
Citation: Ahmed, S.; Singh, M.;

Doherty, B.; Ramlan, E.; Harkin, K.;

Bucholc, M.; Coyle, D. An Empirical

Analysis of State-of-Art Classification

Models in an IT Incident Severity

Prediction Framework. Appl. Sci.

2023, 13, 3843. https://doi.org/

10.3390/app13063843

Academic Editor: Emilio Soria-Olivas

Received: 10 January 2023

Revised: 11 February 2023

Accepted: 15 February 2023

Published: 17 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Empirical Analysis of State-of-Art Classification Models in
an IT Incident Severity Prediction Framework
Salman Ahmed 1,*,† , Muskaan Singh 1,†, Brendan Doherty 2,†, Effirul Ramlan 3,† , Kathryn Harkin 2,†,
Magda Bucholc 1,† and Damien Coyle 1,4,*

1 Intelligent Systems Research Centre, Ulster University, Northland Rd, Londonderry BT48 7JL, UK
2 Data and Intelligent Systems, Allstate NI, Belfast BT1 3PH, UK
3 School of Computer Science, University of Galway, University Road, H91 TK33 Galway, Ireland
4 Institute for the Augmented Human, University of Bath, Bath BA2 7AY, UK
* Correspondence: ahmed-s17@ulster.ac.uk (S.A.); dh.coyle@ulster.ac.uk (D.C.)
† These authors contributed equally to this work.

Abstract: Large-scale companies across various sectors maintain substantial IT infrastructure to
support their operations and provide quality services for their customers and employees. These IT
operations are managed by teams who deal directly with incident reports (i.e., those generated auto-
matically through autonomous systems or human operators). (1) Background: Early identification of
major incidents can provide a significant advantage for reducing the disruption to normal business
operations, especially for preventing catastrophic disruptions, such as a complete system shutdown.
(2) Methods: This study conducted an empirical analysis of eleven (11) state-of-the-art models to
predict the severity of these incidents using an industry-led use-case composed of 500,000 records
collected over one year. (3) Results: The datasets were generated from three stakeholders (i.e., agency,
customer, and employee). Separately, the bidirectional encoder representations from transformers
(BERT), the robustly optimized BERT pre-training approach (RoBERTa), the enhanced representation
through knowledge integration (ERNIE 2.0), and the extreme gradient boosting (XGBoost) methods
performed the best for the agency records (93% AUC), while the convolutional neural network
(CNN) was the best model for the rest (employee records at 95% AUC and customer records at
74% AUC, respectively). The average prediction horizon was approximately 150 min, which was
significant for real-time deployment. (4) Conclusions: The study provided a comprehensive analysis
that supported the deployment of artificial intelligence for IT operations (AIOps), specifically for
incident management within large-scale organizations.

Keywords: IT incidents; risk prediction; dataset imbalance; IT service management (ITSM);
Information Technology Infrastructure Library (ITIL); artificial intelligence for IT operations (AIOps)

1. Introduction

In the ISO 20000, the IT incident outage is defined as “Any incident that is not
part of the standard operation of the service interferes or reduces the quality of the
service” [1]. Reducing risk and uncertainty of all types and sizes (both internally and
externally) is vital in determining the success of any large business. For example, ma-
jor incidents associated with network outages have significantly impacted all aspects of
the businesses, including employee productivity and customer satisfaction. The report
(https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime, accessed
on 30 August 2022) indicated that in the US, the effects of major incidents have cost
approximately $36,326/h, and the mean downstream cost to businesses have cost an addi-
tional $105,302/h. Unfortunately, approximately 12 billion incident reports are generated
daily, specifically for IT infrastructure issues, and these have been disruptive to large
businesses [2]. Overall, these incidents can easily lead to high operational costs and, even-
tually, impact an organization’s reputation for handling major issues, which can have a

Appl. Sci. 2023, 13, 3843. https://doi.org/10.3390/app13063843 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063843
https://doi.org/10.3390/app13063843
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8636-6991
https://orcid.org/0000-0002-8150-4782
https://orcid.org/0000-0002-4739-1040
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime
https://doi.org/10.3390/app13063843
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063843?type=check_update&version=2

Appl. Sci. 2023, 13, 3843 2 of 27

knock-on effect on the overall success of the organization [3]. These problems indicate the
growing importance of early major incident detection [4]. The early detection of potential
major incidents may increase the meantime of identifying major incidents, which could
reduce the resolution times and decrease the adverse impacts on IT business operations [3].

An example of a typical IT incident management system is presented in Figure 1.

Incident Identification

Detect Incident

Check Log Incident

Create Ticket

Assigned to team

Service Desk Manager

Incident Investigation

Classify Incident

Diagnose Incident

Resolve Incident

Service Agent

Incident Closure

Review Incident

Close Incident

Issue Resolution
Acknowledge

CustomerCustomer

Figure 1. Overview of IT incident management system.

In a typical manual process, the IT service desk is entirely responsible for managing
major incidents, from the identification until the resolution and closure [5]. Due to its
manual aspect, human errors directly impact the efficiency of the operation (e.g., wrongly
assigned tickets resulting in more time to process and probable waste of resources) [6].
In addition, if too many incidents arise and a priority queue is activated, the severity
assignment becomes critical, as wrongly prioritized incidents further increase the com-
plexity of the problem. Refs. [7] identified that companies with a well-managed incident
management system had managed to minimize their productivity losses and maintain their
service quality. Therefore, incident prioritization was essential to determine the impact
of such outages. Similarly, the ability to predict major incidents from the initial incident
reports could provide a significant advantage in reducing disruptions and preventing
actual outages from occurring. However, this is not a straightforward process, and there
are some issues to address:

1. Multi-modal Unstructured Data: Incident reports often contain text and
numerical information.

2. Mixing Data: Incident reports with similar content could be linked to a significant
outage or only a minor problem.

Appl. Sci. 2023, 13, 3843 3 of 27

3. Imbalanced Data: Many incident reports are often related to minor incidents, rather
than major incidents.

1.1. Scope and Problem Definition

The incident management process begins as soon as incident ticket logs have been
generated. Most of the time, these outages resolve at the organizational level (depending
on the system’s availability) or via the system’s components (specific system segments
issue an alert). Based on the severity of the issue, the tickets are then forwarded to the relevant
subject matter experts. However, the IT service management (ITSM) process is still manual,
which results in inaccuracies and financial losses (e.g., backlogs due to miss-assignment
of severity, high disc-memory usage, time consumption for root-cause analysis). AIOPS
addressed problems by classifying outages and responding appropriately to the situation.
AI was employed to do this. AIOPS real-world difficulties and threats were reflected in
the statistics from the IT outage incidents. This information was kept private. It operated
optimally with a three-tier architecture that incorporated system, data, and management tools.

1.2. Contributions

In this paper, we have provided a framework for proactive incident risk prediction.
This framework describes a learning value to the company, prevents and mitigates risk,
and optimizes resources with improved customer service and satisfaction.

• We proposed a novel framework for automating the prediction of major incidents
to mitigate risks associated with the escalation of incidents. We aimed to transform
reactive major incident management to proactive, within IT infrastructure.

• We presented different possible solutions to handle the imbalances in the major
incident report (MIR) and non-major incident report (NMIR) records in the dataset.

• We then conducted a comparative analysis of state-of-art classification models de-
signed to predict major IT incidents.

The organization’s primary aim should govern IT risk management [8]. Risk mitiga-
tion should include immediate responses, appropriate improvements, and continual risk
monitoring [9]. Given the widespread usage of AI in numerous business sectors, our work-
ing hypothesis was that IT incident management should be automated. We provided an
automated service management system based on cutting-edge AI models, such as machine
learning (ML) and deep learning (DL). Large organizations can use this approach to enable
early event detection and prioritization.

The rest of the paper is organized as follows: Section 2 provides the literature review,
Section 3 describes the data, followed by Section 4, which proposes a novel framework for
incident risk prediction with the state-of-the-art classification method description. Section 5
describes the experimental setup, and Section 6 provides the results and analysis. Finally,
Section 7 discusses the research. A conclusion is provided in Section 8.

2. Background

There has been limited implementation of ML techniques that are specific to IT incident
classification. A summary of recent studies is listed in Table 1. From our observation, among
the prominent works adopting conventional ML classifiers for IT incidents, support vector
machine (SVM) has been the most popular (22 studies), followed by naive Bayes (NB) with
13 studies, decision tree (DT) with 10 studies, k-nearest neighbor (KNN) with 5 studies,
logistic regression (LR) with 4 studies, and lastly, only 2 studies implementing random forest
(RF). Large-scale organizations opted for the simplicity of these conventional ML models
due to their limited resources in terms of organizational structures and computing facilities.
For example, SVM was preferred simply because the algorithm is less computationally
demanding and, thus, significantly reduces the cost of the solution.

In addition, there has been a lackluster interest in adopting DL network models for IT
incident classification, which is a stark contrast to the popularity of these models in most
other industries. One potential problem has been the implementation complexity, particu-

Appl. Sci. 2023, 13, 3843 4 of 27

larly the interpretive ability of the algorithms and the computational resources demanded
when training DL models. There have been very few implementations of DL available in
the literature, and only [10,11] using long short-term memory networks (LSTM) [12] and
convolutional neural networks (CNN) [13] were noted. As expected, the implementation of
a more advanced method (e.g., deep transfer learning transformers such as bidirectional en-
coder representations from transformers (BERT) [14], robustly optimized BERT (RoBERTa)
[15], and enhanced representation through knowledge integration (ERNIE 2.0) [16]) was
even rarer. We found a single study by [17] that adopted BERT in their IT incidents risk
prediction model. Independent of the underlying algorithms, most DL models require a
precise set of parameters that have been tailored to the problem. These parameters are
frequently static and often hard-coded into the models. As such, updating and maintaining
these solutions is complicated and requires a dedicated team [18]. More advanced DL
models have been synonymous with black boxes, which are relatively complex to interpret.
Due to this high level of abstraction, many firms may be reluctant to trust the output
generated from DL models, which could result in the failure of automation initiatives.

