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ABSTRACT The rapid surge in internet-driven smart devices and bandwidth-hungry multimedia 
applications demands high-capacity internet services and low latencies during connectivity. Cloud radio 
access networks (CRANs) are considered the prominent solution to meet the stringent requirements of fifth 
generation (5G) and beyond networks by deploying the fronthaul transport links between baseband units 
(BBUs) and remote radio units (RRHS). High-capacity optical links could be conventional mainstream 
technology for deploying the fronthaul in CRANs. But densification of optical links significantly increases 
the cost and imposes several design challenges on fronthaul architecture which makes them impractical. 
Contrary, Ethernet-based fronthaul links can be lucrative solutions for connecting the BBUs and RRHs but 
are inadequate to meet the rigorous end-to-end delays, jitter, and bandwidth requirements of fronthaul 
networks. This is because of the inefficient resource allocation and congestion control schemes for the 
capacity constraint Ethernet-based fronthaul links. In this research, a novel reinforcement learning-based 
optimal resource allocation scheme has been proposed which eradicates the congestion and improves the 
latencies to make the capacity-constraints low-cost Ethernet a suitable solution for the fronthaul networks. 
The experiment results verified a notable 50% improvement in reducing delay and jitter as compared to the 
existing schemes. Furthermore, the proposed scheme demonstrated a significant enhancement of up to 70% 
in addressing conflicting time slots and minimizing packet loss ratios. Hence, the proposed scheme 
outperforms the existing state-of-the-art resource allocation techniques to satisfy the stringent performance 
demands of fronthaul networks. 

INDEX TERMS 5G, End-to-end Delays, Fronthaul Networks, Jitter, Resource Allocation.  

I. INTRODUCTION 
The exponential growth of smart devices such as cellular 
phones, tablets, and the internet of things (IoT) imposes 
strict requirements on next-generation wireless networks 
(NGWNs) in terms of guaranteed high capacity, reliability, 
and ultra-low latency [1]. The NGWNs are expected to 
fulfill these demands by implementing new technologies 
such as heterogeneous networks (HetNets) [2] and cloud 
radio access networks (C-RANs) [3]. The HetNets are 
compromises of small cells such as Micro, Pico, and Femto 
cells along with the Wi-Fi, RRHs, and relays to provide 

high reliability and network throughput. The HetNets faced 
high inter-tier interference due to the deployment of a large 
number of small cells which degrades the overall network 
performance. As a result, the benefits of HetNets are 
limited by the effect of high interference [4]. 
     The most effective solution to mitigate such effects is 
implementing coordination techniques among the base 
stations. The cloud radio access networks are proposed to 
minimize the impact of interference and meet the 
performance requirements of NGWNs without 
performance degradations. The C-RANs are promising 
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solution that ensures operational, computational, and 
energy cost savings for the operator and improves the 
coordination among the multi-point units, coverage, power 
consumption, multiplexing gains, and intercell interference 
as well as total cost of ownership (TCO) of mobile 
networks [5].  
     The C-RAN achieves the aforementioned objectives by 
separating the functionalities of the baseband unit at the cell 
site, distributing them between RRHs (remote radio heads) 
and BBU (baseband unit) pool. As illustrated in Figure 1, 
the RRHs are strategically positioned in target areas to 
serve user equipment (UE). The RRHs perform functions 
such as power amplification, digital signal processing, 
digital-to-analog conversion, filtering, and a few more. The 
BBU assumes a centralized control role, processing 
received signals and allocating resources on demand. The 
BBU possesses a comprehensive network view, ensuring 
dynamic resource allocation at high speed through 
centralized processing. All these facilities enable the 
implementation of inter-cell interference using the ICIC 
(inter-cell interference coordination) and CoMP 
(coordinated multipoint) schemes [6]. It combines the 
BBUs in a powerful centralized computing infrastructure 
termed a BBU pool. The RRHs and BBU pool 
communicate with each other through a high capacity and 
low latency transport link named as fronthaul. The 
fronthaul networks are connected to the core networks via 
the backhaul. Despite offering high reliability and low 
TCO, the C-RAN architecture faces challenges in 
implementing fronthaul links, limiting the commercial 
deployment of C-RAN infrastructure. 
     The 3rd generation partnership project (3GPP) [7] has 
defined eight functional splits between the RRHs and BBU 
pool for deploying fronthaul links. Each split has its own 
set of network conditions and services for the fronthaul 
link. In the low-level split, known as option 1, all control 
functionalities are shifted to the RRHs, with the number of 
functionalities decreasing at each higher split level. For 
instance, at the highest split level, namely option 8, only 
the radio frequency function can be implemented at the 
RRHs, and all other functionalities are transferred to the 
centralized BBU pool. Option 8 is regarded as the optimal 
approach for implementing fronthaul networks [8]. 
However, it imposes strict requirements on the link, 
including high capacity, End-to-End (E2E) latency less 
than 250 µs, and jitter less than 60 ns [9]. This scenario also 
limits the multiplexing gains which represent the 
transmission of multiple RRHs traffic simultaneously over 
a fronthaul link. These requirements can only be fulfilled 
by deploying high-capacity optical links, that significantly 
increase both capital expenditure (CAPEX) and operational 
expenditure (OPEX), hindering C-RANs from realizing 
their cost-saving benefits [10]. Although wireless fronthaul 
may be a cost-effective and desirable alternative, its limited 
range and bandwidth necessitate multiple access points for 

larger coverage areas, consequently increasing the 
operational costs of the network [11]. Recently, several 
studies have explored this problem and suggested the 
Ethernet as an alternative cost-effective solution to carry 
the traffic over the fronthaul [12][13].  Although Ethernet-
based fronthaul could be cost-effective but unable to meet 
the strict fronthaul traffic demands due to limited capacity, 
high end-to-end latency, and jitter [14][15]. Various 
techniques, such as deep reinforcement learning (RL), time 
division multiplexing, and multiple description coding, 
have been proposed for congestion control and resource 
allocation to enhance latency and jitter in Ethernet-based 
fronthaul networks [16]-[18].  
     IEEE 1914.3 [19] and IEEE P802.1CM [20] propose the 
mechanism and standards to carry the multiple time-
sensitive traffic streams over the Ethernet fronthaul 
networks. Like our proposed scheme, the studies CFIT [21] 
and DTSA [22] implemented the fronthaul scenarios based 
on the 3GPP [7] and IEEE standards [19][20]. A study [21] 
proposes a scheduling algorithm named CFIT to transmit 
multiple common public radio interface (CPRI) streams 
over a single switching network. Several simulations were 
conducted to assess jitter levels under various load 
conditions for functional split level 8. CPRI serves as an 
interface for carrying oversampled in-phase/quadrature-
phase (I/Q) signals across the fronthaul interface. CPRI is 
independent of traffic fluctuations and operates at a 
constant bit rate, adversely affecting the transmission 
efficiency for carrying time-sensitive traffic streams in 
optical fronthaul networks. Table 1 represents the different 
CPRI line rates for the fronthaul networks [21]. This study 
indicates that a satisfactory level of jitter can be maintained 
when the load-to-Ethernet ratio (LER) is low. However, 
jitter increases significantly when the LER exceeds 0.35. 
LER values below 0.35 correspond to lower CPRI line rates 
and fewer input combinations. The network's performance 
degrades more noticeably when the incoming CPRI line 
rates are not multiples of each other. Multiplexing non-
multiple flows in the network results in intolerable jitter 
fluctuations. This happens because the scheme allocates 
non-conflicting timeslots exclusively to flows that are 
perfect multiples of each other. As a result, a considerable 
number of conflicting slots are assigned to non-multiple 
flows, causing increased congestion, and subsequently 
leading to heightened end-to-end delays and jitter. 

