR-JOIN node.

• Disjoint Branch-Spanning Sub-graphs: For each OR-
FORK node and its corresponding OR-JOIN node, there
exists a property where any two paths originating from
the OR-FORK node and leading to different immediate
predecessors of the OR-JOIN node remain separate and
do not overlap. A path refers to a sequence of vertices
and edges traversed from an immediate successor of
the OR-FORK node to an immediate predecessor of
the OR-JOIN node. This definition ensures that each
path from the OR-FORK to the OR-JOIN node remains
distinct and does not intersect with other paths.
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• Absence of External Edges: There are no external
edges connected to the path encompassing all the ver-
tices and edges traversed from the OR-FORK node
to the OR-JOIN node. An external edge is defined as
an edge connecting a vertex outside of this path. This
property ensures that the path of an OR-FORK and its
corresponding OR-JOIN node remains self-contained,
with no external edges interfering with the paths con-
necting these nodes.

In the conditional task graph (CTG) depicted in FIGURE
2(a), v2 and v4 are OR-FORK nodes, v1 is an AND-FORK
node, v9 and v10 are OR-JOIN nodes, and v4 is an AND-
JOIN node.

sequential unit of execution and has a worst-case execution
time denoted by wi, j at maximum processor frequency.

• Ei ⊂ Vi × Vi is a set of directed edges that represent the
dependencies among tasks. For example, an edge (vi, j, vi,k)
indicates that task vi j must be completed before task vi,k.

• Ai is a set of triplets (ei, j, ci, j, p(ci, j)), where ei, j ∈ Ei. The
components ci, j and p(ci, j) represent the condition associ-
ated with ei, j and its probability, respectively.

The parameters Di and Ti are positive integers that denote
the relative deadline and period of τi, respectively. It holds that
Di ≤ Ti. In the context of a CTG τi ∈ Γ, a node is considered a
source node if its in-degree is zero, while a node is classified as
a sink node if its out-degree is zero. We make the assumption
that each τi possesses a single source node vsource and a single
sink node vsink. If this condition is not met, we add dummy
nodes vsource and vsink with worst-case execution times set to
zero. Additionally, we connect vsource to all source nodes and
establish connections from all sink nodes to vsink.

In a Conditional Task Graph (CTG), edges are categorized
as either conditional or unconditional. A conditional edge is
linked to a condition that determines whether the subsequent
task will be executed. In contrast, an unconditional edge has
no such associated condition. Every non-sink node in a CTG
is considered a FORK node. A FORK node with multiple out-
going edges can be classified as either an AND-FORK node or
an OR-FORK node. In an OR-FORK node, all outgoing edges
represent conditional edges with mutually exclusive conditions,
ensuring that only one of the immediate successors will be ex-
ecuted. The probabilities associated with all the conditional
edges of an OR-FORK node add up to one. An AND-FORK
node, on the other hand, has all its outgoing edges as uncon-
ditional edges, meaning that all immediate successors will be
executed without any conditional restrictions.

Additionally, any non-source node in a CTG is also a JOIN
node. A JOIN node with multiple incoming edges can be ei-
ther an AND-JOIN node or an OR-JOIN node. In the case of
an OR-JOIN node, all the parent nodes are mutually exclusive,
meaning that only one among them will be executed. An AND-
JOIN node is defined by having all its parent tasks executed.

OR-FORK and OR-JOIN nodes are always present in pairs
and are collectively referred to as a conditional construct, en-
abling the modeling of conditional constructs such as if-then-
else.

The properties of OR-FORK and OR-JOIN Nodes in Condi-
tional Task Graphs are.

• Correspondence and Traversal: An OR-FORK node
with k children (where k > 1) corresponds to an OR-JOIN
node with exactly k parents. Notably, the OR-JOIN node
does not directly succeed the OR-FORK node. Neverthe-
less, regardless of the path taken, any traversal starting
from the OR-FORK node will inevitably lead to the OR-
JOIN node.

• Disjoint Branch-Spanning Sub-graphs: For each OR-
FORK node and its corresponding OR-JOIN node, there

exists a property where any two paths originating from the
OR-FORK node and leading to different immediate prede-
cessors of the OR-JOIN node remain separate and do not
overlap. A path refers to a sequence of vertices and edges
traversed from an immediate successor of the OR-FORK
node to an immediate predecessor of the OR-JOIN node.
This definition ensures that each path from the OR-FORK
to the OR-JOIN node remains distinct and does not inter-
sect with other paths.

• Absence of External Edges: There are no external edges
connected to the path encompassing all the vertices and
edges traversed from the OR-FORK node to the OR-JOIN
node. An external edge is defined as an edge connecting
a vertex outside of this path. This property ensures that
the path of an OR-FORK and its corresponding OR-JOIN
node remains self-contained, with no external edges inter-
fering with the paths connecting these nodes.

In the conditional task graph (CTG) depicted in Fig. 2(a), v2
and v4 are OR-FORK nodes, v1 is an AND-FORK node, v9 and
v10 are OR-JOIN nodes, and v4 is an AND-JOIN node.

v1

v3v2 v4

v6v5 v7 v8

v9 v10

a ′a b b ′

(a)

v1

v3v2 v4

v6 v7

v9 v10

(b)

Figure 2: (a) CTG GA of application τA (b) A scenario of the CTG GA shown
in Fig.2(a)

A scenario in a CTG Gi represents a graph generated by a
single complete execution trace of the CTG. Fig. 2(b) illustrates
an example scenario of the CTG GA from Fig. 2(a), where a =
false and b = true.

In a CTG Gi, the activation space AS i comprises all possi-
ble conditions, each corresponding to a unique scenario. For
instance, the activation space of CTG GA in Fig. 1 is AS A =

ab, ab′, a′b, a′b′. The probability of a scenario s ∈ AS A, de-
noted by p(s), is calculated using the following equation:

p(s) =
∏

c∈s

p(c) (2)

Here, c represents a condition belonging to the scenario s,
and p(c) is the probability when c is true.

Each task in the conditional task graph is associated with its
”activation probability,” which represents the likelihood of the
task being executed. Let’s denote the set of scenarios in which
a specific task v j belongs to S j. The activation probability of
task v j is determined using the following calculation:

p(v j) =
∑

s∈S j

p(s) (3)

5

FIGURE 2: (a) CTG GA of application τA (b) A scenario of
the CTG GA shown in Fig. 2(a)

A scenario in a CTG Gi represents a graph generated
by a single complete execution trace of the CTG. FIGURE
2(b) illustrates an example scenario of the CTG GA from
FIGURE 2(a), where a = false and b = true.

In a CTG Gi, the activation space ASi comprises all
possible conditions, each corresponding to a unique scenario.
For instance, the activation space of CTG GA in FIGURE
2 is ASA = ab, ab′, a′b, a′b′. The probability of a scenario
s ∈ ASA, denoted by p(s), is calculated using the following
equation:

p(s) =
∏
c∈s

p(c) (2)

Here, c represents a condition belonging to the scenario s,
and p(c) is the probability when c is true.

Each task in the conditional task graph is associated with
its "activation probability," which represents the likelihood
of the task being executed. Let’s denote the set of scenarios
in which a specific task vj belongs to Sj . The activation
probability of task vj is determined using the following
calculation:

p(vj) =
∑
s∈Sj

p(s) (3)

where p(s) is defined in Equation (2).
We use two subscripts to refer to a task of a CTG for

example vi,j refers to jth task of CTG Gi.

In the embedded applications, tasks represent segments
of code, often with dependencies dictating their order of
execution. Classic DAG task models capture these relation-
ships, where precedence constraints link tasks. However,
some tasks have conditional dependencies, relying on spe-
cific conditions for execution. CTGs can model applications
with such constraints. An example is the MPEG decoder [43]
as demonstrated in FIGURE 3, where the decoding process
varies based on the video frame, with different procedures
for I, P, and B macro-block classifications. Traditional DAG-
based models cannot effectively represent these variable be-
haviors found in applications.

FIGURE 3: MPEG Decoder: A Real-world Example of the
CTG

IV. ENERGY EFFICIENT SUCCESSOR TREE
CONSISTENT EARLIEST DEADLINE FIRST SCHEDULER
In this section, we explain our scheduler, EESEDF. The sym-
bols used in explaining our novel scheduling and mapping
approach are listed in TABLE 2.