Understanding the semantics of IT incidents is essential for building the overall
context of the corpus. The incidents in their raw form contain quality and usability con-
straints that must be removed using natural language processing (NLP) and preprocessing
approaches [19]. Critically, when considering the imbalanced distribution often associated
with real-time datasets, researchers have overlooked critical features when developing their
corpus. We examined the existing NLP preprocessing pipelines and observed some inter-
esting challenges, including the implementation of lemmatization and stemming strategies
during the preprocessing phase. Previous analyses have revealed that language modeling
techniques have produced better results for lemmatization than for stemming for document
retrieval when precision was the performance metric. Another study by [17] addressed
the issue of identifying the right textual features for a large corpus using a tailored prepro-
cessing pipeline. However, the pipeline was not generic and required substantial changes,
based on the specific attributes of the datasets, to function. Despite the complexity of
context understanding, NLP techniques have been developed for feature extraction (as
listed in Table 1) to capture the maximum attributes of a given corpus.

In terms of the specific feature-engineering techniques, the term frequency-inverse
document frequency (TF-IDF) [20] has been the most preferred (12 implementations for
incident severity prediction studies were found). TFIDF has been preferred because TF-
IDF vectorization determines the TF-IDF score for each word in the corpus and assigns
that information to a vector. As a result, each document in the corpus had its own vector,
and the vector had a TF-IDF score assigned to every word that appeared anywhere in
the collection of documents at any time. The vector detected whether or not two texts
were comparable by comparing their TF-IDF vectors using a cosine similarity metric.
TF-IDF provides a simple way to calculate the association between features and their
importance within a text. It is memory and operationally efficient, which contributes
to its popularity. Another popular approach has been the count vectorizer, a traditional
feature extraction method based on the bag-of-words approach [21]. As compared to
TF-IDF, count vectorizer was more computationally intensive and often unable to identify
important keywords [22]. Despite the popularity of both methods, there have been clear
limitations, especially when handling large-scale, unstructured, and imbalanced datasets
commonly found in IT incident reporting.

Conventional ML vectorizers have a limited vocabulary, which is insufficient for large
datasets. As indicated in [21], conventional vectorizers were ineffective in handling real-
world ITSM data because they could not be upgraded. The vocabulary of traditional ML
approaches was fixed and unable to adapt to upcoming real-time tickets. Most conventional
vectorizers are also costly due to the cardinality review that must be performed exhaus-
tively for each word. These weaknesses have been addressed by adopting a more advanced
feature extraction method offered by state-of-the-art models, such as BERT, RoBERTa, and
ERNIE 2.0. These Transformer models can avoid repetition, providing positional embed-

Appl. Sci. 2023, 13, 3843 5 of 27

dings and learning relationships between words. For example, ref. [17] presented results
showing transformer-based feature extractors outperformed conventional vectorizers.

The survey presented here revealed that in terms of performance when using accuracy
as a metric, conventional ML models performed much better than the more advanced
DL models. For example, [10], in their analysis using an open IT support ticket dataset,
showed that NB outperformed the more advanced LSTM model (74% to 69% accuracy,
respectively). Moreover, ref. [12] demonstrated a gradient boosting (GB) model that slightly
outperformed a CNN model by 3% with an accuracy score of 95%–92% for automating
the Information Technology Infrastructure Library (ITIL) dataset. On the contrary, we
found this was not reflective of the true potential of these advanced DL models. There
have been noteworthy issues in their implementations, such as insufficient training due to
limited infrastructure (most advanced DL methods require extensive training to facilitate
learning [23]), lack of understanding of the DL architecture (difficult to identify the bias of
the model), lack of hyperparameter optimization (which is time-consuming and requires
extensive memory utilization), and lack of validation for performance evaluation.

In this literature survey, we recognized that an updated comparative analysis of ML
algorithms and state-of-the-art DL approaches, including transformer architectures for
incident prediction, was required, as the vocabulary handled by ML classifiers is limited,
making ML insufficient when learning from larger datasets that are complex (mixed and
unstructured) and imbalanced. Therefore, we present a comprehensive analysis in this
paper, focused on first-time transformer models. We hypothesized that the transformer
model could significantly improve performance metrics due to its attention mechanism
and its ability to handle larger vocabulary sizes.

Appl. Sci. 2023, 13, 3843 6 of 27

Table 1. Existing implementations of automated IT incident prediction utilizing AI models.

Data Pre-Processing Feature Engineering Techniques Ref

Open-source data of Endava helpdesk operators anonymization, lowercasing, lemmatizing, stemming,
noise removal

No CNN, RF, GB, average and stack ensemble [24]

ITIL CHM department removing stop words, punctuation, turning to lowercase, stemming linguistic Features TF-IDF and KNN, decision tree, NB, LR, SVM, QUICKSUCCESS [25]

Fast-food restaurant chain DateTime column named closed ticket transform from string to
DateTime format.

feature extraction was performed based on daily data. Irrele-
vant features were removed. The feature was selected based
on probability theory.

NB, LR, and gradient boosting decision tree model [26]

IT department from a big multinational company tokenization, stop word and digits removal, word stem-
ming, and part-of-speech filtering by selecting only open
grammatical classes

word count per solution category against text data. TF-IDF and multinomial naive Bayes SVM, KNN, decision
tree, and logistic regression

[27]

IBM Tivoli monitoring system No No HMDB and ICTR model [28]

German Jordanian University. remove HTML tags and special characters TF-IDF feature vectorization SVM,NB, rule-based, and decision tree [29]

IT infrastructural incident data remove stop words, special characters, date and time, phone
number, and email address

Chi-squared was used to select important features using
TFIDF vectorizer. Top 1000 important feature selected.

NB, SVM, and Ada SVM [30]

IBM CMDB dataset keywords and their annotations as classification features Selecting top Configuration Item records from CMDB to pre-
vent complexity. TF-IDF was used to give importance

SVM [31]

Incident issue tracking system of Istanbul Technical
University data

purifying of tickets from HTML and numerical expression tags
was carried out

Bag of words using TF-IDF decision trees, SVM, KNN, and NB [32]

Confidential data of IT Company tokenization, stop words removal, and stemming part of speech tagging was performed to filter out vocabulary SVM [19]

Real-world incident ticket data tokenization, stop words removal and stemming TFIDF SVM [33]

Real-world IT infrastructure service desk ticket data remove stop words, special character, date and time, phone
number, and email address

TF-IDF LR, K-NN, MNB and SVM [34]

Organization ticket data lemmatization, POS tagging TFIDF with Jaccard coefficient filtration k-means clustering, Jaccard distance, and cosine distance [35]

UCI ML repository No embedding relational graph convolutional networks [36]

Case study data No TFIDF SVM using RBF kernel and XGBoost [37]

IBM real-time dataset HTML tag removal, Unicode inconsistencies,
header/footer/entities replacement

semantic role sampling BERT [17]

Telco trouble ticket dataset remove punctuation and stop words TFIDF random forest, DL, gradient boosting, XGBoost, and ex-
tremely randomized trees classifiers

[38]

Service Now dataset in IT help desk and ticketing remove punctuation and stop words Doc2vec using ServiceNow ticketing system logistic regression [18]

Tickets dataset of service level agreement remove punctuation and stop words, URL. Count Vectorizer decision trees, SVM, KNN and NB [39]

Appl. Sci. 2023, 13, 3843 7 of 27

3. Dataset Description

For this study, we used a dataset from a large multinational company comprising
500,000 total records. The dataset comprised real-time IT incidents collected from January
2020 to March 2021. These incidents were recorded by the organization’s three main
stakeholders (agencies, employees, and customers). The reported incidents were classified
either as major incident reports (MIR) or non-major incident reports (NMIR). Examples of
the incident reports are provided below:

• MIR: “Why am I unable to print from any application? All staff is unable to print. No
error message.’’

• Non-MIR: “How do I update Java? Outlook web version running slow.”

An MIR was an incident report that had been escalated to major status or had a direct
link to major incidents identified by the IT team. Conversely, NMIR was a regular incident
with less impact on the operation. The class of each incident was labeled retrospectively
after processing. The dataset is structured as:

Agency_records = ∑ Agency(MIR, NMIR),

Employee_records = ∑ Employee(MIR, NMIR),

Customer_records = ∑ Customer(MIR, NMIR)

The distribution of the datasets is depicted in Figure 2. The Agency_records contained
493,503 incidents, out of which 15,257 were MIR and 478,246 were NMIR records. The
Employee_records contained 245,696 incidents with 3779 MIR and 241,917 NMIR values. The
Customer_records had 217,540 incidents with 173 as MIR and 217,367 as NMIR. As observed,
the datasets were significantly imbalanced and skewed heavily in favor of NMIR incidents.

Agency: 493503

Employee: 245696

Customer: 217540

MIR: 173 , NMIR: 217367
22.7%

MIR: 3779, NMIR: 241917
25.7%

MIR: 15257, NMIR: 478246
51.6%

Figure 2. Distribution of dataset.