FIGURE 1. Fronthaul and Backhaul in 5G CRANs 
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                                                      TABLE 1 
                                            CPRI LINE RATES 

Options CPRI Line Rates 
(Mbps) 

Option 1 614.4 
Option 2 1228.8 
Option 3 2457.6 
Option 4 3072.0 

Option 5 4915.2 
Option 6 6144.0 
Option 7 9830.4 
Option 8 10137.6 
Option 9 12165.1 
Option 10 24330.2 

  
     In a recent study [22] another scheduling algorithm, 
DTSA has been proposed to prioritize and allocate network 
resources depending on traffic characteristics. This 
algorithm exhibits low jitter only when high-capacity 
optical links are utilized with multiple wavelength 
calculations. However, its performance degrades when 
Ethernet links without additional wavelengths are 
employed. Furthermore, the algorithm prioritizes flows, but 
a major drawback of DTSA is the potential starvation of 
low-priority flow (LPF) packets in the presence of 
continuous high-priority flow (HPF) packets in the queue. 
Since DTSA prioritizes HPF traffic, which already 
consumes a significant portion of network resources, it 
leaves minimal or no bandwidth for LPF traffic. This 
prioritization of HPF traffic can result in higher queuing 
delays for LPF traffic, leading to increased delays, jitter, 
and packet losses for LPF traffic. Consequently, only a few 
RRHs could transmit traffic toward the central BBU pool, 
reducing multiplexing gains. 
     To address the aforementioned challenges of scheduling 
algorithms to carry more RRHs traffic streams over 
capacity constraint Ethernet-based fronthaul networks, 
there is a need for a novel traffic scheduling and congestion 
control scheme capable of ensuring high multiplexing gains 
at acceptable latency and jitter values. This research 
proposes a Q-learning-based reinforcement learning 
algorithm that is capable of allocating non-conflicting time 
slots to a number of RRHs traffic flows to improve the 
multiplexing gains without degrading the network 
performance. The simulation results verify that the 
proposed scheme enables the Ethernet links to effectively 
transport the CPRI traffic in fronthaul networks. The 
contributions of this research work can be summarized as: 
•  This study proposes a reinforcement learning-based 
scheduling algorithm to ensure effective congestion control 
and resource allocation in fronthaul networks. 
•   The study verifies that a number of RRHs' traffic flows 
can be transmitted in fronthaul networks without degrading 
the quality of service (QoS) requirements, thereby 
improving multiplexing gains. 
•   The study confirms that cost-effective Ethernet links can 
carry time-sensitive traffic between the RRHs and BBU 

pool at tolerable latency and jitter values, resulting in 
reduced CAPEX and OPEX. 
•  Experimental results validate significant enhancements 
in the reduction of conflicting time slots and packet loss 
ratios, thereby diminishing the need for packet 
retransmission. This improvement leads to increased 
bandwidth efficiency, minimizing waste and freeing up 
additional bandwidth for fronthaul traffic. 
•   The performance of the proposed schemes is evaluated 
in terms of average delay, end-to-end delay, jitter, number 
of conflicting slots, and packet loss ratio under different 
traffic loads. A comparison with state-of-the-art schemes is 
also presented. 
     The subsequent sections of the paper are structured as 
follows: Section II provides a summary of related works on 
fronthaul congestion control and resource allocation. 
Section III presents the Q-learning based reinforcement 
learning scheme proposed to address the congestion control 
and resource allocation problem. The performance 
evaluation of the solution is discussed in Section IV along 
with a detailed comparison with existing schemes. Section 
V presents the conclusion of the paper.   

II. RELATED WORK 
The C-RAN represents a highly promising architectural 
framework for next-generation cellular networks. However, 
the practical implementation of C-RAN necessitates the 
provision of substantial fronthaul capacity to effectively 
accommodate the increased bandwidth requirements between 
the BBUs and RRHs. Recently, several research studies have 
been initiated to improve the performance of fronthaul 
networks in C-RAN architectures. These studies were 
conducted to optimize the performance of fronthaul networks 
in terms of bandwidth utilization, minimizing the E2E delays, 
and inter-packet delay variations to improve jitter and overall 
network performance. In a research study [23], a multi-
wavelength C-RAN architecture was designed, and a packet 
scheduling method based on reinforcement learning was 
proposed for allocating the network resources in the uplink 
direction. This study shows that using the proposed method 
significant traffic could be transmitted in the uplink direction 
by effectively allocating the bandwidth resources. However, 
this study has the limitation of utilizing significant training 
data and high computational resources.  
     In a study [24], a network architecture has been proposed 
to fulfill the fronthaul networks requirements. In this work, 
concepts of cloud and edge computing are utilized to address 
the challenges of bottlenecks in the networks and multiple 
transmissions in the network. This study suggested to utilize 
the long short-term memory (LSTM) framework to predict the 
network throughput and genetic algorithm (GA) for resource 
allocation. Research findings indicate that this method 
effectively reduces baseband unit migrations, resulting in 
decreased power consumption. Moreover, resources are 
allocated based on predictive data, enhancing efficiency. 
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However, the approach does not significantly reduce 
computation time, necessitating further improvements for 
increased throughput prediction accuracy. In another study 
[25], introduced a novel methodology for managing traffic 
entering 5G mobile networks’ fronthaul networks. Its primary 
objective was to efficiently handle multimedia services when 
dealing with large volumes of data, particularly when dealing 
with multimedia streaming services such as YouTube. Their 
proposed solution includes placing a traffic control Unit 
(TCU) near its boundary to monitor and analyze the incoming 
traffic flows. By gathering relevant information, the TCU can 
make informed decisions regarding resource allocation. This 
ensures the provision of high-quality multimedia services 
within the network. However, this study lacks in providing 
simulation or experimental results for the evaluation of 
proposed schemes. In [26], a novel approach employing deep 
reinforcement learning, specifically based on policy gradients, 
was introduced to tackle the issue of function split in 
virtualized radio access networks (VRAN). This approach 
reduces the need to train the learning algorithm to generate a 
random strategy. The objective of this approach is to identify 
whether the base station functionalities could be implemented 
at the cloud unit or distributed unit. This study considers 
several parameters including the server, link bandwidths, and 
latency needs in virtualized radio access networks. If the 
learning algorithm does not meet these constraints it is 
considered as an outcome and accordingly algorithm modifies 
its strategy. The simulation result verifies that the proposed 
scheme is efficient in terms of learning and producing optimal 
results and achieves the 0.4% optimal gap which surpasses the 
distributed radio access network (D-RAN) approach. The 
study claims to significantly improve the overall computation 
cost as compared to the D-RAN. However, this work 
emphasized the functional splitting in VRANs and did not 
delve into factors like network optimization, network slicing, 
and mobility management. 
     The authors in [27] proposed software-defined networking 
(SDN) and software-defined wireless networking (SDWN) 
methodologies to design flexible, reprogrammable, and robust 
(H-CRAN) infrastructures for next-generation cellular 
networks. This study aims to effectively join SDWN and H-
CRAN concepts to design a sophisticated cellular network. 
This research discusses the case studies related to the H-
CRAN using the SDWN controller for assigning the RRH 
channels to user equipment. However, this work relies on 
theoretical analysis, lacking substantial empirical data to 
strengthen the. Moreover, the paper does not extensively 
discuss jitter and network delays, focusing more on the aspects 
of SDWN, H-CRAN, and their interoperability. 
    In a research study [28], a utility-based algorithm is 
introduced for a H-CRAN, combining power control and 
resource allocation. This algorithm anticipates dynamic loads 
on BBUs, RRHs, and microcell base stations (MBSs). It 
determines the data rate for each UE connected to RRHs and 
MBSs on the resource block, prioritizing the utility function. 

