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Abstract
Two prominent types of uncertainty that have been studied extensively are expected and unexpected uncertainty. Studies
suggest that humans are capable of learning from reward under both expected and unexpected uncertainty when the source
of variability is the reward. How do people learn when the source of uncertainty is the environment’s state and the rewards
themselves are deterministic? How does their learning compare with the case of reward uncertainty? The present study
addressed these questions using behavioural experimentation and computational modelling. Experiment 1 showed that
human subjects were generally able to use reward feedback to successfully learn the task rules under state uncertainty, and
were able to detect a non-signalled reversal of stimulus-response contingencies. Experiment 2, which combined all four types
of uncertainties—expected versus unexpected uncertainty, and state versus reward uncertainty—highlighted key similarities
and differences in learning between state and reward uncertainties. We found that subjects performed significantly better in
the state uncertainty condition, primarily because they explored less and improved their state disambiguation. We also show
that a simple reinforcement learning mechanism that ignores state uncertainty and updates the state-action value of only the
identified state accounted for the behavioural data better than both a Bayesian reinforcement learning model that keeps track
of belief states and a model that acts based on sampling from past experiences. Our findings suggest a common mechanism
supports reward-based learning under state and reward uncertainty.

Keywords Expected and unexpected uncertainty · Reinforcement learning · Bayesian reinforcement learning ·
Sampling-based learning

Introduction

Humans are capable of dealing with different types of
uncertainty when learning (Soltani & Izquierdo, 2019) and
making decisions (Platt & Huettel, 2008). Two forms of
uncertainty that have attracted interest in the psychology
and neuroscience literature include reward uncertainty and
state uncertainty. Reward uncertainty occurs when reward
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outcomes are generated stochastically from a probability
distribution. State uncertainty (also often referred to as
perceptual uncertainty; Bruckner et al., 2020) arises when
the agent cannot tell for sure what the current state of the
world is: its perceptual system might be noisy (e.g. noise
in the brain or in sensors); the observations are ambiguous
(e.g. reading road signs in challenging weather conditions)
or the information about the state is incomplete (e.g. playing
card games without knowing the cards dealt to the other
opponents or their play strategies).

In addition, uncertainty can also be categorised into
expected uncertainty and unexpected uncertainty. Uncer-
tainty is considered expected when the rules governing
the environment are stochastic but predictable, due, for
example, to rewards being generated from a stable proba-
bility distribution (Bland & Schaefer, 2012). This definition
covers both the case where the uncertainty arises from
reward outcomes (we refer to this here as expected reward
uncertainty; also sometimes called risk as, for example in
Bruckner et al., 2022) and the case where the uncertainty
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arises from the environment’s states (called here expected
state uncertainty; though in some previous work, expected
uncertainty has been equated with stochasticity arising from
reward outcomes as in Soltani & Izquierdo, 2019). Though
definitions of unexpected uncertainty differ, this type of
uncertainty refers to the case where there is a sudden and
fundamental change in the environment such as when there
is a non-signalled change in the rules of the task, which
invalidates the previous acquired rules (Bland & Schaefer,
2012). Another well-studied uncertainty type that is closely
related to unexpected uncertainty but fundamentally differ-
ent is volatility. Volatility occurs when there are frequent
non-signalled changes and the frequency of these changes
varies across time. More precisely, it captures the variance
in the frequency of fundamental changes (Bland & Schaefer,
2012; Piray & Daw, 2021).

Several authors have proposed psychological and neural
accounts of reward-based learning under uncertainty when
the source of uncertainty lies in the reward outcomes (i.e.
when rewards are stochastic; for reviews, see Bland &
Schaefer, 2012; Bruckner et al., 2022; Soltani & Izquierdo,
2019). For instance, Yu and Dayan (2005) developed
an influential account of the computation of expected
and unexpected uncertainty in reward outcomes, where
the signalling of these forms of uncertainty is mediated
by different neurotransmitter systems (acetylcholine and
norepinephrine for expected and unexpected uncertainty,
respectively). Other authors have assessed the extent to
which people adjust their learning rate according to the
volatility of the reward environment, and compared human
behaviour to that of an (approximately) optimal Bayesian
learner (Behrens et al., 2007; Nassar et al., 2010; Mathys
et al., 2011; for a more recent theoretical work, see also
Piray & Daw, 2020, 2021).

While such studies have provided important insights
into the psychological and neural responses to reward
uncertainty, little is known about how people learn from
reward when the source of uncertainty is the environment’s
state and rewards themselves are deterministic (though see
Bruckner et al., 2020, for a recent attempt to explore reward-
based learning under state uncertainty). This situation arises
when the agent cannot tell for sure what the current state
of the world is, and presents the agent with a difficult
challenge: should an unexpected reward (or lack of an
expected reward) be used to update action values for what
the agent believes to be the current environmental state,
or does the unexpected reward outcome carry information
about the accuracy of identification of the uncertain state
itself? Unexpected uncertainty (e.g. in the form of an
unexpected change in the state-action mappings) further
adds a challenge: an unexpected reward outcome may be
down to identifying the state incorrectly or to a change in
the environment.

To illustrate, consider an animal that has to decide which
food patch to forage in. The animal needs to quickly assess
the nutritional value and predation risk of the patch based
on uncertain sensory cues (whether visual, auditory or
olfactory), even before feeding begins (Mella et al., 2018).
For simplicity, say the animal has to learn to choose between
two types of patches, A or B, each of which provides reward
with a fixed probability (expected reward uncertainty).
Assume that patch A is, on average, more rewarding (e.g.
more nutritious or safer) for the animal than patch B and
that the animal can only detect the type of patch based on
the sensory cues with a certain fixed probability (expected
state uncertainty). Framing this as a reinforcement learning
problem, the animal’s task here would be to learn the value
of each patch type (i.e. its long term expected reward, also
known as state-value) so that it can maximise its reward
from the food patch visits.

One main problem that the animal faces under (expected)
state uncertainty conditions is as follows: which state should
an obtained reward be assigned to when updating the
state-values? Should it be assigned to the patch type that
was perceived by the animal as the true state, or to both
patch types proportionally to the animal’s beliefs about the
true state? This problem is compounded under unexpected
uncertainty. For instance, suppose there is an unexpected
change in the reward distributions of the two food patches,
so patch B becomes better than patch A (perhaps patches
of type A suddenly start attracting more predators or have
become less nutritious due to some special environmental
conditions). Now the lack of an expected reward may be
down to either identifying the state incorrectly, or to a
change in the environment so that the state-action mapping
has changed. How can the animal learn the correct state-
action mapping under expected state uncertainty and adapt
to the unexpected uncertainty arising from a change in the
state-action mapping? How can RL models account for
learning under these forms of uncertainty?

Larsen et al. (2010) proposed two plausible models for
how agents might learn from reward under state uncertainty.
One model was a simple RL model that assumes that
people commit to one state being the true state (e.g.
animal identifying one patch type as the true state based
on uncertain sensory cues), then update the state-action
value of only that identified state. Larsen et al. (2010)
also suggested a more complex Bayesian RL model where
the learner is assumed to update the state-action value of
each possible state according to the posterior probability of
that state being the true state, given the observed reward.
The main difference between these two models is that the
Bayesian approach uses the current state-action values along
with the observed reward to help inform the beliefs about
the true state, whereas the simple model just uses the state
information from the environment to make a best guess
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about the true state. Accordingly, under the simple model,
only one state-action value will be updated, whereas the
Bayesian model can use the observed reward to update
information about all states.

Larsen and colleagues showed that the two models
behave differently under expected and unexpected uncer-
tainty. Under expected uncertainty, Larsen et al. proved
that the Bayesian model converges to the correct state-
action values, whereas the non-Bayesian model converged
to incorrect values unless the expected rewards for the dif-
ferent state-action pairs were all equal. Under unexpected
uncertainty—such as a sudden reversal of stimulus-response
contingencies—the simple RL model adapted to the envi-
ronmental change by updating its state-action value esti-
mates to match the environmental change (even though
these value estimates were not correct), while the Bayesian
RL model did not (unless the state uncertainty was made
small; see Larsen et al., 2010, for further details).

Both models are candidates for model-free reward-based
learning under the different types of uncertainty we have
reviewed above. Following on from Larsen et al.’s (2010)
work and predictions, we had several aims in this study.
First, we wanted to understand whether human participants
use reward feedback to update both their state estimates
and state-action mapping—as stipulated by the Bayesian RL
model—or whether they update the state-action mapping
for only the estimated state, as assumed in a simple RL
model. Second, if participants behave in line with the Bayesian
RL model, they are likely to fail to adapt to unexpected
uncertainty (i.e. a change in the state-action mapping).
Therefore, we wanted to see whether participants will
successfully adapt to unexpected uncertainty. Third, we
wanted to assess people’s learning under state uncertainty
and reward uncertainty separately, allowing a direct
comparison of how people deal with expected and
unexpected uncertainty in states versus rewards.

A final aim was to compare the two RLmodels to another
type of model that has emerged as a plausible mechanism
for learning under uncertainty: models that act based on
sampling from past experiences. Sampling models assume
that the learner chooses actions that have produced the best
payoff in small samples of past trials, usually taken from
the recent past (e.g. Chen et al., 2011; Stewart et al., 2006).
Recent research has suggested a superiority of such models
over classic RL models in explaining participants’ learning
behaviour in tasks involving reward uncertainty (Bornstein
et al., 2017; Bornstein & Norman, 2017; Hochman & Erev,
2013; Plonsky et al., 2015). For instance, Bornstein et al.
(2017) developed a simple sampling model that assumes
that the decision maker computes the values of the different
choice options by using one outcome sampled from the past.
This model fit participants’ choices and neural signals better
than a classic temporal difference-based RL model. They

also showed that the sampling process could be biased by
reminding participants of particular trial outcomes, which
cannot be accounted for under the RL framework.

In considering the sampling models, we also entertained
a variety of Bayesian (approximate-) normative models
of learning under uncertainty. These include, for example
the hierarchical Bayesian model of Behrens et al. (2007),
the approximate-normative Bayesian model of Payzan-
LeNestour and Bossaerts (2011), the hierarchical Gaussian
filter of Mathys et al. (2014) and the more recent Kalman-
based models of Piray and Daw (2020, 2021). Although
these models are relevant to the study of human learning
under uncertainty, these have been built primarily to study
learning under volatility. Given that our manipulation of
unexpected uncertainty takes the form of a single change in
the state-action mapping, we do not consider volatility in
this paper.

We set up two experiments to investigate how people
deal with expected and unexpected state and reward
uncertainty. In the first experiment, we focus on state
uncertainty, and present a psychophysical reward task
in which the states are signalled imperfectly with noisy
stimuli so that participants cannot identify the true state
with certainty. The states perfectly determine the rewards
delivered by different actions. This paradigm allows us to
test whether participants can learn the correct rules under
this state uncertainty condition. We also introduce a switch
(i.e. reversal) of stimulus-response contingencies for some
participants without telling them, to see if they can adapt
to the unsignalled change (unexpected uncertainty) despite
the presence of state uncertainty. In the second experiment,
we tackle the question of whether learning under state
uncertainty and reward uncertainty is supported by the same
mechanism, by adding a condition in which the source
of uncertainty is the reward signal instead of the state
cues (i.e. the reward function is stochastic while states are
deterministic).