Specific to this study, we only used the Description, Short description (incident details),
and the Status (labels MIR or NMIR) within the available datasets columns. In addition, we
utilized the MIR opened at (MOA) and Incident opened at (IOA) columns for estimating the
prediction horizon (i.e., time advantage that could be realized by investigating the cause
of an incident potentially related to a major outage). A sample of the dataset is described
in Table 2. To address the imbalanced class issue in our dataset, we curated new datasets
using a custom data-augmentation approach [40]. We added the actual MIR records from

Appl. Sci. 2023, 13, 3843 8 of 27

the other stakeholders’ datasets to each stakeholder dataset. This enriched each dataset
while preventing additional extraneous information in the vocabulary. Data augmentation
was intended to increase the occurrences of the MIR classified incidents that were severely
lacking in the original dataset. The dataset composition was, as follows:

Agency_resampled = ∑ Agency_records + ∑ Employee(MIR) + ∑ Customer(MIR),

Employee_resampled = ∑ Employee_records + ∑ Agency(MIR) + ∑ Customer(MIR),

Customer_resampled = ∑ Customer_records + ∑ Employee(MIR) + ∑ Agency(MIR)

We also concatenated all the records to increase the number of MIR records, as follows:

Combine_All = ∑ (Agency_records + Employee_records + Customer_records)

We also performed up-sampling using the synthetic minority oversampling technique
(SMOTE) [41]. We used SMOTE for oversampling because it generated synthetic data points
that were different from the actual points instead of duplicating records with no extra infor-
mation and increasing vector size. Using SMOTE, we generated three sampled subsets:

Agency_smote = ∑ SMOTE(Agency(MIR, NMIR)),

Employee_smote = ∑ SMOTE(Employee(MIR, NMIR)),

Customer_smote = ∑ SMOTE(Customer(MIR, NMIR))

Table 2. Data dictionary.

Column ID Description Values

Incident number The unique internal code of the incident INC123xxxx
Assignment group The group to which the incident has been assigned.
Opened at Date/Timestamp of when created the incident record. 17 March 2020
Closed at Date/Timestamp of when the incident record was closed. 18 March 2020
Incident severity The level of impact for each incident. (1—High; 2—Medium;

3—Low; 4—None)
CMDB The name of the configuration management database associated with the incident
Category The category associated with the incident
Short description Brief information about the incident.
Description Detailed information about the incident.
Status The manual mapping from problem to incident. (0—MIR; 1—Non-MIR).
MIR opened at Date/timestamp of when created the MIR record. 17 March 2020
Incident opened at Date/timestamp of when the incident record was opened. 18 March 2020

Our literature survey indicated that most of the reported studies did not use resam-
pling, which may have resulted in sub-optimal learning [19,29,37]. We hypothesized that
by increasing the minority class (i.e., in the highly imbalanced situations observed in our
dataset), we could improve the feature extraction of the minority class (in this case, MIR
classified reports), which would lead to a higher accuracy. By performing SMOTE, we
managed to increase occurrences of the minority class (MIR) records. For Agency_smote,
we generated 462,989 MIR records, which were added to the existing 478,246 NMIR records.
For Employee_smote, we generated 238,138 MIR records, which were added to the existing
241,917 NMIR records. For Customer_smote, we generated 217,194 MIR records, which
were added to the existing 217,367 NMIR records.

4. Proposed Framework

Currently, there is a gap in the literature concerning the performance evaluation of AI
algorithms in this domain. In this study, we proposed a comprehensive framework that

Appl. Sci. 2023, 13, 3843 9 of 27

compared various ML and DL approaches, specifically for IT incident prediction, using
our proprietary industry-level data. We developed a computational pipeline that began
with preprocessing, followed by feature extraction, training, and evaluation (a detailed
description of the pipeline is presented in Section 5.1) and shown in Figure 3.

AgencyEmployeeCustomer

Dataset

MIR or NMIRYes

No

Assigned

MIR

Incident Escalation Team
NMIR

Normal Priority
Queue

Prediction Framework

Warning

Assigned

Figure 3. Proposed IT incident risk framework.

Our comparative pipeline is shown in Figure 4. The first phase of the pipeline was data
preparation. As discussed earlier in Section 3, we had performed data augmentation and
synthetic resampling on our original dataset. These datasets were split (70% for training
and 30% for testing). Using the training data, we had performed supervised training using
all 11 classifiers. Specific to the DL-based classifiers, we allocated 20% of our training
dataset for training validation using the default Keras model’s fit function. The training
phase was performed for 10 epochs with binary_crossentropy as the loss function and AUC
as the performance metric. We selected AUC as a metric to prevent over-fitting due to the
imbalanced characteristics of our dataset. Finally, the models were tested with the test data
(30% of the dataset). Similarly, the AUC score was determined to evaluate the performance
of all 11 classifiers.

Appl. Sci. 2023, 13, 3843 10 of 27

Training
Dataset

Dataset
resampling

R
es
iz
in
g

N
or
m
al
is
at
io
n

A
ug

m
en
ta
tio

n

Train Data Models
Architecture

SVM

Bi-LSTM

NBGB

XGBoostCatBoost CNN

GRU

Bert

Ernie

Roberta

Validation
Dataset

Training and
Validation

Test
Dataset

Test Model

Training
Evaluation

- Loss
- AUC/ROC
- Best epoch

Test
Evaluation

- AUC/ROC

Training
Dataset

Validation
Dataset

Dataset
resampling Train Data Models

Architecture

Training and
Validation

Figure 4. Graphical representation of the pipeline stages for training and testing for ML, DL, and
transformer models.

An essential element of the prediction framework was the utilization of various state-
of-the-art classifiers. In this work, we categorized these classifiers as (1) conventional ML
methods, including NB, SVM, gradient boosting (GB), extreme gradient boosting (XGBoost),
and categorical boosting (CatBoost); (2) DL-based approaches, including gated recurrent
unit (GRU), CNN, and Bi-LSTM; and lastly, (3) transformers, including BERT, robustly
optimized BERT (RoBERTa), and enhanced representation through knowledge integration
(ERNIE 2.0). A brief description of each classifier is provided below.

• NB [42]: Naive Bayes classifier is based on Bayes theorem and is one of the popular ML
algorithms for classification. NB is a simple probabilistic model that assumes that each
feature or variable of the same class makes an independent and equal contribution to
the outcome. Our dataset was divided into a feature matrix and a target vector. The
feature matrix (X) contained all the vectors (rows) of the dataset, in which each vector
consisted of the value of dependent features. We assumed that the number of features
were d, X = (x1, x2, x3, . . . , xd) while the target vector (y) contained the value of the
class variable for each row, according to its feature matrix. The feature matrix (X) was
the incident description reported in the database system. The target (y) value would
either be MIR or NMIR. In this instance, P(y|X) was the probability of the class y (for
MIR or NMIR), according to the incident description (X). The maximum probability
function provided the classification label, either MIR or NMIR.

• GB [43]: Gradient boosting classifier is an approach developed to train a weak hy-
pothesis iteratively to arrive at a better hypothesis. Gradient boosting combines the
previous model with the next generated model to minimize the prediction error. It
minimizes the loss function iteratively, starting with a negative gradient, i.e., a weak
hypothesis. In this work, we performed a binary classification (MIR or NMIR) using
the description column of the incident. The algorithm began with one leaf node that
predicted the initial value for each description of the incident. Next, the algorithm
used the log(odds) of the target value, yielding an average survival value assigned to
our initial leaf node. If the probability of surviving exceeded 0.5, we first classified
every sample in the training dataset as MIR. (Note: where 0.5 was a common threshold
value associated with binary classification decision based on probability).

• XGBoost [44]: Extreme gradient boosting is an optimized GB technique that provides
efficient, flexible, and portable tree model results. It offers parallel tree boosting
that provides solutions quickly and accurately. XGBoost is efficient for open-source
implementation and significantly distributed environments, such as Hadoop, Sun
Grid Engine (SGE), and Message Passing Interface (MPI). It predicts the residual or
error of prior models to obtain its final predictions. The gradient descent algorithm
minimizes loss when adding new models. We trained the model with 500 trees and a

Appl. Sci. 2023, 13, 3843 11 of 27

depth (max_depth) of 1 (for the root node). As compared to other available boosting
techniques, e.g., GB, XGBoost was fast, memory efficient, and highly accurate [45].

• Catboost [46]: Category and boosting adopts minimal variance sampling, a type of
stochastic gradient boosting with weighted sampling. In this instance, the weighted
sampling occurred at the tree level and not the split level. It grows as a balanced tree;
the split score minimizes the loss and maximizes the accuracy score. Changing policy
parameters (with a penalty function at level nodes) is also possible. In contrast to a
traditional approach, this study addressed the MIR and NMIR classification problems.
We trained the model with 400 trees and a depth (max_depth) of 1 (root node only). As
compared to the XGBoost, Catboost was twice as fast with better accuracy [47].

• SVM [48]: Support vector machines utilize associated learning to analyze data for
classification. Based on the descriptions of known incidents, SVM built a model that
assigned MIR or NMIR labels to new incidents. The algorithm considered all incident
descriptions and mapped them to a space that maximized the distance between
the two classes. In the context of this study, we had a training dataset of incident
descriptions labeled “0” for MIR and “1” for NMIR, (x1, y1) . . . (xn, yn) where yi is
either 0 or 1, each denoting to a point xi, where each xi is a p-dimensional real vector.
We were interested in the maximum-margin hyperplane that divided the group of
points xi, for which yi = 0 from the group of points for which yi = 1, which was
defined so that the distance between the hyperplane and the nearest point xi from
either group was maximized. Any hyperplane could be written as the set of points x,
satisfying wTx− b = 0, where w was the (not necessarily normalized) normal vector
to the hyperplane. This was similar to Hesse’s normal form, except that w was not
necessarily a unit vector. The parameter b

‖w‖ determined the offset of the hyperplane
from the origin along the normal vector W.

• Bi-LSTM [49]: Bi-directional long short-term memory is an improved version of
the LSTM model (a variant of the recursive DL architecture) that can process data
in both forward and backward directions. Bi-LSTM helps map models that allow
for sequential dependencies in words and phrases. For our framework, Bi-LSTM
assisted in training MIR and NMIR sequences by preserving this information using
two independent RNN cells that stored the iterative states for a longer time. Bi-LSTM
contained the IT incident input (Xt) concatenated with hidden state (ht − 1), which
was further forwarded to three gates (Forget, Input, and Output). The Input gate
has an embedded gate known as an Update. The Update gate memorized the past
and present sentence sequence. The value from the update gate multiplied the cell
state (Ct − 1), resulting in the hidden state or unit (ht). Our Bi-LSTM architecture
comprised five layers: one embedding layer with a size of 300, one bi-directional layer
with 280 LSTM neurons, two dropout layers, and one classification layer (dense layer).
The total number of trainable parameters for the model was 23,346,401.