UEs consider predicted data rates and projected energy usage, 
opting to connect to either RRHs or MBSs. In scenarios of 
high-priority traffic, UEs connected to MBSs and failing to 
meet predefined data rate requirements have the option to 
request any available RRH for allocating remaining resource 
blocks (RBs). Comparative analysis indicates that the joint 
resource allocation and user association (JRAUA) algorithm 
delivers superior bandwidth and resource utilization. 
However, it exhibits lower power efficiency and may 
encounter higher packet loss ratios. This study increases the 
complexity of implementing practical fronthaul networks. 
Furthermore, this work assumes the exact knowledge of 
channel state information (CSI) and does not consider the 
other parameters such as channel estimation errors that can 
occur in real-world networks. 
     The study [29] proposes a novel scheme to improve the 
congestion in 5G wireless networks. This scheme is based on 
a machine learning scheme specifically policy distillation that 
involves training a small-sized neural network to imitate the 
behavior of a large-sized neural network. Specifically, in the 
context of fronthaul congestion control, the authors use policy 
distillation to train a smaller neural network to predict the 
congestion status of the network based on real-time 
measurements of network traffic. The proposed distilled 
decision trees (DTs) demonstrate poorer generalization ability 
compared to the twin-delayed deep deterministic policy 
gradient (TD3) policy. Further, the distilled DTs can 
complicate the management of the policy life-cycle due to 
reduced flexibility in adapting to evolving network conditions. 
The study [30] introduces a methodology aimed at improving 
the energy efficiency of C-RANs by optimizing the 
performance of capacity-constrained fronthaul links. This 
proposed approach concentrates on the joint optimization of 
resource allocation and fronthaul compression to minimize 
energy consumption while meeting the quality of service 
requirements of users. However, a significant limitation of this 
research is its reliance on a simplified network model, 
assuming that all users are connected to a single RRH. In 
practical scenarios, C-RANs typically include multiple RRHs 
and serve users across a broader geographic area. 
Consequently, the proposed methodology may not be directly 
applicable to such complex network scenarios. In [31], the 
authors address the resource allocation problem by proposing 
the BMF and CDJM schemes. The author utilizes the slots 
assignment and fixed transmission time mechanism to 
improve the performance of Ethernet-based 5G fronthaul 
networks. This scheme requires high queue sizes at switches 
to effectively perform the transmission of the packets in the 
networks.  
      The paper [32] introduces an approach for resource 
allocation in Ethernet-based 5G networks that utilize shared 
radio units with limited fronthaul capacity. In these networks, 
multiple base stations share a single radio unit, and the 
available fronthaul capacity is constrained. The primary aim 
of the proposed scheme is to optimize the allocation of 
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resources, both in terms of fronthaul and radio, to achieve the 
best possible performance for the network. But the primary 
limitation of this approach is itself the constrained fronthaul 
capacity. Fronthaul refers to the network connection between 
the base station and the centralized processing unit. When 
multiple base stations share a single radio unit, the available 
fronthaul capacity might not be sufficient to handle the 
increased traffic demands. With limited fronthaul capacity, 
resource contention becomes a significant concern. Multiple 
base stations competing for limited resources can result in 
inefficient resource allocation and increased latency. This 
limitation can affect the network’s ability to handle high traffic 
loads and meet performance requirements. In a study [33], an 
Ethernet-based fronthaul network, a scheduling algorithm was 
proposed with the goal of minimizing jitters and enhancing the 
quality of service for 5G networks. This proposed algorithm is 
known as time division multiplexing (TDM) slot-based 
scheduling (TSS), which integrates both time-division 
multiple access (TDMA) and flow control techniques for an 
effective slot allocation to multiple flows. Moreover, virtual 
queuing is used to overcome the negative impact of packet 
reordering on jitter. The algorithm consists of two components 
such as slot allocation, which deals with challenges in optimal 
slot assignment, and low delay collaboration, which ensures 
smooth communication between different switches to reduce 
delays linked to strict slot assignments. However, the 
simulations carried out to evaluate this algorithm are only 
compared to an existing algorithm which limits the extent of 
the scope of the comprehensive assessment. Additionally 
implementing this algorithm will require additional execution 
time and resources for slot allocation, flow control, and virtual 
queuing. This could lead to increased latency and wasting the 
limited network capacity such as Ethernet networks. 
Furthermore, it will not be suitable for highly congested 
scenarios with variable traffic patterns that limit its 
applicability in such contexts. 
     In [34] the authors have introduced an approach to enhance 
5G fronthaul networks that focuses on improving their 
performance. This approach sets limits, on delay and variation 
in delay known as jitter. To achieve this goal the method uses 
a framework that takes into account the characteristics of 
network traffic. By making adjustments to transmission 
parameters like packet size and time intervals between packets 
the aim is to enhance delay efficiency. Moreover, it 
incorporates a model for predicting delays to anticipate and 
adjust for delays and variations in packets. This predictive 
technology enables the method to adapt proactively to 
changing network conditions and optimize performance. 
However, it may face difficulties when sudden significant 
changes occur, such as network congestion or unexpected 
spikes in traffic volume. When such a situation occurs, 
ensuring the proper functioning of mechanisms to control 
packet delay and variation is often challenging. The efficiency 
of the mechanism is largely dependent on an accurate analysis 
of traffic parameters and rules. The adaptive framework of the 