We used these data to compare the three computational
learning approaches—Bayesian RL, non-Bayesian RL and
sampling models—in their account of the learning of
different participants. Based on the theoretical predictions
from Larsen et al. (2010), it might be expected that in the
state uncertainty condition, the pattern of learning of the
participants who adapt to the switch will be better described
by the simple RL in comparison with the Bayesian model,
while the learning behaviour of those who fail to adapt to
the switch, or adapt only slowly, will be better explained by
the Bayesian RLmodel. We expected the sampling model of
Chen et al. (2011) to be able to handle a variety of adaptation
patterns due to its greater flexibility (at the expense of
increased computational complexity).

The contribution of this work is twofold. First, our
work offers behavioural and computational insights into
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how people learn under conditions of (expected) state
uncertainty. Second, we compared how people learn under
expected and unexpected uncertainty when the source of
uncertainty lies in the reward versus state. That is, we
assessed whether the mechanisms for dealing with expected
and unexpected reward uncertainty, generalise to situations
in which the uncertainty arises from the state.

Experiment 1

In most previous demonstrations of reward-based learning
under expected and unexpected uncertainty, the stimuli were
perceptually unambiguous, while the reward was uncertain
(being drawn from a probability distribution). In contrast,
in Experiment 1, we paired a deterministic reward function
with ambiguous stimuli to study the effect of a rule reversal
on the ability to perform reward-based learning under state
uncertainty.

Participants and Design

Twenty-four participants were tested in Experiment 1.
Participants were students from the University of Bristol,
or other volunteers recruited using the University email
announcement system. Twelve of the participants served
as a control group for whom we did not switch the state-
action mapping rules; for the remaining twelve participants,
we switched the mapping half way through the task.
All participants had normal or corrected-to-normal vision.
Participants were reimbursed a fixed amount of £4 for
participation, and in addition earned a variable amount of
up to £5, which depended on their performance on all trials
(£0.025 per correct response). The study was approved by
the Faculty of Science Human Research Ethics Committee
at the University of Bristol.

Material and Procedures

Experimental Setup and Stimuli

Participants were seated in front of a 21-in. Viewsonic
G225fB monitor with a resolution of 1024× 768 resolution
and a refresh rate of 85 Hz. The experiment was pro-
grammed and run using MATLAB with the Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997). The viewing distance
was set to ∼ 57 cm.

In each trial, participants saw a patch filled with a
variable proportion of white and black dots, in the middle
of a gray background (see Fig. 1). When the majority of
the dots were white, the patch appeared lighter than the
background (“light” state). On the other hand, when the
majority of the dots were black, the patch was darker than

Fig. 1 Sequence in one trial from the calibration phase. Firstly, the
subject saw a fixation cross on the centre of the screen for 506 ms
(43 frames). Then the stimulus was displayed for 247 ms (21 frames).
After that, the subject had to choose between two shapes depending on
the state of the patch. The next trial started following a blank screen
that was displayed for 506 ms (43 frames). The centres of the response
shapes—equilateral triangle of side length 175 px (a visual angle of
7◦) or a rectangle of height 350 px (13◦) and width 175 px (7◦)— were
positioned randomly on a virtual circle of radius 250 px (10◦)

the background (“dark” state). More precisely, the patch
contained 400 by 400 white or black pixels (15 × 15◦).
The luminances for the black, grey and white pixels were
respectively equal to 0.1cd/m2, 42cd/m2 and 85cd/m2,
so that the black and white pixels were approximately
equidistant from the background luminance.

As the stimulus was noisy, the learner could only identify
the correct state with a certain probability ρ called level of
state uncertainty. In our experiment, we aimed to have ρ

around 0.65. Due to individual variation in visual sensitivity,
we conducted a preliminary measurement to calibrate the
proportion of light and dark pixels in the stimuli per
participant, so that performance was at the desired level of
ρ.

Procedure

The procedure was the same for the control and test
group, except that for the control group, we did not switch
the state-action mapping rules at any point. The control
condition was set up to examine whether people are able
to perform reward-based learning under state uncertainty
(similarly, results from the test group before the switch can
be used to answer this question), whereas the test condition
should inform us about people’s ability to respond to an
unsignalled reversal in state-action mapping rules in the
presence of state uncertainty, and how this change would
affect their learning performance. Participants from both
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groups completed two phases: a calibration phase and a
learning phase.

Calibration Phase

This phase aimed to determine, for each participant, the
proportion of white/black pixels that corresponds to the
level of state uncertainty ρ ≈ 0.65. That is, we aimed
to identify the mixture of dark and light pixels that the
participant could accurately identify with an accuracy of
65%. For that, we measured a full psychometric function—
that is the proportion of “light” responses as a function of
the proportion of white dots—using the method of constant
stimuli with 9 proportions of white dots that varied between
0.4 and 0.6 (0.4 corresponding to an easily identifiable dark
state, and 0.6 corresponding to an easily identifiable light
state) spaced at 0.02 intervals (Kingdom & Prins, 2009).
There were 25 presentations at each of the nine contrast
levels, for a total of 225 trials. Note that the positions of the
white and black pixels varied randomly from trial to trial,
hence two stimuli can have the same proportion of white
and black dots, but might appear different.

In each trial (Fig. 1), after being presented with the
stimulus, participants used the mouse to click on one of
two shapes (triangle or rectangle), depending on whether
they believed that the state of the patch was light or dark.
The (initial) mapping of shape to light/dark response was
counterbalanced across participants, so that half of the
participants were asked to click on the triangle if they
thought the patch was light and the rectangle if the patch
was dark; the other half had to use the reversed mapping.

To minimise spatial response bias, on each trial the two
response stimuli were positioned randomly on a virtual
circle and were always on two opposing circle quarters, with
the mouse cursor initially placed at the centre of the circle.

Once participants had completed all 225 trials, a
cumulative Gaussian psychometric function was fit to the
obtained frequencies of light responses for each participant
using the Palamedes Toolbox in MATLAB (Prins &
Kingdom, 2018); an example is shown in Fig. 2. Using each
participant’s fitted function, proportions of white dots that
corresponded to the level of state uncertainty ρ = 0.65 for
both the light and dark state were computed (for the dark
state, this was obtained from the figure by computing the
proportion of white dots that corresponded to a frequency of
light response equal to 1 − ρ).

Learning Phase

The learning phase was used to train participants on the
state-value associations. A schematic trial sequence is
shown in Fig. 3. Presentation of the stimulus and choice
options were as in the calibration phase. In the learning
phase, however, participants were not told about the correct
mapping between light or dark states and the two response
options, so the mapping needed to be learned. In order to
avoid any interference from the state-action mapping used in
the calibration phase, the new response options were a circle
and square instead of rectangle and triangle (the mapping
of shape to correct response was counterbalanced across
participants, as in the calibration phase). Each trial provided
a reward opportunity: in trials where the subject chose the

Fig. 2 Example data and fitted
psychometric function.
Frequency of light responses as
a function of the proportion of
white dots for nine contrast
levels. On the x-axis, as the
percentage of white dots
increases, the stimulus would
appear lighter to participants.
The error bars represent
binomial standard error bars.
The solid curve shows the fitted
psychometric function. The
dashed lines illustrate how the
ρ-thresholds for both the light
and dark states are computed
using the the fitted function
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Fig. 3 The sequence in one trial
from the learning phase looked
similar to that from the
calibration phase. The main
difference here is that
participants received a positive
reward feedback (winning
£0.025) if they responded
correctly. Another difference is
that the response shapes were
changed to a circle and a square
instead of a triangle and
rectangle. The circle’s diameter
and square’s side length were
both equal to 175px (i.e. within
a visual angle of 7◦)

correct response, they received positive reward feedback
(£0.025) in the form of a moneybag icon that appeared for
1.52 s (129 frames). In trials where the incorrect response
was selected, no reward feedback was given and the next
trial was presented immediately after the response and the
inter-trial interval of 506 ms (43 frames). Subjects were
assigned the task of maximising their rewards, and at the end
of the experiment were paid the total accumulated reward
across all trials in addition to their reimbursement. The
learning phase contained 200 trials.

Participants in the control condition were exposed to
the same reward mapping throughout the task. In the
test condition, the mapping rules were switched (without
signalling this change to participants) at the 101st trial,
so that if the correct (reward-generating) response for the
light state (resp., dark state) before the switch was circle
(resp., square), after the switch the correct response would
become square (resp., circle). Participants were not given
any instructions about whether or not a switch might occur
prior to the start of the experiment.

Analysis

Learning Curves

To visually evaluate the dynamics of participants’ learning
performance and their ability to adapt to the switch in
the mapping rules, we calculated a learning curve for
each participant by computing a moving average of the
proportion of rewarded responses with a window size of 30
trials over the course of the learning phase (i.e. the averaging
was performed for every 30 trials on the binary variable that
encodes whether a response was rewarded or not). Since the
learning phase consisted of 200 trials, there are 171 values
of average values for each participant, corresponding to the

171 windows of length 30, and the sequence of these 171
values is henceforth called the participant’s learning curve.

Statistical Analyses

To evaluate participants’ learning statistically and under-
stand what factors influenced their learning performance,
we used generalised additive mixed modelling.

Generalised additive models (GAMs; Hastie & Tibshi-
rani, 1990;Wood, 2017) are the natural choice for modelling
a response variable that varies in a complex non-linear fash-
ion with time as is the case for our data. These models can
adapt to a much wider range of shapes than polynomial
regression, with the latter being restrictive, especially with
regards to the location of the inflexion points (for exam-
ple, in cubic polynomial regression the location of the first
inflexion point will often dictate the location of the other
inflexion point). This is an important consideration to take
into account for our data since for a participant who adapts
to the switch, the fitted curve should have an inflection point
around the 101st trial to account for the decrease in per-
formance after the switch, while the location of the second
inflection point could be at any of the next 100 trials depend-
ing on how fast the participant adapts to the switch. GAMs
overcome this restriction by dividing the data range into
smaller intervals then applying local polynomial regression
separately in each of those intervals.

Concretely, the regression equation in a GAM can be
formally expressed as:

g(E(Y )) = β0 + f1(X1) + · · · + fp(Xp) + ε (1)

where Y is the response variable, which follows a
distribution from the exponential family (e.g. binomial
distribution), E() is the expected value operator, X1, ..., Xp
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are the explanatory variables, g is a link function (e.g.
logistic), β0 is the intercept, ε is a random error that is
assumed to have a constant variance and a null mean.
f1, ..., fp are unknown smooth functions to be estimated
from the data along with β0 as would be the case in a
standard generalised linear model (GLM). Each smooth
function—also called a smoothing spline—is composed of
a weighted sum of basis functions:

f (X) = β1b1(X) + · · · + βqbq(X) (2)

where the basis functions are piecewise-defined polyno-
mial functions. An example of smoothing bases are cubic
regression splines which are formed by connecting polyno-
mial segments of degree 3. The points where the segments
connect are called knots, whose number determines the wig-
gliness of the fitted curve and can be set either manually
or using cross validation with the objective of minimizing a
penalized residual sum of squares.

Our analysis also required the inclusion of random
effects since our data contained repeated measurements of
the same participants at multiple trials. GAMs, similarly
to GLMs, can be extended with random effects with even
more flexibility with regards to how they can be captured.
Our generalised additive mixed effects models (GAMMs)
thus contained by-participant factor smooths for trial order
(the non-linear counterpart to random slopes and random
intercepts). We started with a saturated model that contained
all fixed effects of interest, including their interactions, as
well as the (random) by-participant factor smooths for trial
order. From the saturated model, we sequentially removed
fixed effects using a backward-selection approach based on
the Akaike Information Criterion (AIC), that is we removed
variables that led to the largest decrease in AIC and we
stopped when the AIC could no longer be improved.