• CNN [50]: Convolutional neural network is synonymous with image classification,
but recently, it has significantly contributed to NLP. CNN is used to extract high-level
feature functions from n-gram. For example, ref. [51] developed a word-embedding
matrix layer that memorized the weights during the network training phase. We used
our framework’s input labels (MIR or NMIR) as tokens to map to the word-embedding
matrix. In this mapping, every convolutional filter mapped to each window of the
embedding layer. In CNN, matrix reduction reduced the dimension of the matrix to a
constant length. We executed the matrix reduction on every possible window. Each
reduced matrix was the input for the fully connected layer. In the next layer, we used
the activation function to create a single dimension input of features per tensor output;
The global max pooling layer with 256 batch sizes and 23,027,144 trainable parameters
were used. In the final layer, we applied the Softmax activation function to translate
the real-probability values into MIR or NMIR labels.

• GRU [52]: Gated recurrent unit is an RNN DL variant that retains information for a
longer time and improves the computing speed. GRU consists of two neural gates

Appl. Sci. 2023, 13, 3843 12 of 27

(Update and Reset gates) for updating the previous cell state and discarding the
irrelevant state. For this purpose, we provided MIR or NMIR values as input Xt,
which concatenated with hidden states Ht−1 and moved to the Update gate. In the
final phase, we used the Sigmoid activation function to maintain an output within
the range of (0,1), resulting in an MIR or NMIR value. The architecture comprised
5 layers, containing one embedding layer with a size of 300 vectors, one GRU layer
with 140 neurons, and one dense layer with a sigmoid activation function. The model
had a total of 23,037,981 trainable parameters.

• BERT [14]: Bidirectional encoder representations from transformers consists of several
encoder transformers within a pool of pre-trained models. BERT follows the bidi-
rectional orientation of learning information from a sequence of words from left to
right and right to left. Each encoder encapsulates two sub-layers: a self-attention layer
and a feed-forward layer. We have employed a trained BERT architecture contain
12 layers of the encoder, 12 attention heads, 768 hidden sizes, and 110M trainable pa-
rameters. It was pre-trained on 800M unlabeled data extracted from BooksCorpus and
2500 M words from Wikipedia, and then, it was transferred to the incident prediction
problem. We performed an additional preprocessing step for our dataset using the
BERTtokenizer. It tokenized and reformatted the sequence of tokens by adding CLS (a
classification token indicating the start of a sequence) and SEP tokens (appended to
the end of the sequence). The length of our incident description token was less than
512 tokens; therefore, we utilized padding (PAD) to fill the unused token slots (further
details below). Our BERT model output an embedding vector of 768 in each of the
tokens and had 340M trainable parameters.

• ERNIE 2.0 [16]: Enhanced Representation through knowledge Integration (ERNIE)
is a pre-trained framework that performs the training of new sequences with histor-
ically trained tasks. For text classification, ERNIE 2.0 has outperformed BERT with
highly accurate results [16]. ERNIE 2.0 captures the contextual information with a
series of shared text encoding layers, customized with recurrent neural networks
or deep transformers with a stacked self-attention layer. Its multi-task learning
encodes lexical, syntactic, and semantic information across tasks. When a new
task arrives, this framework can incrementally train the distributed representations
without forgetting the previously trained parameters. In our framework, we used
12 layers, 12 self-attention heads, and 768 dimensions in the hidden layer, resulting
in 94M trainable parameters.

• RoBERTa [15]: Robustly optimized BERT emphasizes data being used for pre-training
and the number of passes for training. The RoBERTa architecture was proposed to
overcome the drawback of the original BERT model by increasing batch size from
256 to 8k, providing better speed for performance metrics [15]. We used a pre-trained
transformer with built-in (vocab) 160GB in size for RoBERTa to conserve our com-
putational resources. It reduced the perplexity of the masked language model by
providing the provision to train with larger batches and longer sequences. It also
provided the dynamic masking pattern over the training data during data prepro-
cessing. In our framework, we implemented a large RoBERTa model with 12 encoder
layers, 12 attention heads, and 768 dimensions in the hidden layer, resulting in 110M
trainable parameters.

Finally, if an incident was classified as NMIR, it was assigned to the normal priority
queue. If an incident was classified as MIR, it was directed to the high-priority queue and
assigned immediately to the incident processing acceleration teams in order to resolve the
issue as soon as possible.

5. Experimental Setup

We conducted the empirical analysis using the state-of-art for the proposed IT incident
prediction framework. We evaluate our generated results with the off-the-shelf models
described in Section 4. We performed preprocessing, as described in Section 5.1, and

Appl. Sci. 2023, 13, 3843 13 of 27

an analysis of the tokenizers, as described in Section 5.2. We reported our training in
Section 5.3 and validation in Section 5.4.

5.1. Pre-Processing

Data preparation is critical in any text classification task. For this study, the incident
descriptions in our datasets were highly unstructured with no specific formatting (i.e.,
entirely dependent on the user’s view). Therefore, we developed a preprocessing pipeline
to standardize the input text and remove unnecessary noise. We started with the noise
entity removal for HTML tags, stop words, punctuation, white-spaces, and URLs. Next,
we normalized the data using the standard NLTK toolkit [53]. During the normalization,
we performed tokenization, lemmatization, stemming, and sentence segmentation. For
punctuation removal, we used a regular expression, in which we removed all the values
other than alphabetic words (i.e., command r’[A-Za-z]’), then converted all the words
into lowercase representations. We assigned these lower-case words as tokens using
WordPunctTokenizer. The function tokenized a text into a sequence of alphabetic and
non-alphabetic characters following regexp. Unnecessary white spaces, which were the
byproducts of the upper-to-lower-case conversion, were removed. Lastly, manual cleaning
of these sequences using the join and strip functions was performed. The resulting datasets
were split as follows: 70% for training and 30% for testing. For training, we further split the
training dataset by reserving 20% of the training dataset (from 70% of the original portion)
for validation (which is necessary for DL-based models).

5.2. Tokenizer

Determining the separability between the MIR and NMIR incidents was key in our
framework. Therefore, to enable a good generalization between the incident texts and their
classes, we had to identify the vocabulary present in the datasets. To do so, we optimized
the size of each token (i.e., the set of sub-words representing the vocabulary) as 35 words
max_length. Tokenization allowed us to understand the differences between classes, analyze
and compare vocabulary between datasets and identify any correlations within each class
with accuracy. For DL-based models, we used the Keras tokenizer, and for the transformers,
we used the BERTtokenizer, the RoBERTa tokenizer, and the ERNIE 2.0 tokenizer, which
were compatible with the selected models. The resulting data after tokenization had various
lengths. To mitigate this issue, we padded the data by adding zeros to reach a specific
length (35) in order to ensure all the feature vectors had the same dimensions.

5.3. Training

For the ML models, we used TF-IDF for feature extraction. TF-IDF operated by
extracting the essential words within the corpus, where TF was the term frequency of the
words appearing in the ITSM corpus (all incident records in the training set), and IDF was
the frequency of the datasets containing those words. The fewer words that appeared in
the corpus, the higher the TF-IDF value would be. We used the sklearn library for our
analysis to calculate the TF-IDF value. After the feature extraction via the TF-IDF vectorizer,
we used the default settings for all conventional ML classifiers, as described in sklearn
library [20] for training. The labels for every feature vector available from the raw data
(MIR and NMIR) used the sklearn prediction function for evaluation.

For the DL models, the textual data were transformed into numbers and mapped
to the embeddings to achieve better cardinality for each token. The first layer of our
DL model was the embedding layer, consisting of three parameters: input dimension,
input length, and output dimension). The next layer, called the model layer, contained
hidden neurons that helped to model the complex data. It contained two parameters
(the number of neurons and the return sequence). Finally, we used a dense layer with
parameters such as input shape, batch size, and sigmoid as the activation functions. This
layer was also known as the classification layer because it classified the output as MIR
and non-MIR values. Compiling a model required parameters such as optimizer and loss

Appl. Sci. 2023, 13, 3843 14 of 27

function. We used the Adam optimizer and binary cross-entropy as loss functions. For the
transformers, we used pre-trained transformers, from which we had already converted
the incident reports from the training, validation, and test datasets to integer sequences
at a length of 35 tokens each. Next, we converted the integer sequences to tensors. We
created dataloaders for both training and validation sets. This dataloaders passed batches
of training and validation data as input to the model during the training phase. We
implemented the default configurations for BERT, ERNIE 2.0, and RoBERTa. The Figure 5
shows the architecture of our best performing transformer architecture.

Raw Data

[CLS] Application Print Unable [SEP]

Multi Head Attention

Add and Norm

Feed Forward

Add and Norm

Positional
Encoding

Linear

SoftMax

Multi Head Attention

Add and Norm

Feed Forward

Add and Norm

Output
Embedding

Masked Multi Head
Attention

Add and Norm

MIR NMIR

Figure 5. Graphical representation of our best-performing transformer (Roberta) model architecture.

Appl. Sci. 2023, 13, 3843 15 of 27

5.4. Validation

To validate our results, we performed cross-validation, an approach that tests the
performance efficiency of a model. In essence, the higher the performance metrics score
for cross-validation is, the lesser the error associated with the model should be. We chose
the sklearn stratified k-fold cross-validation because it is a refined form of the traditional
k-fold cross-validation technique. It randomly divided the corpus so that the target class
ratio in each fold remained at the same level as in the overall dataset, so the analysis results
were consistent. This ensured that the minority class had sufficient samples during training
and testing; we segmented the data (Combine_All) into 5 folds. As an additional step, we
ensured that the subsets for train and testing did not overlap. The system configuration is
shown in Tables 3 and 4.

Table 3. Selected Parameters.