A. CTG PRIORITY
EESEDF schedules CTGs in the Γ one by one. For this
purpose each CTG Gi in set Γ is assigned a priority ωi as
follows:

ωi =
Ωi

Ti
(4)

where Ωi is the worst-case workload of the CTG Gi and it
calculated as follows:

Ωi = max{
∑

vi,j∈s

wi,j : s ∈ ASi} (5)

The parameter ωi signifies the priority of individual appli-
cations, where a greater ωi value implies a higher priority.
ω characterizes the computational weight of an application.
Scheduling heavier applications at an earlier instance ensures
ensures effective utilization of MPSoC resources.
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TABLE 2: Symbols and Descriptions

Symbol Description

E Set of directed edges
AS Set of all possible scenarios
Ai Set of triplets
µk Worst-case utilization
Ck

i Maximum sum of worst-case execution time
CTG Conditional task graph
TG Task graph
Gs Super graph
WCSij partial worst-case sets
ωi Priority of each PCTG
wi,j Worst case execution time of jth task of τi.
vij Task
v1,sink Sink node
N Number of jobs
est(vi,j,u, pek) Earliest start time of job
Gs Precedence constraints
ER New set of edges
GR Reduced super graph
CurrT ime The time when online heuristic is invoked
ECDi Edge consistent deadline
eti The worst-case execution time
NCCi Clock cycles
CPi Critical path
Vdd Supply voltage
pek Finish time of a job
ri,j,u Release time of a job
Di,j Relative deadline of jth task of τi
di,j,u Deadline of a job
ρi,j,u Start time of a job

B. TASK SCHEDULING
The task assignment algorithm allocates each task to a pro-
cessor such that the total worst-case utilization of all the
processors is minimized. This way, the workload across all
processors is balanced. The worst-case utilization of pek is
computed as follows:

µk =
∑
τi∈Γ

Ck
i

Ti
(6)

where Ck
i is the maximum sum of the worst-case execution

time of all the tasks of CTG τi assigned to pek in all possible
scenarios of CTG τi:

Ck
i = max{

∑
vi,j∈s,pek

wi,j : s ∈ ASi} (7)

Thus, equation (6) can be written as:

µk =
∑
τi∈Γ

max{
∑

vi,j∈s,pek
wi,j : s ∈ ASi}

Ti
(8)

Example 1: Consider the applications shown in FIG-
URE 4. Assume that the two applications are assigned
to two processors and the task assignment is pe1 =
[v1,1, v1,4, v1,5, v1,6, v2,1, v2,2, v2,3, v2,4] pe2 = [v1,2, v1,3].
The worst case execution times are w1,1 = 0.5, w1,2 =
1, w1,3 = 5, w1,4 = 2.5, w1,5 = 1, w1,6 = 0.5, w2,1 =
1, w2,2 = 2, w2,3 = 1, w2,4 = 1. The periods of the
applications are T1 = 9, T2 = 18. For simplicity, we assume
that deadlines are equal to the periods. For the given mapping

the worst case utilization for pe1 using Equation (8) is:

µ1 =
max{

∑
v1,j∈s,pek

w1,j :s∈AS1}
T1

+
max{

∑
v2,j∈s,pek

w2,j :s∈AS2}
T2

The activation space for the application τ1 is AS1 = {a, a′}
and for application τ2 is AS2 = {b, b′}. FIGURES 3(c), 3(d),
3(e) and 3(f) show the scenarios corresponding to conditions
a a′ b and b′respectively. Given the activation spaces and
corresponding scenarios the utilization of processor pek is:
µ1 =

max{ {w1,1+w1,4+w1,6}a,{w1,1+w1,5+w1,6}a
′}

T1
+

max{ {w2,1+w2,2+w2,4}b,{w2,1+w2,3+w2,4}b
′}

T2
= max{3.5,2}

9 +
max{4,3}

18
=0.6111.

Equation (8) can be used directly to determine the worst-
case utilization of pek. However, it requires enumerating all
possible scenarios of CTGs mapped to pek. Since the number
of scenarios of a CTG, in general, is exponential, therefore,
calculating the worst-case utilization using the equation (8)
has exponential time complexity. The worst-case utilization
of a processor can be computed in polynomial time if we
can determine Ck

i = max{
∑

vi,j∈s,pek
wi,j : s ∈ ASi} in

polynomial time. The value Ck
i can be determined if we can

find a set of tasks amongst all the tasks of τi assigned to pek
such that the sum of worst-case execution times of all the
tasks in the set is the maximum among all possible scenarios
of τi. Let such a set be represented by Sk

i and Γk be a set of
all the CTGs, each of which has at least one task assigned to
pek, we have:

Sk =
⋃

τi∈Γk

{Sk
i } (9)

Using Sk, Equation (8) can be written as:

µk =
∑

Sk
i ∈Sk

∑
vi,j∈Sk

i
wi,j

Ti
(10)

We develop a polynomial time Algorithm 2, for calculating
the Sk

i for pek. Given the set Lk
i of all the tasks of Gi

assigned to pek, Algorithm 2 computes the Sk
i by computing

the partial worst-case sets WCSij of each task vij ∈ Vi

in reverse topological order. The definition of WCSi,j is as
follows:

The worst-case set of a task vi,j ∈ Vi is computed based
on the following three cases.

• vi,j is a sink node. If vi,j /∈ Lk
i holds, we have

WCSi,j = ∅. Otherwise we have WCSi,j = {vi,j}.
• vi,j is an OR-FORK node and vi,o ∈ ISucci,j satisfies∑

vi,l∈WCSi,j
Wi,l = max{

∑
vi,l∈WCSi,q

Wi,l : vi,q ∈
ISucci,j}. If vi,j /∈ Lk

i holds, we have WCSi,j =
WCSi,o . Otherwise, we have WCSi,j = WCSi,o ∪
{vi,j}.

• vi,j is an AND-FORK node. We have

WCSk
i,j =

{⋃
vi,l∈ISuci,j

WCSi,l if vi,j /∈ Lk
i⋃

vi,l∈ISuci,j
WCSi,l ∪ {vi,j} otherwise

Example 2: Let’s demonstrate how ALGORITHM 2 com-
putes each set Sk

i in this example. We consider the appli-
cations τ1 and τ2, and their task assignments as given in
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v1,1

v1,2 v1,3

v1,4

v1,5
v1,6

a a ′

(a)

v2,1

v2,2 v2,3
v2,4

b b ′

(b)

v1,1

v1,2 v1,3

v1,4

v1,6

(c)

v1,1
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v2,1

v2,2 v2,4
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Figure 3: (a) CTG G1 of application τ1 (b) CTG G2 of application τ2 (c) Scenario corresponding to a (d) Scenario corresponding to a′ (e) Scenario corresponding
to b (f) Scenario corresponding to b′.

Using S k Eqution (8) can be written as:

µk =
∑

S k
i ∈S

k

∑
vi, j∈S k

i
wi, j

Ti
(10)

We develop a polynomial time Algorithm 2, for calculating
the S k

i for pek. Given the set Lk
i of all the tasks of Gi assigned

to pek , Algorithm 2 computes the S k
i by computing the partial

worst-case sets WCS i j of each task vi j ∈ Vi in reverse topolog-
ical order. The definition of WCS i, j is as follows:

Definition 1. The worst-case set of a task vi, j ∈ Vi is computed
based on the following three cases.

• vi, j is a sink node. If vi, j < Lk
i holds, we have WCS i, j = ∅.

Otherwise we have WCS i, j = {vi, j}.

• vi, j is an OR-FORK node and vi,o ∈ IS ucci, j satisfies∑
vi,l∈WCS i, j

Wi,l = max{
∑

vi,l∈WCS i,q
Wi,l : vi,q ∈ IS ucci, j}.

If vi, j < Lk
i holds, we have WCS i, j = WCS i,o . Otherwise,

we have WCS i, j = WCS i,o ∪ {vi, j}.