The fixed structure of the statistical model incorporated
the experimental condition factor (control versus test condi-
tion) and state match factor: whether or not the current (true)
state matches the previous (true) state. We introduced state
match as it generates a prediction that could help discern
between our computational models. Under the simple RL
framework (and similarly for the sampling model), updates
occur at the level of state-action pairs (see “The WTA-RL
Model” section for more details), which should result in
the dependence of reward acquisition on the nature of the
previous state. This is because visiting a state and receiv-
ing reward feedback on that visit is likely to improve the
learner’s estimate of the action values associated with that
state, which in turn, should promote the selection of the
most rewarding action on the next visit of that state. In con-
trast, if the state is not visited, the learner’s knowledge about
how to deal with that state is not updated, and hence no
improvement should be observed. Under the Bayesian RL
framework, state-action values of both states are updated

(according to their posterior probability of being the true
state; more details are provided in “The PWRL Model”
section). Here, the state match effect should be attenuated
since reward information—which can potentially improve
learning—will flow to the next state irrespective of whether
the next state matches the previous one. In other words,
under the Bayesian RL model, the positive effect of re-
encountering a state on learning performance is likely to be
weaker than under the simple RL model because updates
will take place for all states.

To account for the possible interaction between experi-
mental condition, state match and trial order, we included
the non-linear interaction by-(condition×state match) fac-
tor smooth for trial order.1 We also added the factor reward
acquisition at t-1 (whether or not reward was received in
the previous trial), primarily to remove autocorrelation in
the residuals, but also to assess whether learning effec-
tively took place (a positive effect would provide support
for this). The GAMMs were run in R version 4.1.2 (R Core
Team, 2021) using the bam() function from the mgcv pack-
age version 1.8-40 (Wood, 2017). Interaction graphics were
generated using the itsadug package version 2.4.1 (van Rij
et al., 2020).

Results

We first analysed the behavioural results to see (1) how
well participants learned the task in the control condition
(and test condition prior to the switch) given the expected
state uncertainty, and (2) whether they managed to adapt
to the unexpected uncertainty in the test condition despite
the presence of state uncertainty. We then performed a more
in-depth analysis using GAMMs to assess participants’
learning statistically and understand the impact of the
unexpected reversal and other factors on their learning
performance.

Learning Performance Under Expected Uncertainty

Figure 4 shows that participants from both the control and
test (before the switch) group performed, in general, at the
level of the state uncertainty, and that they were able to
learn the correct state-action mapping despite the presence
of state uncertainty.

Learning was confirmed at the individual level when we
compared the proportion of rewarded responses on the first
block of 20 trials to the proportion of rewarded responses
on the last block of 20 trials preceding the “switch trial”

1Effectively, we coded the three-way non-linear interaction as a two-
way non-linear interaction by combining condition and state match
into a single variable that we denote as condition and state match,
since three-way non-linear interactions are not directly supported in
the software implementation of GAMMs that we used
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Fig. 4 Running average score of the “average subject” in the control
(solid green line) and test group (solid red line) with a window size
of 30. The shading along each curve represents the standard error of
the mean, while the light grey region represents an approximate 95%
confidence interval (CI) of the moving average of a Bernoulli variable
with probability of success equal to 0.65. The CI is constructed to give
an indication of the normal range of performance in each window of
30 trials for a subject who has learned the task rules (it is a simple

measure to assess learning/unlearning for each point in isolation). A
point in the learning curve that is below the CI range suggests that it
is unlikely that the (aggregated) participant was using the correct map-
ping during that window, while a point above the CI range suggests
that the participant was performing at a higher level than the target
level of uncertainty. The vertical dashed line indicates the trial where
the switch occurs in the test condition

(i.e. the 101th trial in both conditions). In fact, as can be
seen from Fig. 5 (left pane), before the “switch trial”, 20
out of 24 participants from both groups showed improved
performance by the end of the first 100 trials, as indicated by
points above the equality line in the figure (note also that the
performance of one participant did not increase in the last
20 trials because their reward acquisition rate was already
above 75% in the first 20 trials). Also, 20 participants
reached a reward acquisition rate above chance in the last
block of 20 trials preceding the switch. This suggests that
the majority of our participants not only managed to learn
the task (without the switch), but were able to do so within
100 trials.

Learning Performance Under Unexpected Uncertainty

Participants were also able, in general, to adapt to the
unsignalled change in state-action mapping as illustrated
in Fig. 4 (solid red learning curve). As expected, reward
proportion dropped to the level 1 − ρ after the switch,
and seems to have recovered slowly to arrive again at a
level near of the level of state uncertainty ρ = 0.65.
Figure 5 (right pane) indicates that most participants from
the test group (11 out of 12) performed better in the last
20 trials in comparison with the first 20 trials following the
switch; however, only 8 participants reached a performance
above chance by the end of the testing sequence, and hence

could be counted as successful in dealing with unexpected
uncertainty.

Individual differences were evident in how participants
adapted to the switch. For example, some participants
adapted quickly to the switch (within about 30 trials),
while other participants adapted late or did not adapt at
all to the switch even though they managed to learn the
task rules before the switch (see S.1 for a full analysis
that constructs individual learning curves and groups them
using hierarchical clustering). In addition, a few participants
seemed to have performed at a higher level than the targeted
level of uncertainty ρ = 0.65 for extended periods of time
(see, for example participants 7 and 8 in Fig. S.2).

Analysis of Learning Performance Using Statistical
Modelling

The GAMM model for reward acquisition that we retained
after backward variable selection is presented in Table 1.
The proportion of rewarded responses increased over time
prior to the switch in the test condition, suggesting a
learning trend as was expected (Fig. 6A). A positive trend
also occurred in the control condition but did not reach
significance (p = .104), attributable to the relatively small
sample size in each group. In fact, re-running the same
model with data from both conditions restricted to the first
100 trials showed a significant increase with trial order
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Fig. 5 Comparison of the
average proportion of rewarded
responses in the first 20 trials
and last 20 trials before the
“switch trial” (left) and after it
(right), for both the control and
test group. A jitter of 0.005 was
applied to enhance the
visualisations

(edf = 1, p = .003). Obtaining reward in the previous trial
increased the likelihood of obtaining reward in the current
trial, also suggesting that (recency-based) learning took
place (β = 0.16, SE = 0.07, z = 2.40, p = .016). Reward
likelihood was significantly lower in the test condition than
in the control condition for most of the second block of trials
(between the 102th and 188th trials as highlighted with the
red segment in Fig. 6B), confirming that the introduction
of the switch negatively impacted participants’ learning
performance, and that, overall, the recovery from the switch
effect occurred gradually and slowly. There was a very
strong positive effect of the state match factor (β = 0.71,
SE = 0.06, z = −11.09, p < .001), indicating that
participants were more likely to get rewarded—in other
words, respond correctly—when they were presented with
the same state as the previous trial.

Discussion

Participants were, overall, able to learn successfully
under expected state uncertainty due to the ambiguous
nature of the psychophysical stimuli, and the unexpected

uncertainty due to the non-signalled reversal. The speed of
adaptation to the switch in the state-action mapping varied
considerably across participants. An additional finding was
that participants’ learning benefited from re-encountering
the same state in two consecutive trials, which could be
due to a number of reasons. As we explained when we
introduced the state match factor, this could be a simple
by-product of how participants keep track of the rules
of the task, with value updates occurring at the level of
state-action pairs as implicitly assumed in RL models. In
such frameworks, getting reward feedback on a visit to
a given state should promote selection of the action that
will give reward on the next visit of that state, while if
the state is not visited, the task knowledge is not updated,
and hence no improvement should be observed. The effect
of re-encountering a state is likely to be weaker under
the Bayesian RL model than under the simple RL model
because updates will take place for all states irrespective
of which state the learner visits, and thus the effect of
the update in the previous trial should be smaller. This
prediction is tested later through computational modelling
of the data (see S.6 in the Supplementary Material). Another

Table 1 Outputs of the
generalised additive mixed
model of reward acquisition in
Experiment 1

A. Parametric coefficients Estimate Std. Error t-value p-value

Intercept 0.19 0.14 1.35 .178

Condition = test −0.40 0.18 −2.22 .026

State match = same 0.71 0.06 −11.09 < .001

Reward acquisition at t-1 = yes 0.16 0.07 2.40 .016

B. Smooth terms edf Rel. df F-value p-value

s(Trial): Condition = control 1.00 1.00 2.64 .104

s(Trial): Condition = test 6.03 7.30 101.02 < .001

fs(Trial,Participant) 63.81 236.00 271.94 < .001

s: adaptive thin plate regression spline. fs: factor smooth. Estimated degrees of freedom (edf) larger than 1
indicate non-linearity of the smooth. AIC = 5861; fREML = 6808; R-sq (adj) = .137; n = 4776
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Fig. 6 Partial effect of the significant predictor (corresponds to the
contribution of Trial order f (T rial) that would be used in Eq. 1) along
with the interaction effect in the generalised additive mixed effects
model of reward acquisition in Experiment 1. A Nonlinear regres-
sion lines for the test condition. The grey shadings along the curves

represent pointwise 95% confidence intervals around the curve esti-
mates. B Difference in fitted logit-transformed proportion of rewarded
responses between the control condition and test condition (here the
difference excludes the random effects). The red segments indicate
where the difference is significant, as assessed on the basis of the 95%
CI

explanation of the positive effect of state match is that
participants learned to disambiguate the states better by
using reward feedback; that is getting feedback on trial
t helped correctly identify the state on trial t + 1. This
interpretation is partially supported by the observation that
some participants performed at a higher level than the target
uncertainty level, suggesting that they continued to improve
in the perceptual discrimination during the learning phase.
We address this shortcoming in experiment 2.

Experiment 2

Experiment 2 introduced a reward uncertainty condition,
and also provided a close replication of Experiment 1.
Moreover, we attempted to address one shortcoming in the
first experiment, which is that some participants performed
at a higher level than the targeted level of uncertainty,
potentially due to either an imprecision in the estimation
of the psychometric function in the calibration phase, or
to an improvement in the detection of the noisy states in
the learning phase using reward information. Accordingly,
we made three changes: we introduced feedback in the
calibration phase; increased the number of contrast levels
used for the estimation of the ρ-thresholds from 9 to 10; and
increased ρ from 0.65 to 0.7 to reduced the state uncertainty
(see “Material and Procedure” section for more details).

Participants

Experiment 2 included 61 participants: 31 were randomly
allocated to the state uncertainty condition, while the
remaining 30 participants were allocated to the reward
uncertainty condition. Participants were recruited from the
University of Western Australia. As in Experiment 1,
participants’ payment included a fixed amount ($5) and an
extra bonus payment that depended on their performance
(up to $8). The study was approved by the Human Research
Ethics Committee at the University of Western Australia.
The number of participants was chosen based on previous
studies of reward-based learning under uncertainty (e.g.
Behrens et al., 2007; Nassar et al., 2010; Wilson & Niv,
2011). In addition, model simulations indicated that 30
participants would be enough to differentiate between the
two RL models used in our study in the state uncertainty
condition (see S.2).

Material and Procedure

State Uncertainty Condition

The structure and the design of the task in the state
uncertainty condition was similar to that of the first
experiment with three major modifications, mainly in the
calibration phase, as follows.