Classifier Vocab_Size Max_Features Embedding_dim Batch_Size Filters kernel Activation loss Optimizer Learning_Rate

(500, 1 k,
10 k, 20 k,
30 k, 50 k)

(5 k, 10 k,
50 k, 200 k)

(64, 128, 256, 512) (8, 16, 64,
128, 256)

(200, 400,
600, 800)

(1, 2, 3, 4,
None)

(Relu, Sigmoid,
Gelu, Tanh)

(categorical
crossentropy,
crossentropy loss)

(Adam,
AdamW)

(0.01, 1× 10−3,
1× 10−5)

CNN 10,000 1000 128 256 100 4 Relu categorical
crossenthropy

Adam 0.01

Bi-LSTM 10,000 1000 128 256 25 None Sigmoid categorical
cross entropy

Adam 0.01

GRU 10,000 1000 128 256 128 3 Sigmoid categorical
cross entropy

Adam 1× 10−3

Bert 30,522 3072 512 8 768 None Gelu cross
entropy loss

AdamW 1× 10−5

RoBERTa 50,000 3072 514 8 768 None Gelu cross entropy loss AdamW 1× 10−5

ERNIE 18,000 3072 256 8 768 None Relu cross
entropy loss

AdamW 1× 10−5

Table 4. System Configuration

Configuration Name Version

Tensorflow 2.8.0
Python 3.7.7
Jupyter notebook 6.2.0
GPU Tesla P100-PCIE-12 GB
GPU Memory 12 GB HBM2
System Interface PCI e 3.0 * 16
Power Consumption 250 w

6. Result and Analysis

We conducted empirical analysis using the state-of-art for the proposed IT incident
prediction framework. We evaluated our generated results from off-the-shelf models, as
described in Section 4. We provided analysis on the tokenizer in Section 6.1, reported our
evaluation quantitatively in Section 6.2, cross-validation in Section 6.3, and mean time
resolution in Section 6.4.

6.1. Tokenizer Analysis

Tokenization allowed us to determine the vocabulary within our datasets. Considering
our original dataset’s size and understanding of the inter-dataset characteristics, we per-
formed an individual analysis of each dataset, as presented in Figure 6. For Agency_records
(Figure 6a), the maximum differences between classes were visible in the first 20 tokens,
when comparing the average tokenizer values. This indicated a good separability between
class means consistency during training and testing. We observed the average token value
range in the Agency_records was lower than that of the Employee_records (Figure 6b),
which also correlated with a higher variance in tokens for the Employee_records. Thus,

Appl. Sci. 2023, 13, 3843 16 of 27

Employee_records had a more varied vocabulary in their corpus. The max separability
appeared to occur between the 5th and 15th tokenizer for the Agency_records and the
Employee_records. Upon closer inspection, we observed a relative difference between class
means for the Employee_records at approximately 23 tokens. The profiles were significantly
different for the Customer_records (Figure 6c), which had a much smaller MIR class with
only 112 MIR samples in the training set, as compared to the 65,000 samples for the NMIR.
Consequently, the average token value varied widely for the minority class (in this case,
MIR). Accordingly, the average tokenizer values for the NMIR class were much lower,
indicating a smaller corpus.

(a) (b)

(c)
Figure 6. Average tokenizer/class for training and test data across (a) Agency_records, (b) Em-
ployee_records and (c) Customer_records.

6.2. Quantitative Evaluation

As compared to more common performance metrics (e.g., accuracy), AUC or ROC were
more suited metrics imbalanced datasets because they helped to identify over-fitting [54].
Higher AUC or ROC values represented better separability between the MIR and NMIR
classes. Figure 7 depicts the qualitative scores with ROC/AUC for the Agency_records,
Employee_records, and Customer_records. The scores presented in Figure 7 were averaged
across the Agency_records, Employee_records, and Customer_records. Transformer based
models (BERT, RoBERTa, and ERNIE 2.0) and XGBoost performed best with a 93% ROC
score for the Agency_records dataset. For the Employees_records and Customers_records,
CNN performed best at 95% and 74% ROC. Overall, Catboost achieved minimum ROC
scores of 69%, 50%, and 50%. This was expected as Catboost struggled in unknown
categories and needed to build in-depth decision trees for high cardinality features [55].

As indicated in Section 3, our datasets were highly imbalanced. Therefore, we resam-
pled our dataset and re-ran our prediction pipeline. The results are depicted in Figure 8.
ERNIE 2.0 achieved a 95% ROC for Agency_resampled. BERT and ERNIE 2.0 achieved
the highest scores, 97% for Employee_resampled and ERNIE 2.0 at 98% ROC for Cus-

Appl. Sci. 2023, 13, 3843 17 of 27

tomer_resampled. NB achieved 71%, 53%, 59%, and 54% ROC for the Agency_resampled,
Employee_resampled, Customer_resampled and Combine_All, respectively, which was
the lowest among all the classifiers. A recurring issue with the NB model was that with no
occurrences of a class label and a particular attribute value, the frequency-based probability
estimation would be zero. A large dataset was required for reliable predictions of each
class’s probability.

SV
M

N
ai

ve
Ba

ye
s

G
ra

di
en

tB
oo

st
in

g
X

G
Bo

os
t

C
at

Bo
os

t
Bi

-L
ST

M
C

N
N

G
R

U
BE

R
T

ER
N

IE
2.

0
R

ob
er

ta

40

50

60

70

80

90

100

Models

R
O

C
/A

U
C

(%
)

(a)

SV
M

N
ai

ve
Ba

ye
s

G
ra

di
en

tB
oo

st
in

g
X

G
Bo

os
t

C
at

Bo
os

t
Bi

-L
ST

M
C

N
N

G
R

U
BE

R
T

ER
N

IE
2.

0
R

ob
er

ta

40

50

60

70

80

90

100

Models

R
O

C
/A

U
C

(%
)

(b)

SV
M

N
ai

ve
Ba

ye
s

G
ra

di
en

tB
oo

st
in

g
X

G
Bo

os
t

C
at

Bo
os

t
Bi

-L
ST

M
C

N
N

G
R

U
BE

R
T

ER
N

IE
2.

0
R

ob
er

ta

40

50

60

70

80

90

100

Models

R
O

C
/A

U
C

(%
)

(c)
Figure 7. Quantitative ROC/AUC results across (a) Agency_records, (b) Employee_records, and
(c) Customer_records for state-of-art methods.

SV
M

N
ai

ve
Ba

ye
s

G
ra

di
en

tB
oo

st
in

g
X

G
Bo

os
t

C
at

Bo
os

t
Bi

-L
ST

M
C

N
N

G
R

U
BE

R
T

ER
N

IE
2.

0
R

ob
er

ta

40

50

60

70

80

90

100

Models

R
O

C
/A

U
C

(%
)

(a)

SV
M

N
ai

ve
Ba

ye
s

G
ra

di
en

tB
oo

st
in

g
X

G
Bo

os
t

C
at

Bo
os

t
Bi

-L
ST

M
C

N
N

G
R

U
BE

R
T

ER
N

IE
2.

0
R

ob
er

ta

40

50

60

70

80

90

100

Models

R
O

C
/A

U
C

(%
)

(b)

SV
M

N
ai

ve
Ba

ye
s

G
ra

di
en

tB
oo

st
in

g
X

G
Bo

os
t

C
at

Bo
os

t
Bi

-L
ST

M
C

N
N

G
R

U
BE

R
T

ER
N

IE
2.

0
R

ob
er

ta

40

50

60

70

80

90

100

Models

R
O

C
/A

U
C

(%
)

(c)

SV
M

N
ai

ve
Ba

ye
s

G
ra

di
en

tB
oo

st
in

g
X

G
Bo

os
t

C
at

Bo
os

t
Bi

-L
ST

M
C

N
N

G
R

U
BE

R
T

ER
N

IE
2.

0
R

ob
er

ta

40

50

60

70

80

90

100

Models

R
O

C
/A

U
C

(%
)

(d)
Figure 8. Quantitative ROC/AUC results across (a) Agency_resampled, (b) Employee_resampled
(c) Customer_resampled, and (d) Combine_All for state-of-art methods.

We also experimented with our synthetic data curation (SMOTE). For the Agency_smote
and the Employee_smote, XGBoost performed best with 94% and 86% ROC scores, re-
spectively. GB performed best for the Customer_smote with an 85% ROC value. Figure 9

Appl. Sci. 2023, 13, 3843 18 of 27

shows that the DL models (Bi-LSTM, GRU, CNN) performed relatively poorly on all the
synthetic subsets. This was largely contributed to the synthetic data profile generated by the
SMOTE technique. SMOTE created more extensive and less specific decision boundaries
that increased the generalization capabilities of the ML classifiers, which were more suited
for one-hot encoding. In contrast, DL models used tokenizers, causing extensive feature
spaces in NLP and resulting in the DL models falling quickly into high sparse dimensions.

N
ai

ve
Ba

ye
s

G
ra

di
en

tb
oo

st
in

g

X
G

Bo
os

t

C
at

bo
os

t

SV
M

Bi
-L

ST
M

C
N

N

G
R

U

40

50

60

70

80

90

100

Models

R
O

C
/A

U
C

(%
)

(a)

N
ai

ve
Ba

ye
s

G
ra

di
en

tb
oo

st
in

g

X
G

Bo
os

t

C
at

bo
os

t

SV
M

Bi
-L

ST
M

C
N

N

G
R

U

40

50

60

70

80

90

100

Models

R
O

C
/A

U
C

(%
)

(b)

N
ai

ve
Ba

ye
s

G
ra

di
en

tb
oo

st
in

g

X
G

Bo
os

t

C
at

bo
os

t

SV
M

Bi
-L

ST
M

C
N

N

G
R

U

40

50

60

70

80

90

100

Models

R
O

C
/A

U
C

(%
)

(c)
Figure 9. Qualitative ROC/AUC results for synthetic data (SMOTE) across (a) agency, (b) employee
and (c) customer for state-of-art methods.