• vi, j is an AND-FORK node. We have

WCS k
i, j =


⋃

vi,l∈IS uci, j
WCS i,l i f vi, j < Lk

i⋃
vi,l∈IS uci, j

WCS i,l ∪ {vi, j} otherwise

Example 2: Let’s demonstrate how Algorithm 2 computes
each set S k

i in this example. We consider the applications τ1
and τ2, and their task assignments as given in Example 1. The
first step is to transform CTG G1 into a single sink node graph
by adding a sink node v1,sink and the corresponding edges: V1 =

V1 ∪ v1,sink and E1 = E1 ∪ (v1,6, v1,sink), (v1,3, v1,sink). The weight
of the sink node is set to w1,sink = 0. Let’s focus on determining
the set S 1

1. In Algorithm 2, we have a list Θ that contains all
the tasks of CTG G1 sorted in topological order. For L1

1 (with
i = 1 and k = 1), it contains all the tasks of CTG G1 mapped
to pe1, i.e., L1

1 = [v1,1, v1,4, v1,5, v1,6]. The list Θ is as follows:
Θ = [v1,1, v1,2, v1,4, v1,5, v1,3, v1,6, v1,sink]. Algorithm 2 traverses
the list Θ in reverse topological order, starting from the sink
node and moving towards the source node. It computes the
partial worst case sets for each task, initially set to empty. Let’s
go through the algorithm step by step:

1. First, the algorithm selects the sink node v1,sink. Since
v1,sink is a sink node and v1,sink < L1

1, we have WCS 1,sink =

∅.

2. Next, it selects v1,6. As v1,6 is an AND-FORK node with
only one immediate successor, which is v1,sink, and v1,6 ∈

L1
1, we have WCS 1,6 = WCS 1,6 ∪WCS 1,sink ∪ v1,6 = v1,6.

3. Then, v1,3 is selected. Since v1,3 < L1
1, we have WCS 1,3 =

WCS 1,3 ∪WCS 1,6 = ∅.
4. Next, v1,5 is chosen. As v1,5 ∈ L1

1, we have WCS 1,5 =

WCS 1,5 ∪ WCS 1,6 ∪ v1,5 = v1,6, v1,5. Additionally,
WCS 1,4 = WCS 1,4 ∪WCS 1,6 ∪ v1,4 = v1,4, v1,6.

5. v1,2 is an OR-Fork node with two immediate successors,
v1,4 and v1,5. Since

∑
v1, j∈WCS 1,4

w1, j >
∑

v1,l∈WCS 1,5
w1,l (i.e.,

(2 + 0.5) > (1 + 0.5)) and v1,2 < L1
1, we have WCS 1,2 =

WCS 1,2 ∪WCS 1,4 = v1,4, v1,6.
6. Finally, we have WCS 1,1 = WCS 1,1∪WCS 1,2∪WCS 1,3∪

v1,1 = v1,1, v1,4, v1,6 as v1,1 ∈ L1
1.

After traversing the list Θ, we obtain S 1
1 = WCS 1,1 since v1,1

is the source node in G1. Similarly, we can compute S 1
2 as

S 1
2 = v2,1, v2,2, v2,4. Given the sets S 1

1, S 1
2, and S 1 = S 1

1, S
1
2,

the utilization of pe1 can be calculated using Equation (10):

µ1 =
∑

S 1
i ∈S

1
1 ,S

1
2

∑
v1, j∈S

1
i

w1, j

Ti
=

∑
v∈S 1

1
w

T1
+

∑
v∈S 1

2
w

T2
=

(w1,1+w1,4+w1,6)
T1

+
(w2,1+w2,2+w2,4)

T2
= 3.5

9 +
4
18 = 0.6111. It’s worth noting that the

worst-case utilization for pe1 computed using Equation (10) is
the same as the utilization obtained using Equation (8). The key
difference is that using Equation (10), the worst-case utilization
of any processor can be obtained in polynomial time.

The details of our task assignment algorithm are given in Al-
gorithm 1. It first selects a CTG in τi ∈ Γ that has the maximum
value of ω (line 8) and computes the successor tree deadline of
each vi, j ∈ Vi (line 9). Then it constructs a list Θ that contains
all the tasks of Gi sorted in non-increasing order of successor
tree deadlines (line 10). Sorting Θ in non-increasing order of
successor tree deadlines implies that Θ is sorted in topological
order. Once a CTG Gi is selected, all its tasks are assigned to
processors and scheduled (lines 11-35). Algorithm 1 tentatively
assigns each task vi j ∈ Vi to each processor pek ∈ P and com-
putes the total worst-case utilization of pek (lines 11-20). A list
of Lk

i is constructed that contains all the tasks of Gi assigned to
pek (line 11). The tasks that are mutually exclusive to vi, j are
removed from Lk

i (line 12). Notice that each time only the set
S k

i of Gi is re-computed, because only the set S k
i is effected if

vi j is assigned to pek (lines 15-18). The task vi j is assigned to
a processor that has minimum worst-case utilization (line 21).
Task vi, j can submit an infinite number of jobs separated by the
period Ti, where each of its jobs has a worst case execution time

7

FIGURE 4: (a) CTG G1 of application τ1 (b) CTG G2 of application τ2 (c) Scenario corresponding to a (d) Scenario
corresponding to a′ (e) Scenario corresponding to b (f) Scenario corresponding to b′.

Example 1. The first step is to transform CTG G1 into a
single sink node graph by adding a sink node v1,sink and
the corresponding edges: V1 = V1 ∪ v1,sink and E1 =
E1 ∪ (v1,6, v1,sink), (v1,3, v1,sink). The weight of the sink
node is set to w1,sink = 0. Let’s focus on determining the
set S1

1 . In ALGORITHM 2, we have a list Θ that contains
all the tasks of CTG G1 sorted in topological order. For L1

1

(with i = 1 and k = 1), it contains all the tasks of CTG
G1 mapped to pe1, i.e., L1

1 = [v1,1, v1,4, v1,5, v1,6]. The list
Θ is as follows: Θ = [v1,1, v1,2, v1,4, v1,5, v1,3, v1,6, v1,sink].
ALGORITHM 2 traverses the list Θ in reverse topological
order, starting from the sink node and moving towards the
source node. It computes the partial worst-case sets for each
task, initially set to empty. Let’s go through the algorithm
step by step:

1) First, the algorithm selects the sink node v1,sink. Since
v1,sink is a sink node and v1,sink /∈ L1

1, we have
WCS1,sink = ∅.

2) Next, it selects v1,6. As v1,6 is an AND-FORK node
with only one immediate successor, which is v1,sink,
and v1,6 ∈ L1

1, we have WCS1,6 = WCS1,6 ∪
WCS1,sink ∪ v1,6 = v1,6.

3) Then, v1,3 is selected. Since v1,3 /∈ L1
1, we have

WCS1,3 = WCS1,3 ∪WCS1,6 = ∅.
4) Next, v1,5 is chosen. As v1,5 ∈ L1

1, we have
WCS1,5 = WCS1,5 ∪ WCS1,6 ∪ v1,5 = v1,6, v1,5.
Additionally, WCS1,4 = WCS1,4∪WCS1,6∪v1,4 =
v1,4, v1,6.

5) v1,2 is an OR-Fork node with two immediate suc-
cessors, v1,4 and v1,5. Since

∑
v1,j∈WCS1,4

w1,j >∑
v1,l∈WCS1,5

w1,l (i.e., (2 + 0.5) > (1 + 0.5)) and
v1,2 /∈ L1

1, we have WCS1,2 = WCS1,2∪WCS1,4 =
v1,4, v1,6.

6) Finally, we have WCS1,1 = WCS1,1 ∪ WCS1,2 ∪
WCS1,3 ∪ v1,1 = v1,1, v1,4, v1,6 as v1,1 ∈ L1

1.
After traversing the list Θ, we obtain S1

1 = WCS1,1 since
v1,1 is the source node in G1. Similarly, we can compute
S1
2 as S1

2 = v2,1, v2,2, v2,4. Given the sets S1
1 , S1

2 , and
S1 = S1

1 , S
1
2 , the utilization of pe1 can be calculated using

Equation (10): µ1 =
∑

S1
i ∈S1

1 ,S
1
2

∑
v1,j∈S1

i
w1,j

Ti
=

∑
v∈S1

1
w

T1
+∑

v∈S1
2
w

T2
=

(w1,1+w1,4+w1,6)
T1

+
(w2,1+w2,2+w2,4)

T2
= 3.5

9 +
4
18 = 0.6111. It’s worth noting that the worst-case utilization

for pe1 computed using Equation (10) is the same as the
utilization obtained using Equation (8). The key difference
is that using Equation (10), the worst-case utilization of any
processor can be obtained in polynomial time.