Computational Brain & Behavior

First, to assist participants in learning to disambiguate
the states in the learning phase, we introduced feedback in
the calibration phase. More specifically, after each response,
participants were told whether their identification of the
patch state (light or dark) was correct or not by displaying on
the screen either the word “Correct” in green or “Incorrect”
in red. Participants were told to use the feedback to improve
their discrimination ability in later trials.

To improve the precision of the estimation of the ρ-
thresholds for both the light and dark states in the calibration
phase, we increased the number of contrast levels from
9 to 10. We also added 100 trials at the beginning of
the calibration to let participants “warm up”. In addition,
these warm up trials were used to produce an initial, rough
estimate of the slope of the psychometric function, which
then determined the exact contrast levels to use in the actual
calibration phase (250 trials: 25 repetitions for each of the
10 contrast levels). Both the feedback and the increased
number of trials served a common goal: to ensure that most
of perceptual learning for state classification is complete by
the time the state-action learning phase started.

We increased ρ from 0.65 to 0.7, to reduce the extent
of individual differences. We expected that the increase in
ρ would enable most participants to adapt to the switch,
allowing a cleaner comparison of performance between
the state uncertainty and reward uncertainty conditions.
Nevertheless, a value of ρ = 0.7 still represents a
considerable amount of state uncertainty, so that the models
can be differentiated. Indeed, initial simulations (see S.2)
showed that a level of 0.7 made it easier to differentiate
between models when model fitting artificial behavioural
data, but also led to more accurate model recovery than the
lower value of ρ.

Reward Uncertainty Condition

In the new reward uncertainty condition, the states
were unambiguous while rewards were stochastic. The
patches used were either completely white (light state) or
completely black (dark state), and of the same size as
the patches used in the state uncertainty condition. As in
the state uncertainty case, participants were required to
learn the correct mapping between the two states and two
response options by using the reward feedback given to
them after each of their responses. To match the uncertainty
level used in the state uncertainty condition, we generated
rewards following a Bernoulli(0.7) distribution for correct
responses and a Bernoulli(0.3) for incorrect responses.
The task was otherwise similar to the learning part of the
state uncertainty condition in all other aspects, except that
obviously there was no calibration phase to construct the
light and dark patches.

Results

The structure of this section largely follows that of the
results section of Experiment 1. We start by visualising
the average learning curves under the different forms
of uncertainty. The patterns of learning will then be
tested statistically using the GAMM approach, focusing
in particular on the comparison between state and reward
uncertainty.

Learning Performance Under Expected Uncertainty

In addition to the previously used reward-based learning
curves, we also included learning curves that are based on
accuracy (see Fig. 7). Both types of learning curves were
again constructed using running averages with a window
size of 30 trials. The main reason for introducing accuracy-
based learning curves was that the learning curves in the
reward uncertainty condition provide a different perspective
on learning performance than the reward-based learning
curves, given the stochasticity in the reward function but
not in the accuracy function. That is, a response can be
accurate but not rewarded, which can never be the case in
the state uncertainty condition (hence the match between
the two curves under state uncertainty in the left figure
panel). In the reward uncertainty condition, a participant’s
accuracy-based learning curve should reach 1 when the
participant has learned and has been using the correct rules.
The reward-based learning curve should fluctuate around
0.7 in the case of successful rule acquisition, assuming
participants exploit this rule with limited or no exploration.
In what follows, we will primarily analyse reward-based
performance (proportion of rewarded responses) but will
make reference to accuracy-based performance when needed
during the analysis of the reward uncertainty condition data.

First, consider the case of (expected) state uncertainty
in the first 100 trials before the switch. The aggregated
learning curve in Fig. 7 (left panel) suggests that, overall,
participants were able to learn the task within the first 100
trials and performed at the target level of state uncertainty
ρ = 0.7. Looking at participants individually in Fig. 8
(left), the majority of participants (26 out of 31) reached a
reward acquisition rate above chance (0.5) in the last 20-
trial block before the switch. Twenty out of 31 participants
showed improved performance relative to the first 20-trial
block (a further 5 participants did not show performance
improvement even with a score above 65% in the last block
because they had reached an even higher score in the first
block of 20 trials). These results confirm our findings in the
first experiment, i.e. the majority of participants were able to
deal with expected uncertainty when the uncertainty comes
from the states.
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Fig. 7 Overall running average scores of the proportion of rewarded
responses (red) and correct responses (green) in the state uncertainty
(left) and reward uncertainty (right) condition. The running aver-
ages were computed using a window size of 30. The shading along
each curve represents the standard error of the mean, while the light

grey region represents an approximate 95% confidence interval of the
moving average of a Bernoulli variable with probability of success
equal to 0.7. The vertical dashed line indicates the trial where the
switch occurs. Note that the reward-based running average matches the
accuracy-based running average in the reward uncertainty condition

In the case of reward uncertainty, participants performed
well below those from the state uncertainty group in the
first 100 trials, and also below our uncertainty threshold
(red curve in the right panel of Fig. 7). The finding that
the aggregated accuracy-based curve (in green colour) is
well below 1 confirms that participants, in general, were
not exclusively employing the optimal response mapping.
However, the upward trends in the learning curves provide
evidence that some learning took place. The individual data
presented in Fig. 8 (left) shows that 22 participants out
of 30 reached a performance score above the chance level
(points above 0.5), but only half of the participants showed
improved performance (points above the equality line in the

figure). The results are therefore more mixed in the reward
uncertainty condition in comparison with state uncertainty,
with no clear majority for those who learned the mapping
rules. It is possible that some participants may have learned
the task rules but continued to explore because they may
think that the rules might change at some point or because
they were behaving in accordance with probability matching
(Vulkan, 2000).

Learning Performance Under Unexpected Uncertainty

Responses to the switch (in trials 101–200) in the state
uncertainty condition were similar to those for Experiment

Fig. 8 Comparison of the
average proportion of rewarded
responses in the first 20 trials
and last 20 trials before the
“switch trial” (left) and after it
(right), for both the control and
test group. A jitter of 0.005 was
applied to enhance the
visualisations
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Table 2 Outputs of the
generalised additive mixed
model of reward acquisition in
Experiment 2

A. Parametric coefficients Estimate Std. Error t-value p-value

Intercept .14 .07 2.11 .035

Condition & State match = RU.diff 0.02 0.09 0.265 0.791

Condition & State match = SU.same 0.61 0.06 10.95 < .001

Condition & State match = RU.same −0.01 0.09 −0.09 0.930

Reward acquisition at t-1 0.23 .04 5.84 < .001

B. Smooth terms edf Rel. df F-value p-value

s(Trial): Condition & State match = SU.diff 8.59 10.34 95.91 < .001

s(Trial): Condition & State match = RU.diff 2.53 3.13 3.78 .274

s(Trial): Condition & State match = SU.same 1.46 1.73 1.28 .576

s(Trial): Condition & State match = RU.same 3.85 4.71 13.17 .015

fs(Trial,Participant) 107.49 606.00 294.87 < .001

s: adaptive thin plate regression spline. fs: factor smooth. Estimated degrees of freedom (edf) larger than 1
indicate non-linearity of the smooth. AIC = 15770; fREML = 17251; R-sq (adj) = .055; n = 12139

1 (see the left panel in Fig. 7 and the right panel in
Fig. 8). The data suggest that the majority of our participants
managed to adapt to the switch (20 out of 31 participants
performed above chance in the last 20-block post-switch
and showed improved performance in comparison with the
first block post-switch; a further 3 participants did not show
improvement because their performance score was already
high in the first 20 trials).

For reward uncertainty, the impact of the unexpected
switch on overall performance was less pronounced than
in state uncertainty because performance was already low
before the switch. However, performance remained around
the chance level for most of the trials post-switch (right
panel in Fig. 7). The accuracy-based learning curve in green
also shows that performance did not recover back to the
level it was at prior to the switch. The average proportion
of rewarded responses in reward uncertainty was lower
than that in the state uncertainty condition except in the
first 30 trials post-switch. Figure 8 (right panel) shows
that, again, only half of our participants improved their
performance relative to the first 20-trial block post-switch
and ended up with a reward acquisition score above chance.
These results suggest that the switch had a negative impact
on participants’ performance in the reward uncertainty
condition as well, with even more participants failing to
deal with the unexpected switch in comparison with state
uncertainty.

Analysis of Learning Performance Using Statistical
Modelling

The saturated model was selected as the best model based
on backward model selection. This model (see Table 2)

included the three-way non-linear interaction between trial
order, uncertainty condition and state match (recall that
this was coded as a two-way non-linear interaction by
combining uncertainty and state match as a single factor), as
well as reward acquisition in the previous trial (used mainly
to remove temporal residual autocorrelation). Figure 9
presents the significant partial effects involving trial order
along with the interaction effects. First, in the state
uncertainty condition (SU, panel A), the effect of trial order
on the likelihood of receiving a reward, when the states do
not match, followed the same pattern encountered in the
previous exploratory analyses: an increase in the likelihood
of being rewarded with trial order until the occurrence of
the switch, then an abrupt decrease in performance before
the performance recovers after a few trials. The likelihood
of receiving a reward remained significantly higher for
matched states in comparison with unmatched states for
most of the trials, can be seen in panel C.

In the reward uncertainty condition, the effect of trial
order on reward likelihood was non-significant for the
unmatched state (p = .274), but was significant for matched
states (p = .015), most likely due to the initial large dip in
the non-linear regression line; the large dip is due to the high
proportion of rewarded responses in the second trial where
the state matched that of the first trial (see Fig. 9B). The
interaction graph in Fig. 9D shows that the effect of trial
order on reward likelihood was almost the same for both
matched and unmatched states.

Figure 9E–F compare the state and reward uncertainties.
For matched states (panel E), reward likelihood was
significantly higher in state uncertainty than in reward
uncertainty for all but the first three trials. When the states
at t and t −1 were different (panel F), the reward likelihood
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Fig. 9 Partial effects (fixed effects only) of the significant predic-
tors along with the interaction effects in the generalised additive
mixed effects model of reward acquisition in Experiment 2. A–B
Each panel depicts the nonlinear regression line for a combination of
uncertainty condition and state match level, with pointwise 95% confi-
dence intervals (grey shading).CDifference in fitted logit-transformed
values between matching and non-matching states in the state uncer-
tainty condition. D Same as C but the difference is calculated for

responses from the reward uncertainty condition. E Difference in fit-
ted logit-transformed proportion of rewarded responses between state
uncertainty and reward uncertainty when the state on the present trial
matches that on the previous trial. F Same as E but the difference is
calculated for trials where the states do not match. All difference terms
were calculated with random effect terms set to 0. The red segments
indicate where the differences are significant

was significantly higher in the state uncertainty condition
for 28 trials in the middle of the first block of 100 trials
(i.e. under expected uncertainty), but the reward likelihood
was significantly lower in state uncertainty during the first

40 trials in the second 100-trial block (i.e. after unexpected
uncertainty has been introduced). The difference between
the state and reward uncertainty conditions was otherwise
non-significant.
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Discussion

Participants’ performance was better in state uncertainty
when measured by reward received. The difference between
the two conditions, however, was mainly observed in
the first block of 40 trials after the switch when
participants encountered a different state than in the
previous trial (reward uncertainty was associated with
higher reward likelihood during the first few trials post
switch, mainly because performance was already low prior
to the switch and, therefore, did not get affected much by the
change in response mapping). Participants also displayed
different switch adaptation patterns in reward uncertainty in
comparison with state uncertainty (and often less obvious;
see Fig. S.6 in S.1). Moreover, participants’ behaviour
appeared to be more exploratory in the reward uncertainty
case. These combined effects present a challenge to the
computational models, notably the interaction between
uncertainty condition and state match as well as the
observed pattern of adaptation to the switch for unmatched
states in the state uncertainty condition.