6.3. Cross Validation

To validate our findings, we utilized the Combine_All dataset. Initially, we segmented
our dataset into 5 folds by ensuring that it did not contain any records from the training
set. We then applied our comparative framework to iteratively train each algorithm on k− 1
folds while using the remaining holdout fold as the testing set. All the transformer models
performed the best, with 90% or more ROC scores at each fold. In contrast, NB performed the
worst, with ROC score less than 60% (Figure 10). Our k-fold results showed that our findings
in Figure 8 were consistent with comparative ROC values with the cross-validation runs.

S
V
M

N
ai
ve

B
ay
es

G
ra
d
ie
n
t
B
o
os
ti
n
g

X
G
B
o
os
t

C
at
B
o
os
t

B
i-
L
S
T
M

C
N
N

G
R
U

B
E
R
T

E
R
N
IE

2.
0

R
ob

er
ta

60

70

80

90

K-1 K-2 K-3 K-4 K-5

Figure 10. ROC/AUC results across k-fold cross-validation.

Appl. Sci. 2023, 13, 3843 19 of 27

In Figure 11, we provided the average ensemble count (average of predicted labels
for all models) of all the three classes corresponding to conventional ML, DL-based, and
transformers. Additionally, we also reported a confusion matrix to verify the true-positive
(TP), true-negative (TN), false-negative (FN), and false-positive (FP) classes for each fold.
For example, the average ensemble count was the actual MIR value versus the predicted
value for each fold (from 1 to 5), i.e., the true-positive (TP). The confusion matrix for ML,
DL, and Transformers are listed in Tables 5 and 6. For example, in k-fold, there were
1731 total MIR, whereas the average ML (i.e., the average of the predicted label of all the
ML models) predicted 1172 TP MIRs, as well as 1468 TP MIRs for the DL-based and 1609 TP
MIRs for the transformers. Similarly, for TNs, NB predicted the 64,722 TNs for ML. For
DL, Bi-LSTM predicted 64,600 TNs, and for the transformers, BERT reported the highest
64,605 TNs values. For conventional ML, the average predicted value for all folds was 1153,
with SVM having the highest share with 1499, which was lower than the predicted labels of
1731. The DL models showed better ensemble results with 1394 predicted labels for all folds,
with CNN having the highest number of 1673 predicted labels. Transformers outperformed
the conventional ML techniques with 1584 average predicted ensemble labels. RoBERTa
performed best with 1693. Overall, the transformers models performed the best for the
Combine_All datasets (Refer Figure 8).

K-fold

Fr
eq

ue
nc

y

Figure 11. Number of MIR across actual, ML (naive Bayes, gradient boost, XGBoost, CatBoost, SVM),
transformers (BERT, RoBERTa, ERNIE 2.0), and DL algorithms(GRU, Bi-LSTM, CNN).

Appl. Sci. 2023, 13, 3843 20 of 27

Table 5. The k-fold cross-validation with complete data (Combine_All as described in Section 3)
segmented in into five folds. We split data into 80:20 splits for training and testing by ensuring the
testing set did not contain any record from the training set. We applied ML models naive Bayes,
gradient boosting, XGBoost, CatBoost and SVM.

Naive Bayes Gradient Boosting XG Boost

k-fold TP TN FN FP TP TN FN FP TP TN FN FP

1 276 64,735 1455 3 1154 64,638 577 100 1322 64,623 409 115
2 271 64,659 1536 3 1166 64,584 641 78 1363 64,562 444 100
3 275 64,758 1432 3 1068 64,682 639 79 1272 64,636 435 125
4 267 64,732 1465 4 1112 64,644 620 92 1284 64,620 448 116
5 261 64,729 1469 8 1075 64,461 655 96 1286 64,606 444 131

Mean 270 64,722 1471 4 1115 64,601 626 89 1305 64,609 436 117

CatBoosting SVM

k-fold TP TN FN FP TP TN FN FP

1 1302 64,621 429 117 1370 64,635 361 103
2 1373 64,565 434 97 1407 64,570 400 92
3 1256 64,646 451 115 1301 64,666 406 95
4 1303 64,621 429 115 1355 64,624 377 112
5 1287 64,611 443 126 1304 64,634 426 103

Mean 1304 64,612 437 114 1347 64,625 394 101

Table 6. The k-fold cross-validation with all data (Combine_All as described in Section 3) segmented
in into five folds. We split data into 80:20 splits for training and testing by ensuring the testing set
did not contain any records from the training set. We applied transformers (BERT, RoBERTa and
ERNIE 2.0) and DL algorithms (GRU, Bi-LSTM and CNN).

GRU Bi-LSTM CNN

k-fold TP TN FN FP TP TN FN FP TP TN FN FP

1 1334 64,513 397 225 1251 64,588 480 150 1304 64,553 427 185
2 1328 64,537 497 125 1301 64,514 506 148 1403 64,392 404 270
3 1260 64,599 447 162 1238 64,652 469 109 1205 64,633 502 128
4 1205 64,643 527 93 1169 64,666 563 70 1189 64,632 543 104
5 1280 64,575 450 162 1278 64,584 452 153 1289 64,563 441 174

Mean 1281 64,573 460 153 1247 64,600 494 126 1278 64,554 463 172

Bert Roberta ERNIE

k-fold TP TN FN FP TP TN FN FP TP TN FN FP

1 1437 64,590 294 148 1429 64,616 302 122 1430 64,603 301 135
2 1438 64,597 293 141 1539 64,508 268 154 1486 64,562 321 100
3 1423 64,623 284 138 1525 64,495 282 167 1395 64,641 312 120
4 1454 64,613 278 123 1428 64,592 304 144 1401 64,529 331 207
5 1411 64,602 319 135 1390 64,580 340 157 1394 64,632 336 105

Mean 1432 64,605 239 137 1462 64,558 299 148 1421 64,539 320 133

Similar to the average ensemble count, RoBERTa correctly predicted 1462 TPs and
64,558 TNs, whereas NB performed worst by identifying only 270 TPs and 64,722 TNs.

6.4. Mean-Time Resolution

For the meantime-to-resolve, we used the MIR outage records because they contained
the escalated incident records. To calculate meantime-to-resolve, two DateTime columns
were used: Incident_Opened_at and MIR_Opened_at. We defined the meantime-to-resolve

Appl. Sci. 2023, 13, 3843 21 of 27

as the time recorded, starting when the incidents had been reported and then resolved by
the outage team. The meantime-to-resolve ranged from minutes to hours. The evaluation
of meantime-to-resolve was conducted using the prediction horizon, as follows:

Prediction_Horizon = ∑ T2n −∑ T1n,

where ∑ T2n denotes MIR opened at (T2,T2n) and ∑ T1n denotes incident opened at (IOA)
incidents (T1,T1n).

Our prediction horizon (meantime-to-resolve) for MIR records from January 2020
to March 2021 is depicted in Figure 12. The blue line indicates the IOA records while the
orange shows the MOA records. The IOA points (in orange) indicated the highest DateTime
record where an incident log is generated. MOA denoted the point where we declared an
incident as MIR. For example, ticket #20 had been reported to IOA on 30 April 2020 and
labeled as MIR on 11 May 2020 by the outage team, so it took around 11 days to resolve this
incident. Another ticket, #48, had been reported as IOA on 17 August 2020 and labeled as
MIR on 27 August 2020, taking around ten days. In Figure 12, we noted that the orange line
overlapped with the blue line, indicating the closing of the incident at the same instance.
We predicted the average prediction horizon time of MIR as 4 days, 3 h, and 26 min, which
could provide a significant advantage in addressing incidents and could prevent major
incidents or outages.

15, 16/03/2020 07:01

20, 30/04/2020 13:28

38, 01/08/2020 15:30

42, 13/08/2020 13:13

48, 17/08/2020 08:39

59, 24/09/2020 09:22

77, 24/11/2020 11:09

81, 04/12/2020 12:48

102, 01/03/2021 10:07

15, 19/03/2020 08:36

20, 11/05/2020 12:10

38, 05/08/2020 12:59

42, 19/08/2020 10:24

48, 27/08/2020 16:51

59, 29/09/2020 12:46

77, 27/11/2020 11:49

81, 10/12/2020 08:49

102, 08/03/2021 11:03

31/12/2019 00:00

19/02/2020 00:00

09/04/2020 00:00

29/05/2020 00:00

18/07/2020 00:00

06/09/2020 00:00

26/10/2020 00:00

15/12/2020 00:00

03/02/2021 00:00

25/03/2021 00:00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113

D
A

TE
TI

M
E

Incident Number

Prediction Horizon

INC_Opened_At MIR_Opened_At

Figure 12. Prediction horizon comparison (MIR opened at vs. incident opened at. The blue line
indicates IOA records while the orange shows the MOA records).

To further investigate our evaluation, we refined the prediction horizon by selecting only
escalated incident records with time durations of 6 h or less. The reason was to scrutinize
results in the context of hours (removing outliers that took more than days to resolve) to
better quantify the improved meantime-to-resolve for most incidents, if predicted correctly.
The leftover incidents numbered 44 (see Figure 13). The orange line shows the MOA values,
indicating the incident escalated time, whereas the blue line shows the IOA records. Incident
#1 took a maximum of 5 h and 35 min to escalate; in contrast, incident #7 took 5 min to mark as
a significant incident. The analyzed results based on a refined search showed us the average
time to resolve an incident within 1 day was 2 h and 30 min.

Appl. Sci. 2023, 13, 3843 22 of 27

1, 09:17:00

2, 07:38:00

4, 14:43:00

6, 07:41:00 8, 07:44:00

9, 13:21:00

15, 11:56:00

16, 09:43:00

18, 08:20:00

19, 18:12:00

20, 07:28:00

21, 12:29:00

22, 11:01:00

23, 09:15:00

25, 15:56:00

28, 07:59:00

32, 13:42:00

36, 08:19:00

38, 11:37:00

41, 11:59:00

43, 07:10:00

44, 15:16:00
1, 14:52:00

2, 08:53:00

4, 15:52:00

6, 08:54:00

8, 10:35:00

9, 17:42:00

15, 16:27:00

16, 15:17:00

18, 12:53:00

19, 19:01:00

20, 08:14:00

21, 16:13:00

22, 11:06:00

23, 14:06:00

25, 16:40:00

28, 09:12:00

32, 16:53:00

36, 12:02:00

38, 14:29:00

41, 13:43:00

43, 08:52:00

44, 15:34:00

06:12:58

08:36:58

11:00:58

13:24:58

15:48:58

18:12:58

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

TI
M

E

Incident Number

Time wise Prediction Horizon(IOA vs MOA)

Time_IOA Time_MOA

Figure 13. Prediction horizon comparison (MIR opened at vs. incident opened at).