The details of our task assignment algorithm are given in
ALGORITHM 1. It first selects a CTG in τi ∈ Γ that has the
maximum value of ω (line 8) and computes the successor tree
deadline of each vi,j ∈ Vi (line 9). Then it constructs a list
Θ that contains all the tasks of Gi sorted in non-increasing
order of successor tree deadlines (line 10). Sorting Θ in non-
increasing order of successor tree deadlines implies that Θ is
sorted in topological order. Once a CTG Gi is selected, all
its tasks are assigned to processors and scheduled (lines 11-
35). ALGORITHM 1 tentatively assigns each task vij ∈ Vi

to each processor pek ∈ P and computes the total worst-case
utilization of pek (lines 11-20). A list of Lk

i is constructed
that contains all the tasks of Gi assigned to pek (line 11). The
tasks that are mutually exclusive to vi,j are removed from Lk

i

(line 12). Notice that each time only the set Sk
i of Gi is re-

computed because only the set Sk
i is affected if vij is assigned

to pek (lines 15-18). The task vij is assigned to a processor
that has minimum worst-case utilization (line 21). Task vi,j
can submit an infinite number of jobs separated by the period
Ti, where each of its jobs has a worst-case execution time
that equals to wi,j . We use three subscripts to refer to a job
of a task. vi,j,u refers to uth job of the task vi,j . For periodic
CTGs, it is sufficient to construct a schedule for one hyper-
period, which is the least common multiple of the periods
of all the applications in the task set Γ. ALGORITHM 1
determines the number of jobs N of task vi,j (line 21) as
follows:

N =
H

Ti
(11)

For each job vi,j,u release time is computed as follows:

ri,j,u = max{(u−1)Ti,max{ζ(vi,l,u) : vi,l,u ∈ IPred(vi,j,u)}}
(12)

and the deadline is computed as follows as follows:

di,,j,u = (u− 1)Ti +Di,j (13)

The start time (line 24) of a job vi,j,u is calculated as follows:

ρi,j,u = max{ri,j,u, est(vi,j,u, pek)} (14)
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ALGORITHM 1: Energy Efficient Earliest Succes-
sor Tree Consistent Earliest Deadline First Algorithm
(EESEDF)

input : Set Γ of periodic applications, MPSoC with m
processors, Set Ω of Priorities of all τi ∈ Γ.

output: Super Graph Gs(V,E).

1 Sk ← ∅, ∀pek ∈ P ;
2 Γ1 ← Γ;
3 Failure← False;
4 Create conditional graph Gs with empty sets E, V, and A;
5 while Γ1 is not Empty do
6 Select τi ∈ Γ1 that has maximum value of ω;
7 Compute the successor tree consistent deadline of each

vi,j ∈ Vi;
8 Construct a list Θ of all tasks vij ∈ Vi sorted in

non-increasing order of successor tree consistent
deadline;

9 for each vi,j ∈ Θ from source to sink do
10 for each pek ∈ P do
11 tempk ← ∅ ;
12 Construct set Lk

i of all the tasks of CTG τi
assigned to processor pek;

13 Lk
i ← Lk

i \Mutexi,j ;
14 Lk

i ← Lk
i ∪ {vi,j};

15 Find the previous Sk
i ∈ Sk and assign to

tempk;
16 Sk

i ← worst_case_set(Lk
i ,Θ);

17 Sk ← (Sk \ {tempk}) ∪ {Sk
i };

18 µk =
∑

Sk
i ∈Sk

∑
vi,l∈Sk

i
wi,l

Ti
;

19 Sk ← (Sk \ {Sk
i }) ∪ {tempk} ;

20 Find pek that has minimum worst case utilization
µk and assign vi,j to pek;

21 Sk ← (Sk \ {tempk}) ∪ {Sk
i };

22 Compute the number of instances N of vi,j in H
using equation (11);

23 for u = 1 to Ni do
24 Compute the release time and deadline of vi,j,u

using equations (12) and (13);
25 Compute ρi,j,u the start time of vi,j,u;
26 ζi,j,u ← ρi,j,u + wi,j,u;
27 V ← V ∪ {vi,j,u};
28 E ← E ∪ {(vi,l,u, vi,j,u) : ∀vi,l ∈ IPredi,j};
29 A← A ∪ {(vi,l,u, vi,j,u) : ∀vi,l ∈

IPredi,j ∧ vi,j is OR-FORK node };

30 Γ1 ← Γ1 \ τi;
31 Insert additional edges in E subject to constraints C1, C2

and C3;
32 Solve the NLP to assign each job an optimal speed;

ALGORITHM 2: The Worst-case scenario
1 worst_case_set(Lk

i ,Θ)
2 for each task vi,j in Θ from sink to source do
3 if vij is a sink node then
4 WCSi,j ← ∅;
5 else if vi,j is an OR-FORK node then
6 Find a child vi,l of vi,j among all the children of

vi,j in the τi such that
∑

vi,q∈WCSi,l
wi,q is

maximized;
7 WCSi,j ←WCSi,l;

8 else
9 WCSi,j ← ∅;

10 for each vi,l ∈ ISuci,j do
11 WCSi,j ←WCSi,j ∪WCSi,l;

12 if vi,j ∈ Lk
i then

13 WCSi,j ←WCSi,j ∪ {vi,j}

14 Sk
i ←WCSi,source;

15 return Sk
i ;

where est(vi,j,u, pek) is the earliest start time of job vi,j,u on
processor pek and it is the finish time of the latest scheduled
job on pek that is concurrent to vi,j,u. Tasks that are con-
current with vi,j are part of the set cSeti,j . Two tasks, vi,j
and vi,k ∈ Gi, are considered concurrent if they cannot be
reached from each other in Gi and are not mutually exclusive.
Moreover, cSeti,j includes the following tasks:

cSeti,j = cSeti,j ∪
⋃

τq∈Γ\τi

Vq (15)

Additionally, all jobs of the same tasks are also concurrent.
The algorithm constructs the super graph Gs(V,E,A)

containing all jobs of the tasks of every CTG in the set
Γ step by step (lines 29-31). Initially, set V is empty, at
each step it adds the job vi,j,u to set V (line 29). Each job
vi,j,u inherits the precedence constraints of task vi,j (line 30).
Edges (vi,l,u, vi,j,u) for all vi,l ∈ IPredi,j are added to the
set E which is initially empty. Furthermore, if (vi,l,u, vi,j,u)
is a conditional edge, it is inserted into the set A. Algorithm 1
repeats the process until all the CTGs have been successfully
scheduled.

To account for the resource constraints introduced by the
schedule, the algorithm inserts additional edges into the set E
(Line 38). This insertion of edges helps manage and optimize
the use of resources within the system. Specifically, an edge
(vi,j,u, vw,o,l) is inserted between jobs vi,j,u and vw,o,l if the
following three constraints are simultaneously satisfied:

• C1: Both vi,j,u and vw,o,l are scheduled on the same
processor.

• C2: The start time of task vw,o,l, denoted as ρw,o,l, is
greater than the start time of vi,j,u, denoted as ρi,j,u.

• C3: Task vw,o,l belongs to the concurrent set cSeti,j,u,
indicating that vi,j,u and vw,o,l are concurrent tasks.

It takes O(ne) time to calculate successor-tree-consistent
deadline, where n represents the count of vertices and e
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the count of edges in GS . The worst-case time complexity
for computing the activation probabilities of all the tasks is
O(nClog(C)η) [13] where C is the number of conditions
in the CTG and η is the maximum number of outgoing
edges of all the OR-FORK nodes. To determine whether
two tasks are mutually exclusive, we use the algorithm pre-
sented in [13]. It takes O(n2C3) time to check if each pair
of tasks are mutually exclusive. Demonstrating the worst-
case time complexity for ALGORITHM 2 as O(n + e)
is straightforward. Given that ALGORITHM 2 executes m
times per task, the resulting worst-case time complexity
becomes O(mn(n + e)). Consequently, the worst-case time
complexity for ALGORITHM 1 can be expressed as O(ne+
mn2 +mne+ nClog(C)η + n2C3) excluding the NLP.