Computational Models

To explain participants’ performance in the two experi-
ments, we compared three computational models. One is a
Bayesian temporal-difference-based model, which assumes
the learner can use the reward feedback to resolve state
uncertainty (Larsen et al., 2010). The second is a sim-
ple temporal-difference-based model in which the learner
ignores the state uncertainty, and updates only the Q-value
(predicted reward) of the state that they believe is the true
state (this corresponds to “the winner takes all” model
described in Larsen et al. 2010). The third is a simpli-
fied version of the learning-by-sampling model of Chen

et al. (2011). We aimed to determine whether or not the
same computational mechanism underlies learning under
both state and reward uncertainty. Below, we describe each
model together with its mathematical formulation under
both uncertainty conditions.

Description of Models andModelling Procedure

The PWRLModel

Formulation Under State Uncertainty

PWRL (Posterior Weighted Reinforcement Learning;
Larsen et al., 2010) shows how to augment temporal dif-
ference learning to deal with state uncertainty. The model
allocates reward to each state according to the posterior
probability of each state being the true state having observed
the reward. The basic idea behind this scheme is that
rewards carry information about the true state as do obser-
vations, and hence should be used to estimate state prob-
abilities. More precisely, the state-action values Qt(s, a),
which here estimate the expected reward for action a (circle
or square) in state s (light or dark) at time t , are updated as
follows:

Qt+1(s, at ) = Qt(s, at ) + αP(St = s|rt , at , it , Qt )

(rt − Qt(s, at )) (3)

where updates are for all possible states and only the chosen
action at , α is the learning rate, it is the state that is
identified by the learner (it might be different from the true
state st ), Qt is the vector of all state action values, and
P(St = s|rt , at , it , Qt ) is the posterior probability that the
true state is s having observed the reward rt .

Expanding P(St = s|rt , at , it , Qt ) using Bayes rule
produces the following updating rule for the Q-values (for
more detail, see S.3):

Qt+1(s, at ) =
{

Qt(s, at ) + α
Qt (s,at )ρt (st ,s)∑
s′ Qt (s′,at )ρt (st ,s′) (2.5 − Qt(s, at )) if rt = 2.5,

Qt (s, at ) + α
(2.5−Qt (s,at ))ρt (st ,s)∑
s′ (2.5−Qt (s′,at ))ρt (st ,s′) (0 − Qt(s, at )) if rt = 0.

(4)

where ρt (s, i) is the probability with which the learner
identifies i as the true state, such that their identification i is
correct with probability ρ:

ρt (s, i) = P(It = i|St = s) =
{

ρ if i = s,

1 − ρ otherwise.
(5)

For action selection, we assume that the learner uses the
softmax selection rule to compute the probability of each

action given the current (true) state, that is:

P(At = a|St = st ) =
∑
i′

exp(Q(i′, a)/T )∑
a′ exp(Q(i′, a′)/T )

ρt

(
st , i

′)
(6)

where where T is a temperature parameter, which deter-
mines the degree of stochasticity in action selection.
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To sum up, the steps followed by the learner in each
trial under this model are as follows: First, they observe
a noisy input from the environment (whose state can be
correctly identified with probability ρ). Second, they select
an action according to the softmax choice function (see
Eq. 6). Third, the reward feedback is used to calculate the
posterior probability of each state being the correct state
(i.e. P(St = s|rt , at , it , Qt )). Fourth, they update the state-
action values using Eq. 4. This cycle is repeated with each
new stimulus.

Although this model makes optimal use of reward
feedback to get information about the current state
before updating the state-action values, it can suffer from
difficulties when a change in mapping rules is introduced,
as shown in Larsen et al. (2010). In fact, consider the
following example, which is taken from the same paper
and adapted to our case. Let us first denote by sL and sD

the light and dark state respectively, and by aL and aD the
correct “light” and “dark” response before the switch. Prior
to the switch—in our experimental setting—the reward for
choosing aL in state sL is 2.5, whereas it is 0 if aD is
selected in sL. In trial 101, the rewards switch, so that
Rt(sL, aL) = 0 and Rt(sL, aD) = 2.5, for t > 100.
Assume that by t = 100, the model has learned the
correct state-action values, so that Q100(sL, aL) = 2.5
and Q100(sL, aD) = 0. Suppose also that the true state
at t = 101 is sL, so that the probabilities of detecting
each state as the true state are: ρt (sL, sL) = 0.65 and
ρt (sL, sD) = 0.35 (from now on, we consider t to be equal
to 101). Let us say the learner chooses at t what they believe
to be the best action, aL. Because the mapping rules have
switched, their action would result in a null reward. Thus,
the posterior probability that the state is sL is given by (from
Eq. S.2):

ρt (sL, sL) (2.5 − Qt(sL, aL))

ρt (sL, sL) (2.5 − Qt(sL, aL)) + ρt (sL, sD) (2.5 − Qt(sL, aD))
= 0.65 × 0

0.65 × 0 + 0.35 × 2.5
= 0 (7)

This means that the learner would believe with certainty,
after observing the null reward, that the true state is sD
rather than sL, and hence would not change Qt(sL, aD),
thereby continuing to use the outdated state-action mapping.

Note that, in this example, we have assumed that the
estimated state-action values have converged to the correct
ones to illustrate why the PWRL model might get stuck
with using the same mapping after the switch. The model
can potentially overcome this, for example by using a
very low value for the learning rate to avoid convergence.
However, a low learning rate slows down adaptation to
the switch, because too much of the irrelevant (pre-switch)
reward history is integrated in the value estimates. Note
that the actual rate of adaptation is not just determined
by the learning rate, but also by the rate of exploration
(for a discussion of the intercorrelation between learning
and exploration rates in RL models, see Daw, 2011).
Accordingly, we expect adaptation in the PWRL model to
be absent or slow if the model successfully switches after
trial 100.

Formulation Under Reward Uncertainty

In the reward uncertainty condition, the PWRL model
becomes equivalent to a standard SARSA (State-Action-
Reward-State-Action) model (Rummery & Niranjan, 1994),
with state-action values updated on each trial as follows:

Qt+1(s, a) =
{

Qt(s, a) + α (rt − Qt(s, a)) if s = st , a = at ,

Qt (s, a) otherwise,
(8)

where α is the learning rate, rt is the Bernoulli generated
reward received at t , st and at refer respectively to the
current state and current action. Equation 8 follows from
Eq. 3 given that the posterior probability that the true state is
st given that the reward is rt is P(St = s|rt , at , it , Qt ) = 1.

TheWTA-RL Model

Formulation Under State Uncertainty

One simple approach to solve reward-based learning tasks
with state uncertainty is to ignore the uncertainty and
simply update the Q-value of the identified state in each
trial. This is the basic idea behind the “winner takes
all” reinforcement learning (WTA-RL) model presented by
Larsen et al. (2010). More specifically, the model assumes
that, in trial t , the learner identifies the true state as it
(via a sampling process that correctly identifies the true
state with probability ρ), then updates the Q-value for
only that identified state. Thus, in our experimental setting,
the learner would update the right state-action value, on
average, with frequency ρ. Under this scheme, the updating
equation for the state-action values is given by:

Qt+1(s, a) =
{

Qt(s, a) + α (rt − Qt(s, a)) if s = it , a = at ,

Qt (s, a) otherwise.
(9)

Using the state-action values, the learner selects actions
according to the softmax selection rule defined in Eq. S.6.
This model is hence similar to a SARSA model with the
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difference being that it updates Qt(it , at ) instead of the
Q-value for the current state st , Qt(st , at ).

One advantage of this model is that it adapts well to
a switch of contingencies, as it does not suffer from the
problem of self-confirming beliefs encountered with the
PWRL model. However, the WTA-RL model is not assured
to converge to the correct state-action values (Larsen et al.,
2010). Nevertheless, learning incorrect Q-values does not
necessary result in incorrect actions, and hence the model
can still be applied to solve learning tasks with state
uncertainty.

Formulation Under Reward Uncertainty

Just like the PWRL model, WTA also becomes equivalent
to a SARSA model under reward uncertainty. In fact, the
SARSA’s updating rule of state-action value (Eq. 8) is
obtained from the that of the WTA model (Eq. 9) by
replacing the identified state it by the true state st since the
states are unambiguously identified by the learner.

On this account, both the WTA and PWRL models
predict that humans would follow a SARSA-type learning
behaviour in the reward uncertainty condition, while
predicting different behaviours in the state uncertainty
condition. In this condition, under PWRL, either no or very
slow adaptation would be observed, whereas the opposite is
expected under WTA-RL.

The BI-SAWModel

Formulation Under State Uncertainty

We extend the sampling-based BI-SAW model (Bounded
memory, Inertia, Sampling and Weighting; Chen et al.,
2011), which was originally developed to account for
human reward-based learning in binary stateless bandit
tasks, to the case of multiple-state environments. For
consistency with the two RL models, we replace the
exploration rule in the original model (ε-greedy followed by
a Bernoulli-distributed choice between the two actions) with
a softmax exploration rule. We also exclude the assumption
of inertia (i.e. tendency to repeat the last choice).

The model assumes that the learner chooses actions
based on small samples of experiences drawn from the
recent past, while also considering the overall trend of
rewards from all past trials. The extent to which the learner
relies on a small sample of the most recent trials or the
overall reward trend is modulated by a weight parameter
that is subject-specific. This property of the model makes it
well suited to capture different possible learning behaviours
in tasks that include an unexpected change as the one we
use here. For example, a fast adaptation to the switch can be
simulated by increasing the weight associated with the small

sample component, while a slow adaption to the switch can
be simulated by increasing the weight of the overall reward
trend.

More specifically, each state-action pair is associated
with an Estimated Subjective Value (ESV) that is computed
on each trial t > 1 as follows:

ESVt(it , a)=(1−ω)SampleMt(it , a)+ωGrandMt(it , a),

(10)

where it is the identified state on trial t . Index a refers
to each possible action (light or dark response in our
case). Parameter ω determines the weight that is given to
GrandMt(it , a), the grand average payoff choosing action
a in state it in all past experience. SampleMt(it , a) is the
average reward for choosing action a in state it within a
sample of μ past payoffs drawn from the most recent b

trials. The sampling process is assumed to be independent
and with replacement such that, in each draw, the most
recent trial (t − 1) has a probability pr to be chosen. All
the remaining (b − 1) trials have an equal probability to
be selected. To simplify the model further, we restrict μ to
be equal to b—that is the learner samples with replacement
exactly b payoffs from the b most recent ones. Finally,
the learner is assumed to select an action according to the
softmax rule using the computed ESVs.

The model is similar to the WTA-RL model in that both
assume that the learner identifies one of the states as the
true state, then calculates the value(s) associated with that
state. The main difference between the two models is that
the subjective values in the BI-SAW model are not updated
based on previous values but are calculated afresh on each
new trial.