7. Discussion

This study comprehensively evaluated AI classifiers using a real-world proprietary
dataset. As observed, we faced a highly skewed distribution with almost a million records
for NMIR and only 19,000 records for the MIR (which was only 2% of the overall dataset).
The datasets were highly unstructured, which further complicated the data-preprocessing
task. Our datasets consisted of raw incident reports/tickets. Therefore, most records
contained typographical errors, misspellings, grammatical mistakes, and slang words. We
also noticed that 6% of the incident log contained duplicate records, which did not provide
any extra information and consumed additional memory resources during processing. We
suggested removing these records because it introduced sparseness problems and increased
the vector size. In a real-world setting, IT incident datasets require extensive cleaning using
a closely monitored preprocessing pipeline to extract important linguistic features, which
we included as part of the proposed prediction framework. Additionally, we demonstrated
that data augmentation provided relatively better results than the synthetic data. We
developed a custom approach of data augmentation, in which actual data from various
channels (representing the minority label) were added to enrich the dataset belonging to
the industry stakeholder. This enrichment was more beneficial than generating synthetic
records to avoid duplication that added no additional information to the vocabulary.

Our analysis showed that the transformers performed marginally better than the
DL-based models and significantly better than the conventional ML models. For example,
given the Combine_All dataset, ERNIE 2.0 outperformed all conventional ML models,
performing better than NB, GB, SVM, XGBoost, and CatBoost, by 39%, 10%, 3%, 19%,
and 4%, respectively. As compared to the DL-based models, ERNIE 2.0 produced slightly
better results, with a 1% improvement over the CNN and a 2% improvement over the
Bi-LSTM. Generally, the DL-based models performed better due to their recall memory
units that extracted high-level abstract features; however, they performed slightly worse,
as compared to transformers because of their limited vocabulary [10]. Our findings were in
agreement with this observation.

We found that accuracy was not the right performance metric because our initial
results for imbalanced data were more skewed towards the majority class. We used a
confusion matrix and area under the ROC curve to better quantify the correct and incorrect
predictions. Based on our findings, the ROC metric showed the classifier’s exactness and
completeness much better than accuracy. For example, Customer_records had the lowest
minority class (MIR) records at 0.05%, which was highly imbalanced. Its ROC scores
varied from 50% to 74%, whereas its accuracy score was 99%, which was misleading and

Appl. Sci. 2023, 13, 3843 23 of 27

highly skewed by the majority (NMIR) class. We calculated the confusion matrix by k-fold
validation and the mean for each fold. Our results showed that RoBERTa possessed the
highest mean score with 1462 TPs and 64,539 TNs values.

We calculated the prediction horizon to identify the average time for the ITSM system
restoration from escalated deadlock. We targeted incident opened at(IOA) and MIR opened
at(MOA) to calculate the prediction horizon. We evaluated the average incident escalation
time, which was 2 h 30 min of saved time due to applying our proposed IT incident
framework. It not only saved resources but also helped to prevent a deadlock situation.
Considering the complexity of the prediction, the possibility of implementing RL to enhance
these transformers is a significant possibility. At the time, we could identify any studies
that were associated with RL implementation for IT incidents prediction. The convergence
rate of RL models for classification was estimated to be 40% more, as compared to the
other state-of-the-art model [56], which could hinder the adoption for large-scale industrial
datasets. Furthermore, future work could involve evaluating NLPGym [57], a toolkit that
bridges NLP and RL. The NLPGym provides a policy for reward and penalty against action,
and deep-Q networks (DQN) could be used to train the model. We are optimistic that we
can improve the accuracy score significantly through RL.

8. Conclusions

This paper leveraged state-of-art machine-learning (NB, SVM, GB, XGBoost, CatBoost),
deep-learning (GRU, CNN, Bi-LSTM), and transformer architectures (BERT, Roberta, and
ERNIE) to classify the provided incidents as major (MIR) and non-major (NMIR) to address
the challenge of IT incident prediction. This paper was the first attempt to employ deep
learning and transformers for solving IT service management problems, to the best of our
knowledge. We experimented with three different sources of incidents: agency, customer,
and employee. The transformer architectures (BERT, RoBERTa, and ERNIE) and XGBoost
outperformed all other methods, with a 93% ROC for agency records, and with CNN,
a 95% and 74% for employee and customers, respectively. To address the problem of
data imbalance in our work, we resampled and curated synthetic data (SMOTE). With
resampling, we achieved 95% with ERNIE for agency, 95% with BERT and ERNIE for
employee, 99% with transformer and deep-learning models for customers, and 93% with
BERT and ERNIE for all combined (employee, agency, and customer). For synthetic data,
XGBoost had 94% for agency, 86% for employees, and with GB, 85% for customers. With
the resampling and synthetic data curation, we noticed significant relative improvements,
at 2.10% for agency and employees and 33% for the customer. We also identified the
limitations of deep learning models for SMOTE, which we plan to address in the future.
Additionally, our proposed framework computed the average prediction horizon, which
was 2 h 30 min and leveraged this to minimize the meantime to resolve incidents. In the
future, we will implement our framework for managing and reducing change failure rates
associated with the incident mean time to resolution (MTTR). For future work, we are
planning to perform a complete analysis of ITSM with state-of-the-art cross-validation
techniques because the literature lacks this domain.

Author Contributions: S.A.: Writing—review and editing, Writing—original draft, Proposed Frame-
work. M.S.: Methodology, Writing—the original draft, Writing review and editing, Supervision. B.D.:
review and Project administration. E.R.: Proofreading, Writing—review and editing, Supervision.
K.H.: review and Project administration. M.B.: Proofreading, Writing—review and editing, Super-
vision and Funding acquisition. D.C.: Methodology, Writing—the original draft, Writing—review,
editing, Supervision, Project administration, and Funding acquisition. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by U.K. Research and Innovation Turing AI Fellowship 2021–2025
funded by the Engineering and Physical Sciences Research Council (grant number EP/V025724/1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2023, 13, 3843 24 of 27

Data Availability Statement: Data will be made available on request.

Acknowledgments: We are grateful for access to the tier 2 high-performance computing resources
provided by the Northern Ireland High-Performance Computing (NI-HPC) facility, funded by the
U.K. Engineering and Physical Sciences Research Council (EPSRC), Grant Nos. EP/T022175/ and
EP/W03204X/1. Damien Coyle is supported by the UKRI Turing AI Fellowship 2021–2025 funded
by the EPSRC (grant number EP/V025724/1). Salman Ahmed is supported by a George Moore
Ph.D. scholarship.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2023, 13, 3843 25 of 27

References
1. Cortina, S.; Barafort, B.; Picard, M.; Renault, A. Using a Process Assessment Model to Prepare for an ISO/IEC 20000-1 Certification:

ISO/IEC 15504-8 or TIPA for ITIL? In Proceedings of the Systems, Software and Services Process Improvement—23rd European
Conference, EuroSPI 2016, Graz, Austria, 14–16 September 2016; Communications in Computer and Information Science; Kreiner,
C., O’Connor, R.V., Poth, A., Messnarz, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 633, pp. 83–93. [CrossRef]

2. Lou, J.G.; Lin, Q.; Ding, R.; Fu, Q.; Zhang, D.; Xie, T. Software analytics for incident management of online services: An
experience report. In Proceedings of the 2013 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE), Silicon Valley, CA, USA, 11–15 November 2013; pp. 475–485.

3. Bartolini, C.; Sallé, M.; Trastour, D. IT service management driven by business objectives An application to incident management.
In Proceedings of the 2006 IEEE/IFIP Network Operations and Management Symposium NOMS 2006, Vancouver, BC, Canada,
3–7 April 2006; pp. 45–55.

4. Takeshita, K.; Yokota, M.; Nishimatsu, K. Early network failure detection system by analyzing Twitter data. In Proceedings of the 2015
IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015; pp. 279–286.

5. Zhou, W.; Tang, L.; Zeng, C.; Li, T.; Shwartz, L.; Grabarnik, G.Y. Resolution recommendation for event tickets in service
management. IEEE Trans. Netw. Serv. Manag. 2016, 13, 954–967.

6. Zhou, W.; Li, T.; Shwartz, L.; Grabarnik, G.Y. Recommending ticket resolution using feature adaptation. In Proceedings of the 2015
11th International Conference on Network and Service Management (CNSM), Barcelona, Spain, 9–13 November 2015; pp. 15–21.

7. Deljac, Ž.; Randić, M.; Krčelić, G. Early detection of network element outages based on customer trouble calls. Decis. Support Syst.
2015, 73, 57–73.

8. Glenn, J.S.; Rose, K.L. Establishing Governance for Project and Service Management. In Proceedings of the 2019 ACM
SIGUCCS Annual Conference, SIGUCCS 2019, New Orleans, LA, USA, 3–6 November 2019; Haring-Smith, B., McIntosh, K.M.,
Lineberry, B., Eds.; ACM: New York, NY, USA, 2019; pp. 145–147. [CrossRef]

9. Stoneburner, G.; Goguen, A.; Feringa, A. Risk Management Guide for Information Technology Systems; SP 800-30; National Institute of
Standards and Technology: Gaithersburg, MD, USA, 2022.

10. Beresnev, A.; Gusarova, N. Comparison of Intelligent Classification Algorithms for Workplace Learning System in High-Tech
Service-Oriented Companies. In Proceedings of the International Conference on Digital Transformation and Global Society,
St. Petersburg, Russia, 17–19 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 363–372.