mechanism heavily relies on an accurate analysis of network 
traffic characteristics. Any inaccuracies or incomplete 
understanding of traffic patterns can lead to suboptimal 
adjustments of transmission parameters, potentially 
compromising delay performance. 
     In [35], an effective congestion control scheme for 
fronthaul networks based on MDC has been proposed, which 
makes it possible to work well in the highest load conditions. 
As a result of the proposed technique, the signal source is 
divided into two or more distinct sub-streams, each containing 
partial information about the baseband signal, independently 
transmitted over a fronthaul network. In this manner, each of 
these descriptions is characterized by carrying different 
components of the signal source, and therefore loss or delay in 
one description does not affect the whole recovered at the 
receiver from the remaining descriptions. The proposed 
technique is developed to improve congestion control by 
adding an adaptive rate control method. The method adjusts 
the transmission rates of the flows based on the network 
resource variations so that congestion occurrence is prevented 
as much as possible. By controlling traffic flows with variable 
transmission rates, the proposed scheme aims to optimize 
resource allocation and prevent performance degradation. For 
the fronthaul networks, the use of such a technique can result 
in the increased average end-to-end delay from RRHs to BBU 
pools. The additional processing and transmission costs in 
switching to multiple descriptions and adaptive rate control 
could further increase the delays. This technique could be 
made more suitable by balancing the tradeoff between the 
congestion control mechanism and expected end-to-end delay. 
By improving the delays in such techniques could be effective 
in deploying the Ethernet-based fronthaul in the cloud radio 
access networks.  
      In [36] a mobile fronthaul network delay-aware packet 
scheduling scheme has been proposed. This study split a 
network into high-priority and lower-priority segments, with 
time-critical traffic such as voice and video being moved 
towards the high-priority segment while less time-sensitive 
traffic such as web traffic is moved to the low-priority part. 
The scheme makes use of a weighted fair queuing algorithm 
that tunes the transmission rate according to traffic loads and 
packet time sensitivities. The objective of the scheme is to 
minimize delays to meet the performance requirements of the 
system. However, this scheme lacks to effectively respond to 
rapidly changing network conditions, such as fluctuating 
traffic patterns, varying network congestion levels, or dynamic 
resource availability as required in fronthaul networks. 
     Despite several attempts to improve the performance of 
Ethernet-based fronthaul networks, existing studies lack to 
provide an efficient methodology to improve the E2E delays 
and jitter. There are tradeoffs between the number of traffic 
flows and the performance requirements of the fronthaul 
networks. Therefore, a novel and dynamic scheme that can 
fulfill the QoS requirements and improve the multiplexing 
gains in fronthaul networks is necessary.   
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III. PROPOSED METHODOLOGIES  
A. PROPOSED Q-LEARNING SCHEME 
 Q-learning is a key reinforcement learning technique where 
an agent learns to maximize its rewards by iteratively 
exploring an environment, taking actions, and updating its 
action choices based on the expected future rewards associated 
with different states and actions. Through this process, the 
agent learns to make smarter choices by figuring out which 
actions are better in different situations. It does this by learning 
from its experiences and gradually getting better at picking 
actions that bring in more rewards over the long term, all while 
find- ing the right balance between trying new actions and 
sticking to what it knows. In the context of congestion control 
and resource allocation in Ethernet-based fronthaul networks, 
a Q-learning-based reinforcement learning technique can be 
employed to optimize the network's performance. This 
involves the agent learning to make decisions that minimize 
congestion and efficiently allocate resources. Given the 
absence of labeled data, the agent can only enhance its 
knowledge through experiential learning. In Figure 2 the Q-
learning based RL Algorithm is explained in which, the first 
challenge is to identify the problem, in this case, the problem 
is to control congestion and allocate resources in the fronthaul 
network to maximize its performance. Then the state space is 
defined which denotes a collection of variables that define the 
present state of the environment. In this case, the state space 
includes variables such as the number of RRHs, the bandwidth 
utilization, the delay of the network, and other relevant factors. 
Following that, the action space is defined which comprises all 
the feasible actions that an agent can undertake within the 
environment as shown in Figure 2, In this context, the action 
space includes actions such as fixing the number of RRHs, 
adjusting the transmission rate, changing the priority of 
different RRH’s depending upon there traffic flows, allocation 
of resources such as bandwidth to different RRH’s, among 
other possibilities. Then the reward function is identified 
which determines the reward for an agent based on its actions 
within a given environment. For this particular scenario, this 
function derives its value from various metrics, such as 
network bandwidth, end-to-end packet delay, and the number 
of packet losses. Once the state space, action space, and 
reward function are defined, then the RL agent undergoes 
training. During training, the agent learns to take actions that 
maximize its expected reward in the environment. After 
training the RL agent, the performance is evaluated to see how 
well it performs in controlling congestion and allocating 
resources in the fronthaul networks. The best-rewarded action 
is followed until the state function changes and the same 
process is repeated until the optimal reward is achieved again.  

The proposed mechanism comprises five steps such as 
calculating packets transmitted by each RRH, determining 
RRH preference, identifying possible packet flow sequences, 
managing packet flows based on available bandwidth, and 
ensuring efficient utilization and prioritization. The 
mechanism begins by calculating the total number of packet 

flows originating from multiple RRHs. The number of packets 
transmitted by each RRH can be determined by monitoring the 
packet header or using flow control mechanisms, typically 
over a fixed time interval. This study assumed that the CPRI 
line rates per RRHs are pre-determined [21]. Subsequently, all 
possible packet flow sequences are identified based on the 
number of RRHs and available bandwidth. By managing 
packet flows in accordance with available bandwidth, the 
mechanism ensures efficient utilization of network resources. 
This approach also facilitates the provision of sufficient 
bandwidth to high-priority traffic, while limiting lower-
priority flows to a lower bandwidth. Additionally, the 
utilization of appropriate bandwidth management techniques 
helps prevent congestion and network performance issues that 
may arise when network traffic exceeds the available 
bandwidth. Different packet flow sequences are applied and 
identified to check which sequence has the jitter within the 
required range of 64 ns. Jitter refers to the variation in the 
delay between packets sent over a network. Equation 1 
represents the jitter that is disparity between the highest inter-
packet delay (HID) and lowest inter-packet delays (LID). The 
calculation of jitter in a packet stream is performed using 
Equation 2.  

 
 

                    𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 =  𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐿𝐿𝐻𝐻𝐻𝐻                                       (1) 
 
 
𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 = (|𝐻𝐻(𝐽𝐽) − 𝐻𝐻(𝐽𝐽 − 1)| − 𝐴𝐴𝐴𝐴𝐴𝐴)/(𝑛𝑛 − 1)              (2) 

 
   
   Where D(i) is the time delay of the ith packet, D(i-1) denotes 
the delay to the previous consecutive packet, n is the total 
number of packets in the sample and Avg is the average delay 
of all packets in the sample. This formula calculates the 

FIGURE 2. Q-Learning based Reinforcement Learning Algorithm 
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variation between the delay of each packet and the average 
delay of all packets in the sample. The absolute value of this 
variation is taken, and the sum of all these absolute values is 
divided by n-1 to get the average deviation from the mean. 
This value represents the jitter in the packet stream.  
     The E2E delay serves as the second evaluation matrix for 
comparing performance with existing schemes. It is composed 
of five parameters, as discussed below, and illustrated in 
Figure 3. These parameters collectively contribute to the 
overall delay encountered by a packet as it traverses from the 
RRHs to the BBU pool. 

1) QUEUING DELAY 
It refers to the time that a packet spends waiting in a queue at 
a router or switch before being transmitted to its destination. 
Queuing delay is influenced by several factors, including the 
arrival rate of packets, the queue size, the processing speed of 
the node, and the priority of the packets in the queue. The 
longer the queue, the more extended the packets will wait, 
leading to higher queuing delay. The first packet encounters 
no queuing delay as there are no preceding packets. The 
second packet experiences a queuing delay of L/R seconds. 
Subsequently, for the third packet, the queuing delay increases 
to 2L/R seconds due to the presence of two preceding packets. 
This pattern continues, with the queuing delay for the Nth 
packet becoming (N-1)L/R seconds. The average queuing 
delay (AQD) can be calculated using Equations 3 to 5. 
 

𝐴𝐴𝐴𝐴𝐻𝐻 =
𝐿𝐿
𝑅𝑅 + 2𝐿𝐿

𝑅𝑅 + 3𝐿𝐿
𝑅𝑅 + ⋯ (𝑁𝑁 − 1)𝐿𝐿

𝑅𝑅
𝑁𝑁

                       (3) 

 

𝐴𝐴𝐴𝐴𝐻𝐻 =
𝑁𝑁. (𝑁𝑁 − 1)

𝐿𝐿
2.𝑅𝑅.𝑁𝑁

                                                    (4) 

 

𝐴𝐴𝐴𝐴𝐻𝐻 =
𝑁𝑁 − 1
𝐿𝐿

2.𝑅𝑅 
                                                          (5) 

 
Where L represents the size of a packet in bits, R is the 

bandwidth in Gbps. N represents the total number of packets 
and depends on the number of flows. 