Formulation Under Reward Uncertainty

In the reward uncertainty case, the learner can identify the
correct state with certainty, and will be positively rewarded
for choosing the correct response with probability ρ and
positively rewarded with probability 1 − ρ even if they
select the incorrect response. Therefore, the sampling model
predicts that people’s learning behaviour should be identical
in the two uncertainty conditions, since the distribution of
the sequences of rewards is identical in the two conditions.

Model Evaluation

To compare the models in their account of participants’
choices, we estimated the free parameters of each of the
three models separately for each participant using (approx-
imate) maximum likelihood estimation. More specifically,
we selected model parameters that maximised the log-
likelihood of observed actions conditioned on the previ-
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ously encountered observations and rewards (Daw, 2011).
A detailed description of how the likelihood functions were
computed and implemented is provided in the Supplemen-
tary Material in S.4.

To compare the goodness of fit of the models, we
computed the Bayesian information criterion (BIC) for each
subject and model using the maximised log-likelihood for
that subject. To find out which model provides substantial
evidence for the observed data from each participant, we
converted the BIC scores of each pair of models into a Bayes
factor using the following approximation (Kass & Raftery,
1995):

BF12 = exp

(
BIC(M2) − BIC(M1)

2

)
(11)

where BF12 is the Bayes factor for model M1 against
M2. We then considered a model as the winning model
if its Bayes factor against the model with the second
highest BIC score is greater than 3.2, indicating substantial
evidence for the model according to Jeffreys’s (1961) scale
of evidence. Bayes factors lower than 3.2 were taken as
providing inconclusive evidence for differentiating between
the models, and in this case no model was declared as the
best fitting model.

The analysis of participants’ learning curves reported
earlier indicated that several participants performed at a
significantly higher level than ρ in the state uncertainty con-
ditions, suggesting that their real level of state uncertainty
might deviate from the targeted level (i.e. ρ = 0.65 in
Experiment 1 and ρ = 0.7 in Experiment 2). To accommo-
date such deviations, we fit the models with and without ρ

as a free parameter, and found that considering ρ as a free
parameter produced better fits for all models and conditions,
as judged by the BIC scores. Hence in the main text, we
only present the fitting results with ρ as free parameter (the

fitting results with ρ fixed are presented in the Supplemen-
tary Material in S.9).

Results and Discussion

Here, we focus on the model fitting results for the second
experiment, which are summarised in Table 3 (we report
the results for the first experiment in S.7 since they were
inconclusive). The estimated ρ in the state uncertainty
condition was markedly higher than the targeted level of 0.7
and consistent across all three models. This suggests that
despite the measures introduced in the second experiment
to control the uncertainty level, some participants still
managed to improve their capability of discriminating
between the noisy states. Furthermore, the estimated
exploration rate T provides a hint as to the reason for the
lower performance in the reward uncertainty condition, as
exploration for all three models was greater in the reward
uncertainty condition than in the state uncertainty condition.
For example, WTA-RL, the best-fitting model as will be
shown below, had a significantly lower exploration rate
under state uncertainty (Mdn = 5.04) in comparison
with reward uncertainty (Mdn = 8.12), as indicated by a
Wilcoxon rank-sum test, W = 296, p = .015, r = −.31.
Learning rate α did not differ significantly between state
uncertainty (Mdn = 0.34) and reward uncertainty (Mdn =
0.33); W = 450, p = .834, r = −.03.

A comparison between observed and simulated learning
curves in both uncertainty conditions (see Fig. 10) shows
that all computational models qualitatively captured the
behavioural choices well, certainly in the state uncertainty
condition. In this condition, the simple RL model (WTA-
RL) provided a better qualitative account of participants’
choices, most noticeably in the post-switch trials. In the
reward uncertainty condition, the RL and sampling-based
models were hard to differentiate. In addition, both the

Table 3 The mean ± S.D. of
best-fitting parameter values
and BIC scores by model and
condition in Experiment 2

State uncertainty Reward uncertainty

Parameter PWRL WTA-RL BI-SAW SARSA BI-SAW

α 0.43 (0.18) 0.41 (0.36) 0.37 (0.17)

T 9.96 (6.15) 5.75 (4.05) 6.50 (5.98) 12.17 (12.10) 10.51 (10.28)

ρ 0.89 (0.19) 0.86 (0.13) 0.85 (0.14)

b 3 (2) 3 (2)

w 0.35 (0.29) 0.27 (0.31)

pr 0.52 (0.30) 0.69 (0.31)

−logML 122.4 (12.4) 120.9 (13.1) 119.2 (13.5) 117.9 (23.6) 114.8 (18.5)

BIC 260.7 (24.8) 257.6 (26.3) 264.9 (27.1) 246.3 (47.3) 250.8 (37.0)

For the bound memory parameter b of the BI-SAW model, the median and the median absolute deviation
were used instead of the mean and standard deviation since b can only take discrete values
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Fig. 10 Comparison of the reward-based learning curves of partici-
pants and fitted models in both the state uncertainty (left) and reward
uncertainty (right) conditions. To draw model learning curves, we
first constructed a learning curve for each subject by averaging over
100 simulations with her fitted parameters, then averaged across

participants to get the overall learning curve. The light grey region rep-
resents an approximate 95% confidence interval of the moving average
of a Bernoulli variable with probability of success equal to 0.70. The
vertical dashed line indicates the trial where the switch occurs

RL and sampling models seem to have underestimated
the proportion of rewarded responses for most trials,
suggesting a lower quality of model fit in comparison with
state uncertainty. This is partly explained by the complete
misfit of several participants’ learning curves as shown in
Figs. S.18 and S.19 (e.g. subj 13, 16, 18, 24, 27 and 30
where the models simply behaved randomly).

To compare the model fits quantitatively, we evaluated
the BIC values of our models and computed the number
of participants best fitted by each model based on Bayes
factors, as described in the model evaluation section. The
results are summarised in Fig. 11. In the state uncertainty
condition, the WTA-RL model had a better overall BIC
score and was the best-fitting model for twice as many

Fig. 11 Distribution of BIC scores by model for both the state uncertainty (left) and reward uncertainty (right) conditions, with lower BIC scores
indicating a better overall fit. Note that in the reward condition, the PWRL and WTA-RL models are equivalent to a SARSA model
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participants as were best fit by PWRL (14 versus 7).
None of the participants’ data was best fit by the BI-SAW
model. In the reward uncertainty condition, the SARSA
model—the equivalent version of the Bayesian and simple
RL models used in the state uncertainty condition—was
the best fitting model for twice the number of participants
as were best fit by the sampling model (16 versus 8),
though the median BIC score slightly favoured the sampling
model. These results demonstrate that the simple RL
model explained participants’ choices the best in both state
uncertainty and reward uncertainty conditions. We link
individual differences in the learning patterns to the model
fits in S.5 of the Supplementary Material. We also show in
Section S.6 that the simple RLmodel was able to recover the
effects observed in the GAMM analysis of the behavioural
data from Experiment 2 reported in “Analysis of Learning
Performance Using Statistical Modelling” section.

General Discussion

Summary of the Results

We aimed to assess and compare how people learn
from reward feedback under conditions of expected
and unexpected uncertainty, and compared their learning
behaviour under conditions of state and reward uncertainty.
Previous studies have investigated expected and unexpected
uncertainty arising from reward and mostly focused on
volatility (e.g. Behrens et al., 2007; Nassar et al., 2010;
Payzan-LeNestour et al., 2013; Piray & Daw, 2020, 2021;
Wilson & Niv, 2011; Yu & Dayan, 2005), but not when
the source of uncertainty is the environment’s state (Bach
& Dolan, 2012; Ma & Jazayeri, 2014; Mathys et al.,
2014). Importantly, we matched carefully the degree of
reward uncertainty and state uncertainty, and subjected
performance under both conditions to the same analyses
so that it may be compared directly. We showed that most
participants were able to adapt successfully to all three types
of uncertainty; participants managed to learn the correct
state-action mapping under expected state uncertainty and
expected reward uncertainty, and managed to adapt to the
unexpected uncertainty due to a non-signalled reversal in
the state-action reward contingency. This is in line with
and goes beyond previous work that looked at reward-based
learning under expected reward uncertainty (Don et al.,
2019), expected state uncertainty (Bruckner et al., 2020) and
unexpected reward uncertainty (Brown & Steyvers, 2009).
Surprisingly, participants collected more reward under state
uncertainty than under reward uncertainty, partly due to
their higher exploration rate under the reward uncertainty
condition.

To identify the psychological mechanisms underlying
participants’ behaviour, we used two RLmodels for learning
under state uncertainty that were described in Larsen et al.
(2010). The first model, named WTA-RL (Winner-Takes-
All), is a simple RL model that, on each trial, selects
an action based on the state identified by the learner.
Importantly, this model only updates the state-action value
for the identified state even though the state may have
been identified incorrectly. The second model is PWRL
(Posterior Weighted RL), which is a Bayesian RL model
that selects actions based on belief states, and updates on all
states rather than the one state that is identified (Jaakkola
et al., 1995). These two RL models become identical in
the reward uncertainty condition, where the state is known
with certainty. We also included a third model—BISAW
(Bounded memory, Inertia, Sampling and Weighting; Chen
et al., 2011)—that selects actions based on a small sample
of past rewards as well as the average reward over all trials.
We adapted this model to the case of state uncertainty by
ignoring the state uncertainty and using only the state that
was identified by the learner on each trial, as assumed
under the simple RL model. Our modelling results showed
that participants’ learning patterns were well-captured by
the simple RL model in both state and reward uncertainty,
suggesting a common mechanism for dealing with these two
types of uncertainty.

More specifically, in state uncertainty, the simple RL
was by far the model that accounted for participants’
choices the best. However, the Bayesian RL model captured
the behaviour of those who did not adapt to the switch
and some participants who adapted slowly. None of the
participants was best fit by the sampling model. In the
reward uncertainty condition, the RL framework explained
how participants learned to maximise reward better than the
sampling model at the level of individual subjects, although
there was some indication that for the sample as a whole,
the BISAW model was competitive.

Relationship with Belief-State-Based Learning

Several recent studies have found that belief-state-based
models provide a good account of the dopaminergic
response to reward prediction errors in animals (Babayan
et al., 2018; Lak et al., 2017, 2020; Starkweather et al.,
2017). However, most of these studies used prior rather
than posterior beliefs over states and none compared their
belief-state-based models to a RL model that commits
to a state during both the decision and update stages as
the WTA-RL model does. Therefore, a direct comparison
between a posterior belief state–based RL model and
a state “committing” RL model has not been carried
out in any of these studies. Starkweather et al. (2017)
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administrated a Pavlovian conditioning task to mice where
state uncertainty arise from temporal (as opposed to
perceptual) cues, as cue-reward interval lengths were varied
and reward was occasionally omitted. They show that a
(posterior) belief state temporal difference model explains
mice’ dopamine reward prediction errors better than a
standard temporal difference model (with a complete serial
compound representation (see, for example Moore et al.,
1998).

In a follow-up study, Babayan et al. (2018) proposed a
different Pavlovian task where state uncertainty was due
to ambiguous visual cues. Their belief-state model is quite
similar to the PWRLmodel, but with values being computed
over continuous belief vectors through linear approximation
(their task was designed in such as way that the nature of
state could be inferred from the reward signal). They found
that this model fit the dopaminergic response in mice better
than a stateless RL model (though a state-“committing”
model could have been included for a more stringent test
of the belief-state model). Interestingly, the values extracted
from their fitted belief-state model also accounted well for
the anticipatory licking patterns of mice, even though the
licking data were not used in model fitting. Lak et al.
(2017, 2020) provided support for belief-state models by
linking measures of response confidence extracted from
their models to the dopaminergic response in monkeys and
mice, respectively.