V. ASSIGNING SPEED TO TASKS
Our offline speed assignment approach deploys NLP for
assigning each job the optimal speed.

A. NLP APPROACH
To address the task speed assignment problem, we formulate
it as a convex Non-Linear Programming (NLP) problem. The
main goal of this NLP problem is to minimize the expected
energy consumption of a single global schedule for the hyper-
period H , while also ensuring that all timing and precedence
constraints are met. In essence, the NLP problem seeks to
find the optimal speeds for each task in the global schedule,
such that the overall energy consumption is minimized, and
the tasks can be executed within their specified time frames
while respecting any dependencies between them. By for-
mulating the problem as a convex NLP, we can effectively
find a solution that simultaneously achieves energy efficiency
and satisfies the various constraints imposed by the task
dependencies and timing requirements. By solving this NLP
problem, we obtain the optimal speed assignments for each
task in the schedule, leading to a well-optimized global
schedule that minimizes energy consumption and meets all
the necessary timing and precedence constraints.

The energy consumed by a task, vi running at a frequency
fi, is calculated as follows:

E(vi, Vddi
) = P (vi) . wi (16)

In the context of the task speed assignment problem, we en-
counter two scenarios based on whether we aim to minimize
the total processor energy or the total dynamic processor
energy. This distinction is determined by the function P (vi),
which can represent either the dynamic power function or
the total power function. Under a specific power model, the
expected total energy consumption of CTG Gs is expressed
as follows: ∑

s∈AS

E(s)p(s) (17)

In the context of the super graph Gs, the activation space AS
represents the set of all possible scenarios. In each scenario,

s ∈ AS, p(s) denotes the probability, and E(s) indicates the
energy consumption.

However, calculating the expected energy consumption of
a conditional task graph using Equation (17) incurs exponen-
tial time complexity. To alleviate this, for a global schedule
where each task in Gs(E, V,A) has a single speed for each
scenario, the expected energy consumption is computed as
follows: ∑

vj∈V

E(vj , Vddi
)p(vj) (18)

The super graph Gs effectively represents the precedence
constraints imposed by both the initial global schedule and
the original task graphs. However, it may contain redundant
edges, which in turn introduce unnecessary constraints in
the NLP formulation. To address this issue, we construct a
reduced super graph denoted as GR by applying transitive
reduction to Gs. The transitive reduction process eliminates
all redundant edges from Gs, resulting in a streamlined
representation.

An edge (vi, vj) is considered redundant if there exists a
path from task vi to task vj via an intermediate task vz (where
z ̸= i, j). By removing such redundant edges, we obtain a
new set of edges: ER.

Having obtained the reduced super graph GR(V,ER, A),
the offline speed assignment problem minimizes the total
expected energy given as follows:

min
∑
vj∈V

E(vj , Vddj
).p(vj) (19)

subject to the following constraints:
• Execution time constraints:

∀vj , etj = NCj

K6LdVddj

((1 +K1)Vddj
+K2Vbs − Vth1

)α

(20)
• Precedence constraints:

∀(vj , vl) ∈ ER, ρj + etj ≤ ρl (21)

• Deadline constraints:

∀vj ∈ V, ρj + etj ≤ dj (22)

• Release time constraints:

∀vj ∈ V, ρj ≥ rj (23)

• Upper and lower bound on supply voltage:

∀vj ∈ V, Vdd1 ≤ Vddj ≤ Vddk
(24)

• Execution time non-negativity constraints:

∀vj ∈ V, ρj ≥ 0 (25)

Any invalid values are rounded up to the nearest higher
discrete voltage level to guarantee the accuracy of the discrete
voltage levels assigned to tasks using NLP. It is important to
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ALGORITHM 3: Computing ECD, ECR and CP
input : Super Graph Gs, Execution times of tasks in super

graph Gs determined by NLP, Probabilities of all
tasks in Gs

output: ECDi, ECRi and CPi of each vi ∈ Gs

1 Topological sort graph Gs;
2 for each vi ∈ Gs starting from Highest topological order

do
3 ECRi ← max{ri,max{ECRj + etj : ∀vj ∈

IPredi}};
4 for each vi ∈ Gs starting from lowest topological order do
5 ECDi ← min{di,min{ECDj − etj : ∀vj ∈

ISuci}};
6 CPi ← 0;
7 P ← 0;
8 for each vj ∈ ISuci do
9 if P < p(vj) || (P == p(vj) && CPi < CPj)

then
10 if ECRj < ECDi then
11 CPi ← CPj ;
12 P ← p(vj);

13 CPi ← CPi + eti;

ALGORITHM 4: Online Dynamic Voltage Scaling
input : vi, CurrT ime, ECDi, wi, NCCi and CPi

output: fi
1 Calculate the slack available for vi:

Slack = ECDi − CurrT ime− eti;
2 Calculate the MultRatio for vi: MulRatio← slack+CPi

CPi
;

3 Calculate the frequency fi for vi: fi ← NCCi
eti×MulRatio

;
4 Round fi to the nearest higher discrete frequency if fi is an

invalid frequency level and execute it at min{fi, f ′
i},

where f ′
i is the frequency assigned by NLP;

note that during this conversion process, where voltages as-
signed to tasks are discretized, the task-to-voltage assignment
may no longer remain optimal.

Please note that adding voltage selection overhead is trivial
and can be seamlessly integrated into our NLP model in a
manner similar to the approach discussed in [44].

It is noteworthy that the presented optimization prob-
lem features a convex objective function as well as linear
constraints. This places the problem within the realm of
general convex nonlinear optimization problems. Thanks to
the nature of these problems, they can typically be addressed
within a polynomial time [44]. This is due to the availability
of efficient algorithms with polynomial complexity for both
Linear Programming (LP) and convex Nonlinear Program-
ming (NLP) [45].

B. ONLINE DVS HEURISTIC
The NLP-based approach has a high time complexity. There-
fore, it is not suitable for distributing slack online which
arises from early job completion or the possibility of certain
jobs not being executed in some scenarios. To address this

limitation, we propose an efficient online Dynamic Voltage
Scaling (DVS) heuristic that assigns an appropriate speed
(frequency/voltage) to each job. The algorithm, outlined
in ALGORITHM 4, operates in constant time complexity
(O(1)).

ALGORITHM 3 operates on the super graph Gs, which
captures both the precedence constraints and the constraints
introduced by the offline schedule. The eti is the execution
time of ith task in Gs determined by the NLP. The algorithm
begins by topologically sorting the graph Gs (line 1). Then,
it calculates the edge consistent release time (ECRi) for
each job vi ∈ Gs (lines 2-3). The edge consistent release
time determines the earliest possible start time for a job.
Subsequently, the algorithm computes the edge consistent
deadline (ECDi) (line 5). The ECDi for job vj signifies
the latest time by which the job must be completed. Finally,
the critical path of each job vi is determined according to the
following procedure:

The probabilistic critical path CPi is used to determine
the amount of slack to be allocated to the job vi (lines 6–13).
The probabilistic critical path is the path that has the highest
probability of execution. Initially CPi and P are both set to
zero. The CPi and P are updated as follows ∀vj ∈ ISuci:

CPi =


CPj , if P < p(vj) or

(P = p(vj) ∧ CPi < CPj)

and ECRi < ECDi,

CPi, otherwise.

(26)

P =


p(vj), if P < p(vj) or

(P = p(vj) ∧ CPi < CPj)

and ECRi < ECDi,

P, otherwise.

(27)

Finally, update CPi as:

CPi = CPi + eti (28)

Condition ECRj < ECDi ensures that the jobs on the
critical path can share the slack available for job vi. Notice
that CPi and ECDi are computed in reverse topological
order.

Please note that although ALGORITHM 3 is delineated
within this section, its execution occurs in the offline phase.
This takes place once the super graph Gs is fully constructed
and the resource constraints are integrated within Gs. AL-
GORITHM 3 is used to ascertain the necessary inputs (ECD,
ECR, and CP) for ALGORITHM 4. It is straightforward to
show that the worst-case time complexity of ALGORITHM
3 is O(n+ e), where n represents the count of vertices and e
denotes the count of edges in Gs.