2) ENCAPSULATION DELAY 
The delay occurs when a packet is processed and prepared 
for transmission by adding headers and trailers to the data. 
This operation is known as encapsulation, and the time taken 
to perform it is referred to as encapsulation delay. This can 
be calculated using Equation 6. 
 

𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝐽𝐽𝐽𝐽𝑛𝑛𝑛𝑛 𝐻𝐻𝐽𝐽𝑛𝑛𝑛𝑛𝐷𝐷 (𝐸𝐸𝐻𝐻) =
𝐿𝐿

𝐶𝐶𝐿𝐿𝑅𝑅
            (6) 

 

Where L is the size of packet in bits and CLR is the CPRI 
line rate in Gbps which is selected from options 1 to 9 from 
Table 1. 

3) PROCESSING DELAY 
Packet processing time refers to the duration required for a 
network device, such as a router or a switch, to handle a packet 
before forwarding it to the next node in the network. This 
processing time is influenced by the processor's speed, 
including operations such as bit-level error detection during 
transmission. The processing delay (PrD) depends on the 
speed of the device and is considered as 300 ns [37]. 

4) TRANSMISSION DELAY 
Transmission delay refers to the time required for a packet to 
travel through a physical medium, which can be either a wired 
or wireless network. The transmission delay depends on the 
packet’s size and the bandwidth of the link. The transmission 
delay can be computed using Equation 7.  

𝑇𝑇𝐽𝐽𝑛𝑛𝑛𝑛𝑇𝑇𝐽𝐽𝑛𝑛𝐽𝐽𝑛𝑛𝑛𝑛  𝐻𝐻𝐽𝐽𝑛𝑛𝑛𝑛𝐷𝐷 (𝑇𝑇𝐻𝐻) =
𝐿𝐿
𝑅𝑅

                        (7) 
 

Where L is the size of a packet in bits, R is the available 
bandwidth in Gbps. In this study packet size of 1500 bytes and 
the bandwidth of 10 Gbps are considered. 

5) PROPAGATION DELAY 
Propagation Delay Propagation delay is the time it takes for a 
data packet, to travel through a transmission medium from its 
source to its destination. It represents the delay introduced by 
the physical properties of the medium, including its length and 
the speed at which signals propagate within it. Propagation 
delay is determined by using the Equation 8. 
 

𝑃𝑃𝐽𝐽𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴𝑛𝑛𝐽𝐽𝐽𝐽𝑛𝑛𝑛𝑛 𝐻𝐻𝐽𝐽𝑛𝑛𝑛𝑛𝐷𝐷 (𝑃𝑃𝐻𝐻)  =
𝐻𝐻
𝑆𝑆

                  (8) 
 

FIGURE 3. Components of delay in Fronthaul Network 
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                                                 TABLE 2  
                   RRHS CONFIGURATIONS FOR CCRA SCHEME  

 

 

 

 

 

 

 

 

Where D represents the distance between the RRH and BBU 
pool, while S denotes the propagation speed. This study 
considers the distance of 10 Km between RRHs and BBU. 
     Once the above delay components are calculated then the 
total E2E delay using Equation 9 is calculated which is the 
sum of all the above parameters. 

 
   E2E Delay = AQD + ED +PrD+ TD+ PD         (9) 

B. PROPOSED CONGESTION CONTROL AND 
RESOURCE ALLOCATION (CCRA) SCHEME  

The proposed CCRA scheme is illustrated in Figure 4 and 
outlined in Algorithm 1 initiates by calculating the aggregate 
number of flows originating from multiple RRHs within the 
fronthaul network. Each flow is associated with a specific 
CPRI line rate, which is predetermined and falls within the 
range of options 1 to 9, as illustrated in Table 1. Subsequently, 
the RRHs are prioritized based on their respective line rates. 
An optimal window size is then computed, considering the 
ratio between the total number of packets and the preferred 
number of packets, as outlined in Table 2. The calculated 
window size is taken into consideration when permitting a 
defined number of packets to be transmitted towards the BBUs 
pool, ensuring a consistent allocation across a fixed number of 
time slots. Each packet within a flow is assigned a specific 
time slot based on the preference of the corresponding RRH 
traffic flow at its origin. This allocation aims to prevent 
conflicts and congestion, ultimately minimizing inter-packet 
delays. Subsequently, packet flow sequences are chosen 
depending on whether their jitter falls within the fronthaul 
requirements. Jitter, denoting the variation in packet arrival 
times, is calculated using Equations 1 and 2. Only packet flows 
exhibiting jitter values less than 64 ns are considered, as a 
stringent fronthaul requirement that the jitter must not exceed 
this threshold. After computing the jitter using Equation 7, 
E2E delays are determined for all flows with jitter less than 64 
ns. Reward values are then assigned to the flows based on their 
respective E2E delays, with priority given to the highest to 

lowest delay order and decremented as delays increase. This 
iterative process continues until the sequence of packet flow 
with the highest reward is achieved. The highest rewarded 
packet flow sequence is maintained until the traffic flow is 
changed. Once the traffic flow changes, the aforementioned 
procedure is repeated until the best-rewarded sequence is 
achieved again. 

 
 

Algorithm 1: Congestion Control and Resource Allocation (CCRA) Scheme 
 
Input: No of Packets (N), PacketSize (L), DataRate (R), Distance 
(D) and LinkSpeed (S). 
Output: Best Rewarded Packet Flow Sequence 
1) Select TotalNoOfRRHs() 
2) Set PreferenceOfRRHs 
3) Select PrefferedNoOfRRHs() 
4) Compute OutputWindowSize() 
5) Calculate NoOfTimeSlots 
6) Print AllPacketsFlowSequences() 
7) Select PacketFlowSequence() 
8) Procedure BestPacketFlow() 
9) Calculate Jitter() 
10) if (Jitter <= 64 ns) then 
11) Save PacketFlowSequence()  
12) Calculate E2Edelay() 
13) else Repeat Procedure 
14) end if 
15) For (E2Edelay < 250 µs) do 
16) Set RewardValue() 
17) Compare RewardValues() 

Total 
Number of 
RRH’s 

Maximum 
Preferred 
Number of 
RRH’s 

Ratio 
between 
Preferred 
and Non- 
preferred 
RRH’s 

Number 
of packet 
flows 
having 
jitter=0 

4 2 4:2 16 
5 3 5:3 32 

6 4 6:4 64 
7 5 7:5 128 
8 6 8:6 256 
9 7 9:7 512 
10 8 10:8 1024 

FIGURE 4. Flow Chart of CCRA Scheme 
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18) If (RewardValue > PrevRewardValues) then 
19) Update PacketFlowSequence() 
20) Use UpdatedPacketFlowSequence() 
21) else Retain PrevPacketFlowSequence() and 
22) Repeat Procedure() 
23) end if 
24) end For 
25) end Procedure() 

 
 
Following the scheduling process, packets are transmitted 

within predetermined and conflict-free time slots. This 
approach ensures consistent inter-packet delays, effectively 
addressing and resolving jitter issues. This significantly 
minimizes packet loss resulting from congestion and slot 
unavailability, thereby reducing the necessity for packet 
retransmission. Consequently, the proposed scheme markedly 
enhances the quality of service in Ethernet networks, 
rendering them well-suited for efficiently transporting CPRI 
traffic between RRHs and BBU pool in fronthaul networks by 
meeting the stringent delay and jitter requirements. Table 2 
provides the relationship between the total number of RRHs 
and the preferred number of RRHs in terms of ratio. It also 
calculates and presents the maximum number of packets in the 
packet flow sequence that satisfies the jitter requirements for 
different numbers of RRHs. The output window size varies 
accordingly, depending on the total number of RRHs and their 
preferences. As the total number of RRHs increases, the output 
window size also increases to prevent congestion and packet 
loss.  