A more recent study showed that people use belief states
when learning under state uncertainty, but their learning
is modulated by categorical perceptual commitments
(Bruckner et al., 2020). As in our experiment, participants
had to learn state-response mappings via reward feedback
under perceptual uncertainty. However, unlike our state
uncertainty task, they asked participants to first report the
state of a noisy (Gabor) patch (perceptual decision), and
only then to choose the most rewarding response (also, the
degree of state uncertainty varied between trials in their task,
though it was, on average, substantially lower than in our
task). Bruckner et al. (2020) tested different Q-learning and
normative Bayes-optimal learning models, including hybrid
versions of the Q-learning and Bayes models that combine
predictions from both belief state and state committing
models. They found that these hybrid versions accounted for
participants’ choices better than state-belief-based models
or models that make categorical perceptual choices (as
the WTA-RL model does), thus providing support that
perceptual commitment biases play a role in reward-based
learning beyond belief-state tracking. Similar biases were
also reported in several studies of human decision making,
which show that people tend to commit to one perceptual
interpretation and ignore the other potential interpretations
(Fleming et al., 2013; Maniscalco et al., 2016; Stocker &

Simoncelli, 2007). This could explain why the WTA-RL
fitted participants’ choices better than the Bayesian RL
model, which assumes that people retrospectively update
their state belief after observing reward signals.

It is also possible that the effectiveness of different
learning modes will depend on the level of state uncertainty,
with higher levels requiring belief-state-based style of
learning to avoid perceptual noise corrupting, or at least
slowing down, learning (Bruckner et al., 2020). This is
partially supported by our findings in the first experiment
(see S.7), where the simple and Bayesian RL models were
almost indiscernible with a greater degree of uncertainty
(ρ = 0.65 instead of 0.7). It is also possible that the
training that participants went through in the calibration
stage primed participants to adopt a strategy where they
commit to a state before making the Q-value updates and
choosing an action.

Relationship with Sampling-Based Learning

Even though RL has been shown to be a viable proxy
for human reward-based learning under expected reward
uncertainty (e.g. Paulus et al., 2004; Tanaka et al., 2004),
a recent body of work has found support for learning by
sampling mechanism (Bornstein et al., 2017; Bornstein &
Norman, 2017; Hochman & Erev, 2013; Hotaling et al.,
2022; Plonsky et al., 2015). The finding that the RL
models fit the data better than the sampling model in
the reward uncertainty condition is thus quite surprising,
especially given that the sampling model also has the most
flexible mechanism of choices among the three models
considered in this study. In fact, the sampling model can
easily generate different patterns of learning under expected
and unexpected uncertainty by increasing or decreasing
the weight of the overall average payoff relative to the
payoff over small samples. For example, increasing this
weight would make the adaptation to the switch slower,
whereas relying more on recent samples should speed up
the adaptation to the switch. So how can we reconcile our
findings, which support RL, with the emerging literature
that supports sampling-based learning?

First, the two models fit the data in the reward uncertainty
condition very closely, especially at the aggregate level
(close match between the overall learning curves and even
slightly better median BIC score for the sampling model).
As Plonsky et al. (2015, p. 640) argued, the similarity
between these two classes of models “are more important
than the differences”. One important similarity is relying
on small samples of experiences to respond to similar
contexts encountered in the past. In fact, in RL, a state-
action value can be seen as a weighted average of the
rewards obtained for the same state-action pair with weights
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decaying exponentially with the learning rate α, or more
formally, Qt(s, a) = α

∑t
i=1(1 − α)iri−1. This means

that reward information received further in the past will
have a negligible impact on the present decision, especially
when the learning rate is large (Bornstein et al., 2017).
Other similarities include behaving near optimally when the
similarity between contexts can be measured by the learner
and underweighting (unpredictable) rare events.

Second, and as noted also by Plonsky et al. (2015), the
differences between the two learning mechanisms might
arise simply due to the specific experimental manipulations
or the modelling choices that one makes. For example,
relying on decaying averages of past rewards as in RL
models is likely to lead to poor results in comparison
with a learning-by-sampling approach when the relevant
past experiences are sparse or/and scarce (Bornstein et al.,
2017). Our experimental paradigm does not fall in this
category as reward is consistent and fairly stable (a fixed
uncertainty level with only one changepoint). Bornstein and
colleagues (Bornstein et al., 2017; Bornstein & Norman,
2017), however, used a reward function that changed
continuously according to a random walk (either in terms
of magnitude or probability of delivery). Another difference
related to experimental design is that all studies supporting
sampling-based learning over RL except that of Bornstein
and Norman (2017) did not have the contextual component
that we had in the present experiment (i.e. multiple states),
and simply employed “multi-armed bandit” paradigms with
stochastic rewards.

Other differences related to modelling choices could
also explain our seemingly divergent findings. For example,
Hotaling et al. (2022) compared four different versions of
a sampling model against a basic RL model that does not
have a mechanism for action exploration such as softmax or
ε-greedy (compare this to sampling models, which have an
inherent randomness allowing them to generate variability
in choices) across five experiments. They reported that none
of the four versions of their sampling model consistently
offered the best quantitative fit to participants’ data across
all their five experiments (each of the four model versions
was the best fitting model in at least one experiment). Their
study, however, demonstrates that their sampling framework
captures a wide range of behavioural patterns observed in
their experimental paradigms such as people making riskier
choices when rare rewards are highlighted and choices being
affected by outcome order. Hochman and Erev (2013) found
that a sampling-based model accounted for human choices
in a two-armed bandit task better than an RL model, using
a model comparison procedure focused on the predictive
capacity of the models (they generated choice predictions
from the sampling and RL models then compared the
predicted choices from each model to participants’ actual
choices using mean squared errors).

Besides, the sampling frameworks compared to RL in the
literature tend to be simple with one or two free parameters.
We chose the BISAW model because, as we mentioned
earlier, it has a very flexible mechanism of choices that
seems suitable for our experimental paradigm, albeit with
the cost of perhaps being overparametrised relative to
the two other RL models. We, thus, do not rule out the
possibility that other types of sampling models might fit
the data presented in this study better. It is also possible
that we are in a situation where the data are sufficiently
straightforward for the simpler RL model to mimic human
learning patterns. Although the sampling model may be able
to capture these patterns just as well (or almost just as well),
it may be penalised for being able to account for a greater
variety of patterns that were never observed (but that may be
observed in other experiments; e.g. Hotaling et al., 2022).
That said, our model comparison findings, especially in the
state uncertainty condition, and in particular the generalised
additive modelling analysis that tested the ability of the
models to capture the experimental patterns observed in our
second experiment, provide strong support for the RLmodel
in comparison with the sampling framework that we used.

Limitations and Future Directions

In our work, we considered only model-free RL models.
Model-based RL (Daw et al., 2005; 2011; Doll et al., 2012),
which assumes that the agent learns an internal model (or
representation) of the task structure, is another framework
that could be used to shed further light on the mechanisms
involved in learning under uncertainty. One of the most
heavily studied tasks for probing for model-based control
is the “two-step” task, proposed by Daw et al. (2011). In
this task, a participant starts each trial by selecting between
two choices, each of which then leads probabilistically to
one of two states (each choice has a 0.7 probability of
transitioning to the “common” state and a 0.3 probability
of transitioning to the “rare” state). The participant then
has to make a second-stage choice between two options
depending on the current state, and is rewarded with a
particular probability. The original version of the task also
employed dynamic rewards that changed according to a
Gaussian random walk. Daw and colleagues showed that
human participants engaged in both model-free and model-
based RL while solving the “two-step” task, and identified
neural correlates of model-free and model-based valuations.

An interesting hypothesis to test in future investigations
is whether participants in our state uncertainty task engage
in a two-stage decision making as in the “two-step” task:
on each trial, participants would first decide whether the
stimulus is light or dark (identification stage), then they
would transition to a hidden state that either matches their
identified state (with probability ρ = 0.7 as in Experiment
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2) or not (with probability 0.3). The simple RL model also
assumes an identification stage but lacks the ability to track
the second-stage transitions. Incorporating a model-based
approach that learns such a graph-like structure could be key
to allowing faster and more robust adaptation to changes in
the reward distribution (Daw et al., 2011).

Another open question from this study is why some
participants performed at a higher level than the target
level of state uncertainty (ρ = 0.65 in Experiment 1 and
ρ = 0.7 in Experiment 2), despite the several measures we
introduced in Experiment 2 to prevent state disambiguation
learning. One compelling idea is that people rely on a
complex learning mechanism that combines reward-based
learning with state disambiguation learning. That is, there
is a process of learning to identify the states, which goes
hand in hand with reward-based learning, where reward
feedback is used to improve state disambiguation. Under
state uncertainty, having a deterministic distribution of
reward provides valuable feedback to participants to resolve
the state uncertainty. This idea forms the basis of the
Bayesian model—rewards can be used to (a posteriori)
re-evaluate state identification—but the model does not
have a mechanism for using this reevaluation to improve
state identification. Lak et al.’s (2017) study supports
this interpretation (i.e. reward feedback can be used to
concurrently learn how to take actions and how to better
identify the uncertain states) since they used a belief-
state-based RL model to estimate perceptual confidence
in monkeys, and found this estimate to correlate with
monkeys’ dopamine response. Given that dopamine is
strongly linked to reward-based learning, this might suggest
that there are two dopamine-dependent learning processes
taking place simultaneously: one for learning action-state
values, and one for learning to disambiguate uncertain
states. One way to test whether participants’ perceptual
categorisation improved during the learning task is to ask
participants to explicitly report the state they perceive
before choosing a motor response, as done in Bruckner
et al. (2020), although this additional requirement may
artefactually influence the primary learning task.

One related question is why exploration rates were higher
in the reward uncertainty task (vs state uncertainty), which
ultimately led to people receiving less reward because they
were not maximising. One suggestion for the phenomenon
of probability matching in choice tasks is that people
treat tasks such as ours as problem solving tasks and
effortfully search for patterns, even in random sequences
(e.g. Gaissmaier and Schooler, 2008; Wolford et al., 2004).
It has been found that deploying a secondary task can move
participants away from probability matching to maximising
(Wolford et al., 2004). The greater exploration under reward
uncertainty in our study might reflect that this task was
less demanding and thus allowed more cognitive resources

for the use of an effortful problem solving approach that
resulted in probability matching. Such questions could
be addressed by increasing the challenge of the task by
including simultaneously both state and reward uncertainty.

Conclusion

To conclude, this study goes beyond previous studies on
reward-based learning under uncertainty by contrasting
state uncertainty with reward uncertainty and combining
them with unexpected uncertainty due to a non-signalled
reversal of stimulus-response contingencies. We have
shown that human participants are capable of successfully
dealing with all these different types of uncertainties
and that they perform better under state uncertainty in
comparison with reward uncertainty, due to a higher
exploration under reward uncertainty and their ability
to improve their perceptual categorisation under state
uncertainty by using the reward feedback. Our findings also
support a common reinforcement learning mechanism in
both uncertainty conditions, whereby learners commit to a
state and only update state-action value of the identified
state.

Supplementary Information The article has accompanying supple-
mentary material.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s42113-022-00165-y.