The online DVS heuristic takes several input parameters,
including vi, CurrT ime, ECDi, wi, NCCi, and CPi.
Here, CurrT ime represents the time at which the online
heuristic is invoked, ECDi denotes the edge consistent dead-
line, eti refers to the execution time determined by NLP and
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TABLE 3: CTGs Sets.

Set Conditional Task Graphs
Set-1 CTG1,1 CTG2,1 CTG3, 1CTG4
Set-2 CTG5, 1 CTG6, 1CTG7,1CTG8
Set-3 1CTG9, 1CTG10, 1CTG11,1CTG12
Set-4 CTG13, 1CTG14, 1CTG15, 1CTG16, 1 CTG17
Set-5 CTG18,1 CTG19, 1CTG20, 1CTG21, 1 CTG22
Set-6 CTG23, 1CTG24, 1CTG25, 1CTG26, 1 CTG27
Set-7 CTG28, 1CTG29, 1CTG30, 1CTG31

NCCi is clock cycles of job vi at maximum frequency, and
CPi represents the critical path of job vi. The offline compu-
tation of ECDi and CPi is performed using ALGORITHM
3, which is described above.

Before executing each job, the online-DVS ALGORITHM
4 is invoked to determine the appropriate frequency for that
particular job. Our online heuristic assumes that the jobs are
executed in the order specified by the offline constructed
schedule. In ALGORITHM 4, the following steps are per-
formed:

1) Firstly, the algorithm calculates the available slack for
each job vi (line 1).

2) Based on the critical path CPi, it determines the
amount of slack to allocate to job vi (line 2). Any
remaining slack is utilized by the jobs on the critical
path.

3) It computes the frequency for job vi (line 3).
4) Finally, discretize the frequency assigned to job vi.

VI. EXPERIMENTAL RESULTS
In our study, we conducted a comprehensive evaluation of
both our offline scheduling approach, EESEDF, and the on-
line DVS heuristic. To provide a thorough analysis, we con-
structed seven sets of CTGs, as illustrated in TABLE 3. Each
set was carefully formed using the CTGs listed in TABLE
4. The evaluation was performed on a diverse set of bench-
marks presented in TABLE 3. To assess the performance of
our scheduling approaches, EESEDF, and EESEDF+Online-
DVS, in a realistic scenario, we evaluated our schedulers
using real-world benchmarks while using LESA [14], NCM
[15], IOETCS-Heuristic [3], BESS [16] and CAP-Online
[17] for comparison. Chen et al. [14] developed LESA
scheduler, integrating task prioritization and weight-based
energy distribution strategies. This method employs DVFS to
assign discrete speed levels to tasks, aiming to approximate
an optimal schedule by considering task dependencies and
energy constraints. Maurya et al. [15] presented an enhanced
version of the NCM sub-algorithm within the EASLA task
scheduling framework. This improved algorithm, tailored for
DVFS-enabled heterogeneous cluster systems, incorporates
the PEFT algorithm to efficiently compute schedule length.

The offline scheduling approach presented in [3] is tai-
lored for tasks with conditional precedence constraints on
heterogeneous NoC-based MPSoCs featuring heterogeneous
cores, aimed at enhancing energy efficiency by amalgamating
task mapping, scheduling, and voltage scaling. Designed

specifically for tasks with individual deadlines, this technique
employs an NLP-based DVFS algorithm to assign continuous
frequencies and voltages to tasks and communications, later
converted into valid discrete levels through either ILP or
heuristic methods. BESS [16] designed for optimizing task
mapping, ordering, and dynamic voltage/frequency scaling
(DVFS) on heterogeneous multi-core systems, specifically
tailored for Conditional Task Graphs where tasks share
a common deadline. It employs a mapping algorithm de-
signed to evenly distribute latency and energy dissipation
across cores, thereby maximizing available slack time with-
out notably increasing energy consumption. The schedul-
ing strategy utilizes workload statistics to minimize average
power use while maintaining adherence to deadlines. While
the BESS algorithm exhibits pseudo-linear complexity for
smaller benchmarks with few OR-FORK nodes, its time
complexity generally grows exponentially with the number
of conditions in the CTGs. Malani et al. [17] presented an
online scheduling algorithm termed CAP-Online, tailored
for CTGs with a shared deadline, under the dynamic power
model. This algorithm dynamically calculates the critical
path when scheduling a task, determines the available slack
time, and extends it to maximize utilization of the slack
time. Just like BESS, CAP-Online time complexity generally
grows exponentially with the number of conditions in the
CTGs.

These existing techniques represent the current bench-
marks in the field of energy-efficient scheduling. Our eval-
uation process aimed at thoroughly analyzing the strengths
and weaknesses of EESEDF and its performance in com-
parison to established methods. By conducting evaluations
on both synthetic and real benchmarks, we ensured a robust
and comprehensive assessment of our proposed approach’s
capabilities. Overall, the evaluation results provided valuable
insights into the effectiveness of EESEDF and its potential to
outperform existing approaches in terms of energy efficiency
and scheduling performance. These findings contribute sig-
nificantly to the advancement of energy-efficient scheduling
techniques and can guide further research in this important
domain.

A. EXPERIMENTAL SETUP
In our experimental setup, we employed the 70 nm technol-
ogy as outlined in TABLE 5 adopted from the work by Chen
et al. [4] to conduct our evaluations on benchmarks listed in
TABLE 4 and TABLE 6. The continuous voltage range was
set to 0.65 ≤ Vdd ≤ 0.85, and the discrete voltage levels used
are [0.65, 0.70, 0.75, 0.80, 0.85]. The maximum frequency
fmax was set to 3.1 GHz, corresponding to the maximum
supply voltage Vdd = 0.85. The transition overhead in
switching processor frequency is set to 100 cycles [46]. To
implement our offline scheduling approach (EESEDF), the
online DVS heuristic, and other approaches for comparison,
we employed Matlab version R2020a. Additionally, we uti-
lized the fmincon solver to solve the NLP problems arising in
the NLP-based approach of EESEDF. The hardware platform
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TABLE 4: Benchmarks Characteristics.

Benchmarks x/y/z T vol len D Benchmarks x/y/z T vol len D Benchmarks x/y/z T vol len D
CTG1 15/1/3 185 151.27 71.7 175 CTG2 18/1/2 185 186 98.6 176 CTG13 34/4/10 274 279.6 142 260
CTG3 20/3/7 370 185 108 351 CTG4 20/3/6 370 197.6 94.6 352 CTG14 35/4/10 274 280 143 260
CTG5 18/2/5 170 139.8 64.3 161 CTG6 17/1/3 170 170.5 107.3 162 CTG15 15/1/3 548 151.2 71.7 520
CTG7 17/1/3 340 171.8 63.1 323 CTG8 20/1/2 340 195.3 81.2 325 CTG16 32/2/4 548 257 148.8 522
CTG9 15/1/3 184 155.7 71.7 175 CTG10 18/1/2 184 185.6 98.6 176 CTG17 16/1/3 548 151.2 71.7 530
CTG11 20/3/7 368 185 108 349 CTG12 20/3/6 368 372 135.8 350 CTG18 34/2/5 345 346 174 339
CTG19 35/6/14 690 252.1 110.6 655 CTG20 34/3/7 690 332.3 216 657 CTG21 34/2/5 345 345.31 174.64 339
CTG22 20/1/2 690 195.3 81.2 680 CTG23 30/2/6 305 305.58 188.7 298 CTG24 34/2/6 305 306 189 299
CTG25 33/4/9 610 272.5 148.8 598 CTG26 32/4/10 610 227.4 154.1 597 CTG27 15/1/3 610 155.7 71.7 599
CTG28 34/3/6 324 325 137.9 322 CTG29 32/6/14 648 188.4 87.8 640 CTG30 32/2/4 648 246.1 104.7 643
CTG31 34/3/6 324 324.5 137.9 321

TABLE 5: 70 nm processor technology parameters

Parameter Value Parameter Value

K1 0.063 K2 0.153
K3 5.38× 10−38 K4 1.83
K5 4.19 K6 5.26× 10−12

Ceff 4.30× 10−10 α 1.5
Ij 4.80× 10−10 Lg 4.00× 106

Vbs 0 Vth 0.244

TABLE 6: Large Benchmarks Characteristics

Becnhmarks x y z T

CTG-32 100 4 8 680
CTG-33 110 5 10 650
CTG-34 120 6 13 690
CTG-35 130 7 14 685
CTG-36 150 8 16 705
CTG-37 200 20 50 745
CTG-38 250 30 60 770
CTG-39 300 35 72 1000
CTG-40 350 40 83 1010
CTG-41 400 50 130 1030

used for our experiments featured an Intel(R) Core(TM) with
CPU, i5-4570 of clock frequency, 3.20 GHz, 8.00 GB of
memory, and a 3 MB cache. Notably, the benchmarks listed
in TABLE 4 are the same ones employed in the work by
Lombardi et al. [13]. We utilized these benchmarks to ensure
consistency with the existing literature and made use of
the available input data, including the probabilities of each
condition, worst-case execution times, and periods for the
respective tasks.