11. Tolciu, D.T.; Sacarea, C.; Matei, C. Analysis of Patterns and Similarities in Service Tickets using Natural Language Processing.
J. Commun. Softw. Syst. 2021, 17, 29–35.

12. Nikulin, V.; Shibaikin, S.; Vishnyakov, A. Application of machine learning methods for automated classification and routing in
ITIL. J. Phys. Conf. Ser. 2021, 2091, 012041.

13. Kodepogu, K.R.; Annam, J.R.; Vipparla, A.; Krishna, B.V.N.V.S.; Kumar, N.; Viswanathan, R.; Gaddala, L.K.; Chandanapalli, S.K.
A Novel Deep Convolutional Neural Network for Diagnosis of Skin Disease. Trait. Signal 2022, 39, 1873–1877. [CrossRef]

14. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

15. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

16. Sun, Y.; Wang, S.; Li, Y.; Feng, S.; Tian, H.; Wu, H.; Wang, H. ERNIE 2.0: A continual pre-training framework for language
understanding. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
Volume 34, pp. 8968–8975.

17. Ali Zaidi, S.S.; Fraz, M.M.; Shahzad, M.; Khan, S. A multiapproach generalized framework for automated solution suggestion of
support tickets. Int. J. Intell. Syst. 2022, 37, 3654–3681. [CrossRef]

18. Gouryraj, S.; Kataria, S.; Swvigaradoss, J. Service Level Agreement Breach Prediction in ServiceNow. In Proceedings of
the 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India,
2–4 September 2021; pp. 689–698.

19. Agarwal, S.; Aggarwal, V.; Akula, A.R.; Dasgupta, G.B.; Sridhara, G. Automatic problem extraction and analysis from unstructured
text in IT tickets. IBM J. Res. Dev. 2017, 61, 4–41.

20. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

21. Zhao, H.; Lai, Z.; Leung, H.; Zhang, X. A Gentle Introduction to Feature Learning. In Feature Learning and Understanding; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 1–12.

22. Al Qadi, L.; El Rifai, H.; Obaid, S.; Elnagar, A. A scalable shallow learning approach for tagging arabic news articles.
Jordanian J. Comput. Inf. Technol. 2020, 6, 263–280.

23. Ye, Y.; Ma, F.; Lu, Y.; Chiu, M.; Huang, J.Z. iSurfer: A Focused Web Crawler Based on Incremental Learning from Positive Samples.
In Proceedings of the Advanced Web Technologies and Applications, 6th Asia-Pacific Web Conference, APWeb 2004, Hangzhou,
China, 14–17 April 2004; Lecture Notes in Computer Science; Yu, J.X., Lin, X., Lu, H., Zhang, Y., Eds.; Springer: Berlin/Heidelberg,
Germany, 2004; Volume 3007, pp. 122–134. [CrossRef]

24. Revina, A.; Buza, K.; Meister, V.G. IT Ticket Classification: The Simpler, the Better. IEEE Access 2020, 8, 193380–193395.

http://doi.org/10.1007/978-3-319-44817-6_7
http://dx.doi.org/10.1145/3347709.3347826
http://dx.doi.org/10.18280/ts.390548
http://dx.doi.org/10.1002/int.22701
http://dx.doi.org/10.1007/978-3-540-24655-8_13

Appl. Sci. 2023, 13, 3843 26 of 27

25. Revina, A.; Buza, K.; Meister, V.G. Designing Explainable Text Classification Pipelines: Insights from IT Ticket Complexity
Prediction Case Study. Interpret. Artif. Intell. A Perspect. Granul. Comput. 2021, 937, 293.

26. Zuev, D.; Kalistratov, A.; Zuev, A. Machine learning in IT service management. Procedia Comput. Sci. 2018, 145, 675–679.
27. Costa, J.; Pereira, R.; Ribeiro, R. ITSM automation-Using machine learning to predict incident resolution category. In Proceedings

of the 33rd International Business Information Management Association Conference: Education Excellence and Innovation
Management through Vision 2020, IBIMA 2019, Granada, Spain, 10–11 April 2019; pp. 5819–5830.

28. Wang, Q.; Zeng, C.; Iyengar, S.; Li, T.; Shwartz, L.; Grabarnik, G.Y. AISTAR: An intelligent system for online IT ticket
automation recommendation. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA,
10–13 December 2018; pp. 1875–1884.

29. Al-Hawari, F.; Barham, H. A machine learning based help desk system for IT service management. J. King Saud Univ.-Comput. Inf. Sci.
2021, 33, 702–718.

30. Paramesh, S.; Shreedhara, K. IT Help Desk Incident Classification using Classifier Ensembles. ICTACT J. Soft Comput. 2019,
9, 1980–1987.

31. Gupta, R.; Prasad, K.H.; Mohania, M. Automating ITSM incident management process. In Proceedings of the 2008 International
Conference on Autonomic Computing, Chicago, IL, USA, 2–6 June 2008; pp. 141–150.

32. Altintas, M.; Tantug, A.C. Machine learning based ticket classification in issue tracking systems. In Proceedings
of the International Conference on Artificial Intelligence and Computer Science (AICS 2014), Bandung, Indonesia,
15–16 September 2014; pp. 195–207.

33. Silva, S.; Pereira, R.; Ribeiro, R. Machine learning in incident categorization automation. In Proceedings of the 2018 13th Iberian
Conference on Information Systems and Technologies (CISTI), Caceres, Spain, 13–16 June 2018; pp. 1–6.

34. Paramesh, S.; Shreedhara, K. Automated IT service desk systems using machine learning techniques. In Data Analytics and
Learning; Springer: Berlin/Heidelberg, Germany, 2019; pp. 331–346.

35. Roy, S.; Muni, D.P.; Tack Yan, J.J.Y.; Budhiraja, N.; Ceiler, F. Clustering and labeling IT maintenance tickets. In Proceedings of the
International Conference on Service-Oriented Computing, Banff, AB, Canada, 10–13 October 2016; pp. 829–845.

36. Schad, J.; Sambasivan, R.; Woodward, C. Predicting help desk ticket reassignments with graph convolutional networks.
Mach. Learn. Appl. 2022, 7, 100237.

37. Aglibar, K.D.; Alegre, G.C.; Del Mundo, G.; Duro, K.F.; Rodelas, N. Ticketing System: A Descriptive Research on the Use of
Ticketing System for Project Management and Issue Tracking in IT Companies. arXiv 2022, arXiv:2202.06213.

38. YAYAH, F.C.; Ghauth, K.I.; TING, C.Y. The automated machine learning classification approach on telco trouble ticket dataset.
J. Eng. Sci. Technol. 2021, 16, 4263–4282.

39. Bajpai, H. Building ML Based Intelligent System to Analyze Production LSI (Live Site Incidents). Int. J. Eng. Adv. Technol. (IJEAT)
2021, 10, 41–46. [CrossRef]

40. Shorten, C.; Khoshgoftaar, T.M.; Furht, B. Text Data Augmentation for Deep Learning. J. Big Data 2021, 8, 101. [CrossRef] [PubMed]
41. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res.

2002, 16, 321–357.
42. Webb, G.I.; Keogh, E.; Miikkulainen, R. Naïve Bayes. Encycl. Mach. Learn. 2010, 15, 713–714.
43. Mayr, A.; Binder, H.; Gefeller, O.; Schmid, M. The evolution of boosting algorithms. Methods Inf. Med. 2014, 53, 419–427.
44. Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T. Xgboost: Extreme Gradient

Boosting; R Package; R Code Team: Vienna, Austria, 2015; pp. 1–4.
45. Couronné, R.; Probst, P.; Boulesteix, A.L. Random forest versus logistic regression: A large-scale benchmark experiment.

BMC Bioinform. 2018, 19, 270.
46. Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363.
47. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision

tree. Adv. Neural Inf. Process. Syst. 2017, 30, 1–9.
48. Suthaharan, S. Support vector machine. In Machine Learning Models and Algorithms for Big Data Classification; Springer:

Berlin/Heidelberg, Germany, 2016; pp. 207–235.
49. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681.
50. O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458.
51. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning.

In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 160–167.
52. Cho, K.; Van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv 2014, arXiv:1409.1259.
53. Bird, S.; Loper, E. NLTK: The Natural Language Toolkit. In Proceedings of the ACL Interactive Poster and Demonstration Sessions;

Association for Computational Linguistics: Barcelona, Spain, 2004; pp. 214–217.
54. Ling, C.X.; Huang, J.; Zhang, H. AUC: A Better Measure than Accuracy in Comparing Learning Algorithms. In Advances in

Artificial Intelligence; Xiang, Y., Chaib-draa, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 329–341.
55. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boosting with categorical features.

Adv. Neural Inf. Process. Syst. 2018, 31, 1–11.

http://dx.doi.org/10.35940/ijeat.C2178.0210321
http://dx.doi.org/10.1186/s40537-021-00492-0
http://www.ncbi.nlm.nih.gov/pubmed/34306963

Appl. Sci. 2023, 13, 3843 27 of 27

56. Lagoudakis, M.G.; Parr, R. Reinforcement learning as classification: Leveraging modern classifiers. In Proceedings of the 20th
International Conference on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 424–431.

57. Ramamurthy, R.; Sifa, R.; Bauckhage, C. NLPGym—A toolkit for evaluating RL agents on Natural Language Processing Tasks.
2020. Available online: http://xxx.lanl.gov/abs/2011.08272 (accessed on 30 August 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://xxx.lanl.gov/abs/2011.08272

	Introduction
	Scope and Problem Definition
	Contributions

	Background
	Dataset Description
	Proposed Framework
	Experimental Setup
	Pre-Processing
	Tokenizer
	Training
	Validation

	Result and Analysis
	Tokenizer Analysis
	Quantitative Evaluation
	Cross Validation
	Mean-Time Resolution

	Discussion
	Conclusions
	References