Acknowledgements We would like to thank Charles Hanich for his
help with the data collection of the second experiment, Andreas
Jarvstad for his help with Psychtoolbox while programming the first
experiment and the members of the “Decision making in an unstable
world” project for their insightful discussions and for their help with
piloting the first experiment. We also thank Scott Brown and three
anonymous reviewers for their insightful comments on this work
during the review process.

Author Contribution AE, SF, DL, GM and CL conceptualised the
study aims and design. DL, CL and SF acquired the funding. CL
and SF obtained ethical approval. AE programmed the tasks, recruited
participants and collected data. AE curated and visualised the data,
implemented the computational models and conducted all statistical
analyses. SF, DL, GM and CL provided insights in how to pose
questions and analyse the data. AE wrote the original draft of the
manuscript. All authors reviewed the final manuscript.

Funding This research was carried out as part of the project “Decision
making in an unstable world”, supported by the Engineering and
Physical Sciences Research Council (EPSRC; EP/1032622/1). CL
received additional support from a Leverhulme Research Fellowship
(RF-2021-168). SF received additional support from the Australian
Research Council (FT1301000149 and DP160101752).

Availability of Data and Materials The datasets generated and analysed
during the current study are available from the Open Science Framework
at https://osf.io/43jx8/?view only=8ccae6aaabd74faeb61be1a829891
74f .

https://doi.org/10.1007/s42113-022-00165-y
https://doi.org/10.1007/s42113-022-00165-y
https://osf.io/43jx8/?view_only=8ccae6aaabd74faeb61be1a82989174f
https://osf.io/43jx8/?view_only=8ccae6aaabd74faeb61be1a82989174f


Computational Brain & Behavior

Code Availability The code that was used to produce the findings
of this study is openly available from the Open Science Frame-
work at https://osf.io/43jx8/?view only=8ccae6aaabd74faeb61be1a82
989174f.

Declarations

Ethics Approval The first experiment was approved by the Faculty
of Science Human Research Ethics Committee at the University of
Bristol. The second experiment was approved by the Human Research
Ethics Committee at the University of Western Australia.

Consent to Participate and Consent for Publication Informed consent
for participation and publication was obtained from all individual
participants included in the two experiments.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Babayan, B. M., Uchida, N., & Gershman, S.J. (2018). Belief state
representation in the dopamine system. Nature Communications,
9, 1–10.

Bach, D. R., & Dolan, R. J. (2012). Knowing how much you don’t
know: a neural organization of uncertainty estimates. Nature
Reviews Neuroscience, 13, 572–586.

Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M.F.
(2007). Learning the value of information in an uncertain world.
Nature Neuroscience, 10, 1214–1221.

Bland, A. R., & Schaefer, A. (2012). Different varieties of uncertainty
in human decision-making. Frontiers in Neuroscience, 6.

Bornstein, A. M., Khaw, M. W., Shohamy, D., & Daw, N.D. (2017).
Reminders of past choices bias decisions for reward in humans.
Nature Communications, 8, 15958.

Bornstein, A. M., & Norman, K. A. (2017). Reinstated episodic
context guides sampling-based decisions for reward. Nature
Neuroscience, 20, 997.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10,
433–436.

Brown, S. D., & Steyvers, M. (2009). Detecting and predicting
changes. Cognitive Psychology, 58, 49–67.

Bruckner, R., Heekeren, H. R., & Nassar, M.R (2022). Understanding
learning through uncertainty and bias.

Bruckner, R., Heekeren, H. R., & Ostwald, D (2020). Belief states and
categorical-choice biases determine reward-based learning under
perceptual uncertainty. bioRxiv.

Chen, W., Liu, S.-Y., Chen, C.-H., & Lee, Y.-S. (2011). Bounded
memory, inertia, sampling and weighting model for market entry
games. Games, 2, 187–199.

Daw, N. D. (2011). Trial-by-trial data analysis using computational
models. Decision making, affect, and learning: Attention and
performance XXIII 23, 3–38.

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R.J.
(2011). Model-based influences on humans’ choices and striatal
prediction errors. Neuron, 69, 1204–1215.

Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based
competition between prefrontal and dorsolateral striatal systems
for behavioral control. Nature Neuroscience, 8, 1704–1711.

Doll, B. B., Simon, D. A., & Daw, N.D. (2012). The ubiquity of model-
based reinforcement learning. Current Opinion in Neurobiology,
22, 1075–1081.

Don, H. J., Otto, A. R., Cornwall, A. C., Davis, T., & Worthy, D.A.
(2019). Learning reward frequency over reward probability: A tale
of two learning rules. Cognition, 193, 104042.

Fleming, S. M., Maloney, L. T., & Daw, N.D. (2013). The irrationality
of categorical perception. Journal of Neuroscience, 33, 19060–
19070.

Gaissmaier, W., & Schooler, L. J. (2008). The smart potential behind
probability matching. Cognition, 109, 416–422.

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models
Vol. 43. Boca Raton: CRC Press.

Hochman, G., & Erev, I. (2013). The partial-reinforcement extinction
effect and the contingent-sampling hypothesis. Psychonomic
Bulletin & Review, 20, 1336–1342.

Hotaling, J. M., Donkin, C., Jarvstad, A., & Newell, B.R. (2022).
MEM-EX: An exemplar memory model of decisions from
experience. Cognitive Psychology, 138, 101517.

Jaakkola, T., Singh, S. P., & Jordan, M.I. (1995). Reinforcement
learning algorithm for partially observable Markov decision
problems. Advances in neural information processing systems,
(pp. 345–352).

Jeffreys, H. (1961). The theory of probability. (3rd ed.). OUP Oxford.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the

American Statistical Association, 90, 773–795.
Kingdom, F., & Prins, N. (2009). Psychophysics: A practical

introduction. New York: Academic Press.
Lak, A., Nomoto, K., Keramati, M., Sakagami, M., & Kepecs,

A. (2017). Midbrain dopamine neurons signal belief in choice
accuracy during a perceptual decision. Current Biology, 27, 821–
832.

Lak, A., Okun, M., Moss, M. M., Gurnani, H., Farrell, K., Wells,
M. J., Reddy, C. B., Kepecs, A., Harris, K. D., & Carandini,
M. (2020). Dopaminergic and prefrontal basis of learning
from sensory confidence and reward value. Neuron, 105, 700-
-711.

Larsen, T., Leslie, D., Collins, E., & Bogacz, R. (2010). Posterior
weighted reinforcement learning with state uncertainty. Neural
Computation, 22, 1149–1179.

Ma, W. J., & Jazayeri, M. (2014). Neural coding of uncertainty and
probability. Annual Review of Neuroscience, 37, 205–220.

Maniscalco, B., Peters, M. A., & Lau, H. (2016). Heuristic
use of perceptual evidence leads to dissociation between
performance and metacognitive sensitivity. Attention, Perception,
& Psychophysics, 78, 923–937.

Mathys, C., Daunizeau, J., Friston, K. J., & Stephan, K.E. (2011).
A Bayesian foundation for individual learning under uncertainty.
Frontiers in Human Neuroscience, 5, 39.

Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen,
K. H., Friston, K. J., & Stephan, K.E. (2014). Uncertainty in
perception and the Hierarchical Gaussian Filter. Frontiers in
Human Neuroscience, 8, 825.

Mella, V. S. A., Possell, M., Troxell-Smith, S. M., & McArthur,
C. (2018). Visit, consume and quit: Patch quality affects the
three stages of foraging. Journal of Animal Ecology, 87, 1615–
1626.

https://osf.io/43jx8/?view_only=8ccae6aaabd74faeb61be1a82989174f
https://osf.io/43jx8/?view_only=8ccae6aaabd74faeb61be1a82989174f
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Computational Brain & Behavior

Moore, J. W., Choi, J.-S., & Brunzell, D.H. (1998). Predictive
timing under temporal uncertainty: The time derivative model
of the conditioned response. In Timing of behavior: Neural,
psychological, and computational perspectives (pp. 3–34). The
MIT Press.

Nassar, M. R., Wilson, R. C., Heasly, B., & Gold, J.I. (2010). An
approximately Bayesian delta-rule model explains the dynamics
of belief updating in a changing environment. The Journal of
Neuroscience, 30, 12366–12378.

Paulus, M. P., Feinstein, J. S., Tapert, S. F., & Liu, T.T. (2004).
Trend detection via temporal difference model predicts inferior
prefrontal cortex activation during acquisition of advantageous
action selection. NeuroImage, 21, 733–743.

Payzan-LeNestour, E., & Bossaerts, P. (2011). Risk, unexpected
uncertainty, and estimation uncertainty: Bayesian learning in
unstable settings. PLoS Computational Biology, 7, e1001048.

Payzan-LeNestour, E., Dunne, S., Bossaerts, P., & O’Doherty, J.P.
(2013). The neural representation of unexpected uncertainty
during value-based decision making. Neuron, 79, 191–201.

Pelli, D. G. (1997). The videotoolbox software for visual psy-
chophysics: Transforming numbers into movies. Spatial Vision,
10, 437–442.

Piray, P., & Daw, N. D. (2020). A simple model for learning in volatile
environments. PLoS Computational Biology, 16, e1007963.

Piray, P., & Daw, N. D. (2021). A model for learning based on the joint
estimation of stochasticity and volatility. Nature Communications,
12, 1–16.

Platt, M. L., & Huettel, S. A. (2008). Risky business: The
neuroeconomics of decision making under uncertainty. Nature
Neuroscience, 11, 398–403.

Plonsky, O., Teodorescu, K., & Erev, I. (2015). Reliance on small
samples, the wavy recency effect, and similarity-based learning.
Psychological Review, 122, 621.

Prins, N., & Kingdom, F. A. (2018). Applying the model-comparison
approach to test specific research hypotheses in psychophysical
research using the Palamedes toolbox. Frontiers in Psychology, 9.

R Core Team (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing Vienna,
Austria.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning
using connectionist systems. Technical Report CUED/F-
INFENG/TR166 Department of Engineering, University of
Cambridge.

Soltani, A., & Izquierdo, A. (2019). Adaptive learning under expected
and unexpected uncertainty. Nature Reviews Neuroscience, 20,
635–644.

Starkweather, C. K., Babayan, B. M., Uchida, N., & Gershman, S.J.
(2017). Dopamine reward prediction errors reflect hidden-state
inference across time. Nature Neuroscience, 20, 581–589.

Stewart, N., Chater, N., & Brown, G.D. (2006). Decision by sampling.
Cognitive Psychology, 53, 1–26.

Stocker, A. A., & Simoncelli, E. (2007). A Bayesian model
of conditioned perception. Advances in Neural Information
Processing Systems, 20, 1409–1416.

Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y.,
& Yamawaki, S. (2004). Prediction of immediate and future
rewards differentially recruits cortico-basal ganglia loops. Nature
Neuroscience, 7, 887–893.

van Rij, J., Wieling, M., Baayen, R. H., & van Rijn, H. (2020). itsadug:
Interpreting time series and autocorrelated data using gamms. R
package version 2.4.

Vulkan, N. (2000). An economist’s perspective on probability
matching. Journal of Economic Surveys, 14, 101–118.

Wilson, R. C., & Niv, Y. (2011). Inferring relevance in a changing
world. Frontiers in Human Neuroscience, 5, 189.

Wolford, G., Newman, S. E., Miller, M. B., & Wig, G.S. (2004).
Searching for patterns in random sequences. Canadian Journal
of Experimental Psychology/Revue Canadienne de Psychologie
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