We have also created 10 large benchmarks, detailed in
TABLE 6, specifically to demonstrate the scalability of our
approach and the limitations of existing single CTG sched-
ulers found in the literature. For a fair comparison, we have
set the task deadlines in the first five benchmarks (CTGs 32
- 36) within a range of 0.65T to T . For the remaining five
benchmarks, all tasks share a common deadline equal to their
period because the approaches we are comparing against are
designed for the task model with common deadlines.

In our experimental analysis, we utilized eight real bench-
marks sourced from the Embedded System Synthesis Bench-
marks Suite (E3S). This suite is widely recognized in task
mapping and scheduling research [7]. Robot benchmark
represents tasks used by industrial robots to automate or

perform processes/controls. ATR (Automatic Target Recog-
nition) serves as a real-time streaming application utilized
for pattern recognition. MP3-decoder benchmark involves
Huffman decoding and Inverse Discrete Transform (IDCT).
Office benchmark comprises tasks for text processing, image
rotation, and gray-scale to binary conversion. Consumer-
1 and Consumer-2 benchmarks encompass tasks related to
JPEG decompression or compression, along with conver-
sions from RGB to YIQ and RGB to CMYK. This rigorous
and well-defined experimental setup allowed us to conduct
comprehensive evaluations and draw meaningful conclu-
sions about the performance and efficiency of our proposed
EESEDF approach and the comparison against other state-
of-the-art techniques.

B. RESULTS AND DISCUSSION

1200

1000

800

600

400

200

0

E
ne

rg
y 

C
on

su
m

pt
io

n 
(m

J)

set-1 set-2 set-4 set-5 set-6 set-7
Benchmarks 

 EESEDF+Online-DVS
 EESEDF

FIGURE 5: Energy Consumption on 4 Processors

In our comprehensive research, we initiated two distinct
sets of experiments to elucidate the advantages of integrating
a low-time complexity online DVS algorithm with an offline
NLP-based DVS algorithm, specifically EESEDF, across dif-
ferent computational models. The first set of experiments
focused on CTGs, while the second set targeted Task Graphs
(TGs), recognizing that TGs represent a special case of
CTGs. This bifurcation was pivotal in comprehensively eval-
uating the efficacy of our approaches in varied contexts.

1) Experiments on CTGs
First we compare the performance of our standalone
EESEDF method against our combined EESEDF + Online-
DVS strategy. For detailed benchmark information, please
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FIGURE 6: Energy Consumption on 8 Processors
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FIGURE 7: Energy Consumption on 12 Processors

refer to TABLE 4. The simulations spanned seven sets of
CTGs, as presented in TABLE 3, enabling a thorough anal-
ysis of the proposed methodologies in addressing diverse
computational challenges.

FIGURES 5, 6, and 8 demonstrate a comparison between
these two approaches when executed on MPSoCs with 4,
8, and 12 processors respectively. We evaluated the average
energy consumption of our NLP approach and our online
DVS heuristic on the seven sets of CTGs specified in TABLE
3. Based on our experiments, we found that the combined
EESEDF+Online-DVS approach significantly outperformed
the standalone EESEDF approach.

The EESEDF+Online-DVS approach demonstrated a min-
imum improvement of 12% on one particular set, a maximum
improvement of 17% on another set, and an average improve-
ment of 15% compared to the EESEDF approach alone. This
outcome was expected, and we attribute it to two primary
reasons:

1) The EESEDF approach cannot leverage slack, freed
up due to the early completion of jobs. The offline
schedule is constructed based on the assumption of
worst-case execution time for each job. In reality, the
actual execution time is often significantly lower than
the worst-case scenario. Our low-time complexity on-
line algorithm is designed to effectively distribute this
slack, resulting in improved performance.

2) Not all jobs are executed in every scenario. The offline

schedule must allocate time slots to all tasks since the
determination of which tasks will execute can only
be made at runtime. The online DVS algorithm can
efficiently distribute the freed-up slack caused by jobs
not being executed in certain scenarios.

Overall, these results confirm our expectations and validate
the effectiveness of the combined EESEDF+Online-DVS ap-
proach in optimizing energy consumption and performance
in the context of CTGs.

We next conduct experiments on 10 benchmarks chosen
randomly from TABLE 6. We compare our approach against
IOETCS-Heuristic. Although IOETCS-Heuristic is specifi-
cally designed for heterogeneous systems, it is applicable
to homogeneous systems as well, because a homogeneous
system is a special case of a heterogeneous system. Our com-
parisons and results are only applicable to this special case.
FIGURE 8 shows the comparison of our approach against
IOETCS-Heuristic in terms of expected energy consumption.
IOETCS-Heuristic, an offline scheduler designed for CTGs
to be scheduled on heterogeneous systems, performs better
than our offline scheduler, EESEDF, achieving an average
improvement of 7% over our method. This is due to their
heuristic for discretizing task voltages, which is efficient in
distributing slack and reducing energy consumption. In the
offline phase, we use a simpler technique to discretize task
voltages, employing a rounding technique that rounds the
invalid task voltages to the nearest higher voltage levels.
However, the primary purpose of conducting these experi-
ments is to demonstrate the necessity and effectiveness of
our two-phase approach, at least in the context of CTG.
Our EESEDF approach, combined with the online-DVFS
algorithm, achieves an average improvement of 13% over
IOETCS-Heuristic. This is because IOETCS-Heuristic is an
offline scheduler, but in the context of CTGs, online sched-
ulers are necessary because of the following two reasons:

1) Offline schedulers assume worst-case execution times
for tasks. However, the actual execution time is usually
lower than these estimates. Due to this difference, the
slack needs to be efficiently redistributed by the online
scheduler.

2) In the case of CTGs, not all tasks execute in all sce-
narios. The offline schedulers that generate a single
global schedule for all scenarios typically do not ac-
count for this. Hence, an efficient online algorithm is
required to redistribute the slack available due to the
non-execution of tasks in some scenarios.

To show the effectiveness of our approach in efficiently
redistributing slack released at runtime due to reason two,
we ensure that the actual execution time of tasks is the same
as the worst-case execution time of tasks.

Despite numerous methods being developed to schedule
Conditional Task Graphs (CTG), these existing approaches
fall short of efficiently managing PCTG. We proceed to
conduct experiments to showcase the limitations of current
energy-aware CTG schedulers, elucidating their deficiencies
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and explaining their unsuitability for application to PCTGs.
To underscore the advantages of our approach in energy

optimization and scalability, we contrast it with the CAP-
Online and BESS approaches, focusing on homogeneous
systems. All of these approaches are applicable to homoge-
neous systems. The comparison makes use of benchmarks
outlined in TABLE 6, which are specifically chosen to
replicate PCTGs and the supergraph. Consequently, these
benchmarks feature a substantial number of nodes and OR-
FORK nodes. Both CAP-Online and BESS exhibit expo-
nential time complexity in the number of scenarios within
Conditional Task Graphs (CTGs), rendering them less ef-
fective except in situations with a manageable number of
scenarios. However, PCTGs, which require scheduling over
a hyperperiod, introduce a substantial number of OR-Fork
nodes and, consequently, a significant increase in scenario
count. The benchmarks in TABLE 6 aim to mirror these
conditions.