For instance, consider scenario 1 in Table 2 with four RRHs 
(R1, R2, R3, and R4). In this scenario, R1 and R2 are given 
the highest priority, while R3 and R4 share the lower priority, 
with preference represented as 4:2. The preference is decided 
by considering that R1 is transmitting packets by following a 
high CPRI line rate, followed by R2 and so on. Consequently, 
the sequence comprises the highest number of packets from 
R1 (8), followed by R2 with half of R1 (4), and R3 and R4 

with half the number of R2 (2). The total number of packets in 
this sequence is 16. This sequence of four RRHs packets will 
be repeated throughout the transmission, ensuring constant 
inter-packet delay resulting in jitter equal to zero. Scenario 1 
is depicted in Figure 5, providing a clear representation of 
scheduling outcomes for various traffic flows. Four flows 
emanate from four RRHs, each allocated a designated fixed 
window size to accommodate the RRH flows. RRH-1 holds 
the highest preference, followed by RRH-3 as the second-
highest priority, while RRH-2 and RRH-4 share the lowest 
priority. The primary goal is to maintain a consistent inter-
packet delay for all traffic flows, ensuring tolerable jitter and 
preventing conflicting slots to minimize packet loss. At the 
ingress port of the switch, packets from different RRHs arrive 
at varying times, depending on the RRHs' CPRI line rates. The 
CCRA reorganizes and schedules these packets before 
transmitting them on the egress port of the switch. In the given 
scenario, eight packets from RRH-1, four packets from RRH-
3, and two packets each from RRH-2 and RRH-4 are 
transmitted in each window. To mitigate congestion and 
packet loss, fixed timeslots are assigned to all packets. This 
window of conflict-free packets, with constant inter-packet 
delay variations, repeats throughout communication until 
there are changes in RRHs' traffic flows or network scenarios. 
Figures 6 and 7 illustrate scenarios for accommodating the 
increasing traffic from RRHs and adjusting the window size 
to ensure acceptable jitter and end-to-end delays. In Figure 6, 
the transmission of traffic from five RRHs to the BBU pool is 
depicted, with a preference ratio of 5:3 as shown in Table 2. 
The first three RRHs have prioritized order, while the last two 
share equal lowest priority. This sequence comprises a total of 
32 packets, and zero jitter is maintained throughout the 
transmission in the case of five RRHs. In Figure 7, the 
transmission of traffic from six RRHs is demonstrated, and it 
is evident that the inter-packet delay remains constant among 
all packets, ensuring zero jitter in the flows. The proposed 
scheduling approach allows for scheduling packets for up to 
10 RRHs, thereby increasing the multiplexing gains as 
demanded in fronthaul networks. 

FIGURE 5. Packets flow when total number RRH’s are 4 and preferred number of RRH’s are 2 
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 The FIFO benchmark scheme proved inadequate in 
meeting the delay and jitter requirements of CPRI traffic. This 
was due to its consistent processing and forwarding of packets 
to egress ports solely based on their arrival at the ingress ports 
[21]. The scheme resulted in the random forwarding of packets 
from the switch, lacking any mechanism to ensure consistent 
inter-packet delay variations for each CPRI flow. 
Consequently, this led to high jitter, rendering the scheme 
unsuitable for effective packet transportation. A comparison 
between FIFO and CCRA algorithms for scheduling time-
sensitive fronthaul traffic is illustrated in Figures 8 and 9. 
Figure 8 depicts the ingress interface of the switch, which 
receives packets from four RRHs. Without a scheduling 
algorithm in place, the switch defaults to the FIFO scheme, 
forwarding packets based on their arrival times. This default 
mechanism results in high interpacket delay variations, 

reaching a jitter of 3 µs [22]. This value falls significantly short 
of meeting the fronthaul requirements of 64 ns. Figure 9 
illustrates the switch's output after implementing the CCRA 
for the same input scenario. Regardless of the packet arrival 
rates, the proposed scheme consistently transmits them in a 
predefined order. This ensures a steady inter-packet delay, 
crucial for mitigating jitter and resolving conflicting time slot 
issues. A noticeable distinction is evident between the switch's 
behavior with FIFO, where packets are forwarded based on 
arrival times, resulting in elevated jitter, and CCRA, which 
maintains a uniform delay between packets. By utilizing the 
proposed CCRA algorithm, better scalability can be achieved. 
Despite increasing the number of RRHs producing high traffic 
load, the algorithm will always allocate the packets in a 
predefined and well-managed order to meet performance 
requirements. In terms of efficiency, FIFO is not always the 

FIGURE 6.   Packets flow when total number RRH’s are 5 and preferred number of RRH’s are 3 

FIGURE 7.   Packets flow when total number RRH’s are 6 and preferred number of RRH’s are 4 
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most suitable for all types of data. For example, in a scenario 
where a high-priority packet arrives just after a large batch of 
lower-priority packets, the high-priority packet must wait for 
all preceding packets to be processed. This situation can 
potentially lead to intolerable E2E delays and variations in 
inter-packet delays. However, the CCRA prioritizes traffic 
flows based on their CPRI line rates. This ensures a constant 
inter-packet delay between all packets of a similar flow, 
keeping the jitter value consistently at zero. In contrast to 
FIFO, which processes data packets in the order they arrive 
without considering their content, priority, or current network 
conditions, CCRA provides a more dynamic approach. FIFO 
operates on a first come first sending principle and is not 
intelligent enough to adapt to changes in network traffic 
patterns, link capacities, and latency needs [31]. Fronthaul 
networks demand dynamic and self-learning-based 
approaches to efficiently handle diverse and changing traffic 
patterns. The proposed CCRA scheduling algorithm is more 
suitable for fronthaul networks as it adjusts the traffic flow 
sequence based on changing network conditions due to the 
utilization of the Q-learning mechanism, ensures that the inter-
packet delay and E2E delay for maximum number of RRHs 
traffic flows would be in the acceptable limits of fronthaul. 