In the first five benchmarks presented in TABLE 6, our
method demonstrates markedly lower energy consumption
than both the BESS and CAP-Online approaches. Against
BESS, our approach shows a 24% to 29% improvement,
averaging around 25%. When compared to CAP-Online, the
improvement ranges from 34% to 37%, with an average
enhancement of 35% as shown in FIGURE 9. These gains
are attributed to several key factors:

1) EESEDF, our proposed solution, outperforms both
CAP-Online and BESS in generating energy-efficient
task ordering and balanced mapping. It strategically
arranges tasks to prevent longer-deadline tasks from
being impeded by those with shorter deadlines, facil-
itating optimal task execution. This sequencing, com-
bined with the application of NLP and online Dynamic
Voltage and Frequency Scaling (DVFS), allows for the
assignment of task speeds that further reduce energy
consumption compared to the alternatives.

2) CAP-Online incurs a considerably higher online run-
ning overhead than our method, leading to increased
energy consumption. This additional consumption un-
derscores the efficiency of our approach in optimizing
energy.

The subsequent five benchmarks in TABLE 6, from CTG-
37 to CTG-41, feature a much larger number of OR-FORK
nodes, mirroring the complexity observed in a super-graph
for PCTGs. For these benchmarks, both BESS and CAP-
Online struggle to converge within a practical timeframe.
This challenge stems from the overwhelming number of
scenarios present in these benchmarks. Despite pruning, the
sheer volume of unique scenarios remains so extensive that
both approaches fail to achieve convergence.

Regarding running time, our approach significantly runs
faster than both BESS and CAP-Online. For the benchmarks
listed in TABLE 6, our approach consistently achieves con-
vergence in under 30 minutes. In contrast, both BESS and
CAP-Online were allowed up to seven hours of run time
for benchmarks CTGs 37-41 but both failed to converge
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FIGURE 9: Energy Consumption on 24 Processors

as demonstrated in FIGURE 9. This demonstrates that our
approach excels not only in energy efficiency but also in
handling larger and more complex problem instances. Specif-
ically designed for PCTGs, our approach is optimized for
energy efficiency and scalability. These findings highlight
the necessity of our method, given that existing solutions for
CTGs fall short when it comes to energy-aware scheduling of
PCTGs.

2) Experiments on TGs
As we have previously emphasized, Task Graphs (TGs) are a
special case of Conditional Task Graphs (CTGs), underscor-
ing the importance of evaluating our approaches across both
domains to demonstrate their effectiveness comprehensively.
We have conducted a second set of experiments using 4,
8, and 12 processors on the MPSoC computing platform as
demonstrated in FIGURE 10, FIGURE 11, and FIGURE 12
respectively. Real benchmarks with different scenarios are
considered to compare EESEDF with LESA [14] and NCM
[15]. Our energy-efficient approach, EESEDF, incorporating
NLP, achieves average energy savings of 25% and 20% over
LESA [14] and NCM [15] respectively.

1) Unlike LESA [14] and NCM [15] our novel two-
phase offline scheduling approach, EESEDF constructs
a single global schedule for all the scenarios while
convex NLP assigns an optimal speed to each task of
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conditional task graphs to achieve maximum energy
efficiency.

2) Our low time complexity online-DVS algorithm as-
signs each task a speed online for reducing the overall
energy consumption of each task and achieves higher
energy savings for PCTGs on multi-core computing
architectures.

It’s imperative to highlight that our research findings and
claims are specifically tailored to homogeneous systems.
This distinction is crucial, especially when considering our
comparison with the LESA algorithm, which is designed for
heterogeneous systems. Given that a homogeneous system
can be viewed as a special case of a heterogeneous system
where all processors are of the same type, our comparison
is both relevant and insightful. Additionally, our analysis
extends to a comparison with the NCM approach, focusing
on a more specialized scenario within homogeneous systems:
environments consisting of single processors per cluster. This
nuanced comparison framework allows us to demonstrate the
effectiveness and applicability of our approaches in specific
system configurations.

Our study is dedicated to enhancing energy efficiency,
an endeavor we approach by segmenting our approach into
offline and online phases. This segmentation is strategic,
addressing the critical issue of runtime overhead from online
algorithms, which can adversely affect energy consumption.
To counteract this, we introduce an online algorithm designed
for low time complexity, aiming to minimize energy expen-
diture associated with processing tasks in real-time.

For offline algorithms generally, higher time complexity is
acceptable as long as they operate within polynomial time,
ensuring they can converge in a timely and efficient manner.
Our approach is designed with this balance in mind. Our
online algorithm stands out for its O(1) time complexity,
offering rapid execution that complements the inherently
longer, yet reasonable, convergence times of our offline al-
gorithms. This design philosophy ensures that, across these
TGs, our algorithms can achieve convergence in under 15
minutes.
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FIGURE 10: Energy Consumption Comparison on 4 Proces-
sors
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FIGURE 11: Energy Consumption Comparison on 8 Proces-
sors
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FIGURE 12: Energy Consumption Comparison on 12 Pro-
cessors

However, it’s important to note that when benchmarked
against NCM and LESA, our approach exhibits slower ex-
ecution times. This delay is primarily due to the inherent
processing requirements of NLP-based approaches, which
take longer to converge. Despite this, we emphasize the
efficiency and practicality of our online algorithm’s low time
complexity, alongside the reasonable convergence times of
our offline algorithms, underscoring their collective value in
our overarching goal of energy optimization.

VII. CONCLUSION
We have successfully developed a pioneering two-phase of-
fline approach, called Energy-efficient Successor Tree Con-
sistent Earliest Deadline First (EESEDF), to tackle the chal-
lenging problem of scheduling a set of Periodic Conditional
Task Graphs (PCTGs) on a group of identical processors with
shared memory. Our innovative approach, EESEDF, consists
of two key components: a task assignment and scheduling
algorithm that efficiently assigns tasks to processors and con-
structs a global schedule for all scenarios, and an NLP (Non-
Linear Programming) approach that optimally determines the
speed for each job based on the global schedule. In our
study, we have also introduced an online DVS (Dynamic
Voltage Scaling) heuristic that dynamically computes the
appropriate speed for each job at runtime, with the primary
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objective of minimizing the total energy consumption of
all tasks. To evaluate the effectiveness of our contributions,
we conducted comprehensive comparisons between our NLP
approach and the online DVS approach. The results of our
experiments have been highly encouraging. The NLP ap-
proach has demonstrated substantial improvements over the
online DVS heuristic, with average improvement, maximum
improvement, and minimum improvement values of 15%,
12%, and 17%, respectively. These improvements signify
the potency of our NLP-based approach in achieving better
energy efficiency. Furthermore, the offline scheduling aspect
of our EESEDF algorithm has also delivered remarkable
results. Compared to existing techniques such as LESA [14]
and NCM [15], our EESEDF algorithm has outperformed
with significant energy efficiency gains of 25% and 20%, re-
spectively. In comparison to a few other state-of-the-art tech-
niques, our suggested scheduler, EESEDF+Online-DVS, de-
livers notable improvements in energy efficiency. It surpasses
IOETCS-Heuristic [3] by roughly 13% while outperforming
BESS [16] and CAP-ONLINE [17] by impressive margins
of 25% and 35%, respectively. This outcome signifies the
superiority of our novel scheduling approach in minimizing
total energy consumption for PCTs. It is crucial to highlight
that this work represents the first-ever exploration into the
domain of minimizing the total energy consumption of peri-
odic conditional task graphs. Our approach, EESEDF, sets a
new benchmark in addressing this complex problem and pro-
vides valuable insights for future research in energy-efficient
scheduling techniques for parallel computing environments.

In the future, there is potential for scheduling Periodic
Conditional Task Graphs (PCTGs) on Voltage Island-based
(VFI) based Network-on-Chip (NoC) MPSoCs to achieve
energy consumption reduction. By utilizing voltage islands,
different tasks can be assigned to specific islands with vary-
ing voltage levels, allowing for dynamic power management
and optimization. Additionally, the inclusion of re-timing
techniques can further enhance energy consumption perfor-
mance and reduce latency. Re-timing involves the adjustment
of task schedules to optimize the overall timing behavior and
reduce the energy required for task execution. By carefully
managing voltage levels and re-timing tasks, future systems
can achieve improved energy efficiency and performance in
the scheduling of periodic conditional task graphs on VFI-
based NoC-MPSoCs.
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