IV. PERFORMANCE EVALUATION  
This section provides an evaluation of the performance of the 
proposed CCRA scheme, focusing on E2E delays and jitter. 
These parameters are computed using Equations 1 to 9 and 
based on the studies [14], [21] and [22]. The metrics are 
implemented using the Java programs. The study conducts a 
comparative analysis with existing scheduling schemes for 

fronthaul networks, including benchmark FIFO, CFIT, and 
DTSA. To assess performance, over 1000 packet flow 
sequences are generated, randomly selecting line rates based 
on Table 1. Up to ten flows per switch are multiplexed and 
transmitted over a 10 km Ethernet link at 10 Gbps, employing 
a packet size of 1500 bytes and a constant inter-packet delay 
of 1.2 μs. Table 2 is utilized to set the preferences and select 
the parameters such as priorities, number of RRHs, and traffic 
flows. The different networking schemes are compared based 
on the traffic load which is defined as a ratio between the sum 
of aggregated CPRI line rates, channel data rate, and estimated 
delay and jitter [21]. These considered matrices and parameter 
values are consistent with the current state-of-the-art schemes 
such as CFIT and DTSA for cross-comparison purposes and 
comply with fronthaul and Ethernet standards including 3GPP 
[7], IEEE P802.1CM [19], and IEEE P1914.3 [20].  
     In Figure 10, the proposed CCRA algorithm is compared 
with existing schemes including FIFO, DTSA, and CFIT 
algorithms in terms of E2E delays. The existing FIFO, DTSA, 
and CFIT algorithms exhibit a direct proportionality between 
traffic load and average E2E delay. As the traffic load 
increases, so does the average delay. This behavior arises 
because the CFIT algorithm performs effectively only when 
the traffic load is low. As the load increases, the number of 
conflicting slots also increases, leading to congestion and 
consequently higher E2E delays. Likewise, when the DTSA 
algorithm is employed, the E2E delay also increases with 
higher load values. The increased number of conflicting 
timeslots on a 10 Gbps link causes congestion and results in 
elevated E2E delays. This relationship can be depicted by a 
curve illustrating an ascending trend in the E2E value as the 

FIGURE 9. CCRA Scheduling Output and constant inter-packet delay variations  

   

FIGURE 8.   FIFO Output and High inter packet delay variations 
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traffic load rises. In contrast, when utilizing an RL-based 
CCRA scheme, the E2E delay increases with traffic load. 
However, due to traffic flow optimization, the E2E delay 
remains below the maximum limit of 250 μs in 90% of cases. 
The RL-based CCRA scheme can learn to prioritize RRHs and 
packets that have a greater impact on the reward signal, such 
as RRHs with higher data rates and packets with stringent 
delay requirements are given more priority, by adjusting the 
timeslots. When the CCRA scheme is used the maximum E2E 
delay at traffic load 1.0 is 520 μs, while the E2E delay for 
CFIT, FIFO, and DTSA is 600 μs,700 μs, and 3000 μs 
respectively. Consequently, this approach enables more 
efficient resource utilization and reduced delays, even under 
high traffic loads.  
     Likewise, in Figure 11 when examining the average delay 
across all four algorithms including FIFO, CFIT, DTSA, and 
proposed CCRA, similar trends can be observed as in the case 
of E2E delays. The average delay graph also exhibited an 
increase with higher load values. This behavior arises because, 
as the load increases, the average queuing delay and other 
delay components also increase, resulting in an overall 

increase in the average delay. In the case of the DTSA 
algorithm, the average delay increases significantly, because 
DTSA is primarily designed for high-capacity links. However, 
when used with limited-capacity Ethernet links, its 
performance deteriorates. When the CCRA scheme is used the 
maximum average delay at traffic load 1.0 is 250 μs, while the 
E2E delay for CFIT, FIFO, and DTSA is 300 μs, 3500 μs, and 
1400 μs respectively. Figure 11 demonstrates that the 
proposed CCRA scheme exhibits improved performance in 
terms of average delays when compared to existing schemes.  
     Figure 12 illustrates and compares the jitter of four 
algorithms including the FIFO, CFIT, DTSA, and proposed 
CCRA algorithm. Observing the figure, it is evident that when 
the load value is low, both CFIT and DTSA algorithms are 
capable of achieving tolerable jitter. However, as the load 
increases, the jitter value also increases. This occurs due to the 
rise in conflicting slots, which leads to congestion and delays, 
consequently resulting in intolerable jitter. For CFIT 
algorithms, the jitter depends on the CPRI line rates. When the 
CPRI line rates are multiples of one another, the jitter is 
minimal or near zero. However, if the line rates are non-
multiples of each other, the jitter value increases. Likewise, the 
jitter value of the DTSA algorithm relies on the priority of flow 
packets. It operates effectively as long as there are available 
time slots in proximity. However, when there are no free 
timeslots, high-priority flow packets are forced to wait, 
causing delays in packets flows and subsequently increasing 
the jitter value. In contrast, when employing the proposed 
CCRA algorithm, the jitter value remains zero regardless of 
the load. This is achieved by allocating fixed time slots for all 
packets, resulting in a constant inter-packet delay variation. 
Consequently, zero jitter can be achieved for any load value. 
It is observed that the FIFO algorithm consistently exhibits 
high jitter values, which rapidly increase with higher load 
values. This is attributed to the absence of any scheduling 
technique, leading to a large number of conflicting slots, 
congestion, and delays. It can be seen in Figure 12 when 
CCRA scheme is used the jitter remains 0 even at high traffic 

FIGURE 10. E2E Delay vs Traffic Load 

 

FIGURE 12. Jitter vs Traffic Load 

 

FIGURE 11. Average Delay vs Traffic Load 
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loads such as at 1.0, while the jitter for CFIT, FIFO, and DTSA 
is 2000 ns, 4000 ns, and 7000 ns respectively, which is higher 
than the acceptable range. 
      In Figure 13 a comparison of the number of conflicting 
time slots has been made between the proposed CCRA scheme 
and the state-of-art scheduling schemes such as FIFO, CFIT, 
and DTSA algorithms. Fronthaul networks have a finite 
bandwidth to transmit data. When multiple packet requests 
attempt to use the network simultaneously, there may not be 
enough available bandwidth to accommodate all the requests, 
leading to conflicting time slots.  This study is utilizing 
capacity-constraints Ethernet links, when the network 
experiences congestion from a high volume of data traffic, 
resource contention occurs, leading to conflicting time slots. 
As depicted in Figure 13, when employing the FIFO, CFIT, 
and DTSA algorithms, the number of conflicting time slots 
increases with higher load values. In CFIT, since there is no 
fixed scheduling for the number of packets, the occurrence of 
conflicting time slots depends on the line rate values. If the 
line rates are multiples of each other, no conflicting time slots 
arise. However, when the line rates are non-multiples of each 
other, conflicting time slots occur, resulting in high 
congestion. In the DTSA algorithm, conflicts arise when 
different priority flows or the same priority flows seek 
available time slots across multiple wavelengths. On the other 
hand, when the proposed CCRA scheme is employed, a fixed 
time slot adjustment is applied to all packets, ensuring that no 
conflicting time slots occur even with increased load. This 
fixed scheduling mechanism prevents conflicts and 
contributes to the enhanced utilization of network resources. 
On the other hand, when the other state-of-the-art scheduling 
algorithms are implemented a large number of conflicting 
slots occur which results in increased delay and jitter. 
     Figure 14 depicts a comparative analysis of the CCRA 
algorithm with respect to packet loss ratio (PLR), contrasting 
it with well-established algorithms, namely FIFO, DTSA, and 
CFIT. Packet loss occurs when data packets transmitted in a 
network fail to reach their intended destination. The primary 
cause of packet loss is network congestion. When multiple 

packet requests concurrently seek network access, insufficient 
available bandwidth may hinder the accommodation of all 
requests, leading to conflicting time slots and subsequent 
network congestion. The PLR can be computed using 
Equation 10.  

𝑃𝑃𝑛𝑛𝑛𝑛𝑃𝑃𝐽𝐽𝐽𝐽 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 𝑅𝑅𝑛𝑛𝐽𝐽𝐽𝐽 =
𝐿𝐿𝑃𝑃
𝑇𝑇𝑃𝑃

 𝑋𝑋 100                         (10) 

 
Where LP is the number of packets lost while TP is the total 
number of packets in the flow. From Figure 14, it becomes 
evident that state-of-the-art scheduling algorithms like FIFO, 
CFIT, and DTSA exhibit high packet loss ratios as the traffic 
load increases, indicating a significant loss of data packets 
during transmission. This loss can have detrimental effects on 
the quality and reliability of network services. In contrast, the 
proposed CCRA scheme yields nearly zero PLR. This 
favorable outcome is attributed to the absence of conflicting 
time slots when CCRA is applied, resulting in a congestion-
free fronthaul network and, consequently, zero packet loss. 
The proposed CCRA scheme shows significantly improved 
performance in terms of packet loss and congestion control as 
compared to the other state-of-the-art scheduling schemes 
including FIFO, DTSA, and CFIT.  
     The DTSA algorithm could be suitable in a scenario of 
high-capacity links which are very expensive in deploying 
fronthaul networks and eliminate the most important benefit 
of fronthaul which is the cost-efficiency. Another problem is 
that this algorithm works on prioritizing the flows that may 
lead to starvation of low-priority flow (LPF) traffic when there 
is a continuous presence of high-priority flow (HPF) traffic. 
The prioritization of HPF traffic in the algorithm results in the 
consumption of a substantial portion of network resources, 
leaving little to no available bandwidth for LPF traffic. 
Consequently, this prioritization leads to higher queuing 
delays for LPF traffic, causing an increase in end-to-end delay 
and jitter.  Therefore, it can efficiently manage and route 
traffic, reducing congestion and latency when there is less 
traffic load and can optimize the allocation of network 
resources during less traffic load. This algorithm is suitable for 

FIGURE 13. Number of Conflicting Slots vs Traffic Load 

 

FIGURE 14. Packet Loss Rate vs Traffic Load 
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networks having high bandwidth and unlike Ethernet-based 
fronthaul networks where factors such as limited bandwidth 
and cost is not a challenge. On the other hand, the CFIT 
algorithm gives tolerable jitter values when the CPRI line rates 
are perfect multiple of each other, if the CPRI line rates are not 
multiple of each other it does not handle the traffic load 
efficiently and results in intolerable jitter and packet loss. This 
is suitable for network scenarios where transmission of traffic 
is limited to a few numbers of RRHs or limited traffic such as 
less than 0.35 LER. FIFO is easy to implement for networks 
and treats all data packets equally without any prioritization. 
Due to its simplicity, FIFO has a minimum computational 
cost. FIFO has a lack of optimization as it does not account for 
different priorities or types of traffic, which can be a major 
drawback in a fronthaul network where time-sensitive traffic 
is prevalent and necessary to prioritize different RRHs traffic 
flows depending upon the line rates to efficiently allocate 
resources. Moreover, during high traffic periods, FIFO can 
lead to increased inter-packet delays which causes intolerable 
delays in fronthaul networks. In the proposed CCRA scheme, 
jitter and latencies are computed using the reinforcement 
learning algorithm for different traffic flows and then packets 
are scheduled in such a way they get the fixed time slots, and 
no conflicting slots are assigned resulting in zero inter-packet 
delays which require to achieve zero jitter in the fronthaul 
networks. The fixed-sized and no conflicting slot mechanism 
eliminates the need for retransmissions and chances of packet 
loss.  CCRA is suitable for network scenarios where time-
sensitive traffic from multiple RRHs have to transmit in low 
bandwidth links and retaining the jitter and end-to-end delays 
within the tolerable limits of fronthaul networks is mandatory. 
The proposed scheme is designed in such a way that it first 
takes the requirements of the network and depending upon the 
available resources it dynamically allocates the time slots and 
transmission times to each packet of different flows which 
makes it scalable and highly useful for scenarios like 
fronthaul. 
    In the proposed CCRA algorithm, efficient scheduling is 
performed by the traffic flows in a proper sequence by 
allocating them a fixed time slot based on their CPRI line rates 
and preference as there are reinforcement learning techniques 
are used so it learns itself and follows the best traffic flow 
sequence according to the intensity of the traffic load. The 
proposed CCRA algorithm is designed to be scalable and 
capable of handling traffic loads up to 10 RRHs without 
degrading the performance requirements of fronthaul. The 
CFIT algorithm can only handle traffic at low load conditions 
around 4 to 5 RRHs. The DTSA could handle a large number 
of RRHs if high-capacity links are deployed but in case of 
limited bandwidth such as in the case of 10 gigabit Ethernet, 
DTSA performance is limited to 4 to 5 RRHs. When the traffic 
load surpasses a specific threshold, as indicated in the graphs 
illustrating E2E delay and jitter, it becomes evident that the 
CFIT and DTSA algorithms experience a notable increase in 
both jitter and E2E delays. This escalation renders them less 

suitable for Ethernet-based networks. The CFIT algorithm 
performs only when the CPRI line rates are perfect multiple of 
each other, otherwise, it assigns conflicting time slots to traffic 
flows which causes congestion and increases the jitter and E2E 
delays. In DTSA, the existence of high-priority traffic flows 
leads to extended waiting times for low-priority flows. This 
imbalance in inter-packet delays contributes to heightened 
jitter and delays. The experimental results show that when the 
proposed CCRA algorithm is used then the overall 
performance of the network improves and results the tolerable 
E2E delays, jitter, less conflicting time slots which improves 
packet loss and efficient bandwidth utilization. This scheme is 
compatible with any networking topology required to transmit 
time-sensitive traffic by ensuring the QoS. By increasing the 
bandwidth, the proposed scheme can multiplex and transmit 
traffic of more than 10 RRHs or traffic load equal to 1 LER 
over the fronthaul links.   
  

V. CONCLUSION 
In this study, a novel congestion control and resource 
allocation (CCRA) scheme based on Q-learning has been 
proposed where E2E delay, jitter, and packet loss rate are 
computed under different traffic load conditions for the 
Ethernet-based fronthaul networks. The scheme aims to 
improve multiplexing gains by successfully transmitting the 
traffic of multiple RRHs on capacity-constraint Ethernet 
links of 10 Gbps. The scheme emphasizes minimizing inter-
packet delays, E2E delays, and packets loss ratio to minimize 
the need for packets retransmissions and wastage of 
bandwidth. These are achieved by performing the efficient 
scheduling of time-sensitive packet flows by employing the 
Q-learning and dynamically slots allocation procedure which 
enhances the adaptability and self-learning features in the 
scheme. As a result, conflict-free and predefined slots are 
assigned which improves the performance of the network 
despite high traffic load conditions. The simulation results 
verify that the proposed scheme outperforms the existing 
scheduling schemes proposed for the fronthaul networks. In 
conclusion, the proposed Q-learning, congestion control, and 
resource allocation scheme have the potential to significantly 
improve the performance of Ethernet-based 5G fronthaul 
networks. By employing it at intermediate switches without 
upgrading the hardware resources, traffic between multiple 
RRHs and the BBU pool can be transmitted while satisfying 
the QoS requirements. 
    To assess the effectiveness of proposed congestion control 
and resource allocation mechanisms, future research would 
focus on experimental validation through field trials. 
Conducting real-world experiments in fronthaul network 
environments can provide valuable insights into the practical 
implications, limitations, and performance of proposed 
solutions. These experiments would also assist in identifying 
further challenges and potential improvements. 
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