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ABSTRACT: Modeling and prediction of polar organic chemical integrative
sampler (POCIS) sampling rates (Rs) for 73 compounds using artificial
neural networks (ANNs) is presented for the first time. Two models were
constructed: the first was developed ab initio using a genetic algorithm
(GSD-model) to shortlist 24 descriptors covering constitutional, topological,
geometrical and physicochemical properties and the second model was
adapted for Rs prediction from a previous chromatographic retention model
(RTD-model). Mechanistic evaluation of descriptors showed that models did
not require comprehensive a priori information to predict Rs. Average
predicted errors for the verification and blind test sets were 0.03 ± 0.02 L d−1

(RTD-model) and 0.03 ± 0.03 L d−1 (GSD-model) relative to
experimentally determined Rs. Prediction variability in replicated models
was the same or less than for measured Rs. Networks were externally
validated using a measured Rs data set of six benzodiazepines. The RTD-model performed best in comparison to the GSD-model
for these compounds (average absolute errors of 0.0145 ± 0.008 L d−1 and 0.0437 ± 0.02 L d−1, respectively). Improvements to
generalizability of modeling approaches will be reliant on the need for standardized guidelines for Rs measurement. The use of in
silico tools for Rs determination represents a more economical approach than laboratory calibrations.

■ INTRODUCTION

Contamination of the aquatic environment with herbicides,
pesticides, pharmaceuticals, and personal care products
(PPCPs), among other contaminants, has been the focus of
environmental monitoring campaigns over the last two decades.
Reported concentrations and associated adverse effects of these
contaminants has led to the introduction of legislative
procedures to monitor and assess risk associated with
pollutants, such as the EU water framework directive and the
EU registration, evaluation, authorization, and restriction of
chemicals (REACH).1,2

High frequency sampling campaigns often involve the use of
grab or composite sampling, but are practically difficult and
costly to manage for monitoring longer-term fluctuations in
contaminant concentrations in the aquatic environment. These
methods are also often labor intensive with respect to sampling
and can lead to considerable cost during instrumental analysis.
More recently, however, the development and use of passive
sampling devices (PSDs) is increasing due to their capability for
a time-integrated approach to averaging contaminant concen-

trations in surface waters as well as influent and effluent
wastewater over extended periods.3 PSDs minimize sample
preparation and allow in situ enrichment of analytes which may
potentially reduce limits of quantification in comparison to
those achieved by point sampling.4 Passive sampling devices in
some fields are well-established, such as use of semipermeable
membrane devices (SPMD) for organochlorines5 and other
similarly hydrophobic compounds.6−8 However, one type of
PSD which is emerging currently is the polar organic chemical
integrative sampler (POCIS). These samplers have been used
to determine the occurrence of a range of chemically diverse,
and comparatively polar to moderately nonpolar com-
pounds.9−13 However, for quantitative studies, POCIS suffer
from some limitations, mainly relating to the reliability of
derived estimations of the sampling rates (Rs) from
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experimental measurements, as well the lack of a well-
developed performance reference compound (PRC) exposure
correction method.14−16 One further hindrance is that reported
sampling rate data are few and methods for their estimation
vary which leads to limited transferability across other locations
or studies.17

Given the time-intensive nature of determining Rs exper-
imentally, it is possible that computational modeling
approaches could offer a solution that would enable prediction
of sampling rate data for compounds without the need for
experimental determination. A previous investigation by
Stephens et al.18 evaluated the use of an empirical method
(Sherwoods correlation) to determine PSD kinetic parameters
for a limited number of compounds showing maximum errors
of +40 and −20% for the estimation of the aqueous boundary
layer mass transfer coefficient (kf). In contrast to empirical
methods for estimating specific parameters, quantitative
structure−property relationship (QSPR) models are becoming
more frequently used in ecotoxicology where a set of x variables
are used to predict a response, y.19 The variables are often
molecular descriptors that cover constitutional, topological,
geometrical, and physicochemical properties which can then be
used to model a desired output. Models can vary from simple
linear regression approaches to complex nonlinear functions
where such models are often designed by machine learning
methods. Two well-known machine learning methods are
support vector machines (SVMs) and artificial neural networks
(ANNs) and have been used successfully in related areas such
as the prediction of bioconcentration factors (BCFs), octanol−
water partition coefficients (logP) and biosolid/water partition
coefficients (Kd), as well as for suspect compound screening via
prediction of chromatographic retention time.20−27 The use of
SVMs for environmental applications is still in its infancy and
substantial programming capability is required for routine
application. On the other hand, ANNs are well-known and
more user-friendly software has been available for many years.
ANNs comprise a layered structure (normally three), each with
a different purpose. The input layer contains the molecular
descriptor data for each compound for training, verification and
blind testing and the output layer is the response. The hidden
layer sits in between and contains several nodes, and often
multiple sublayers of such nodes, where linear or nonlinear
functions are used to relate the descriptors to the output layer.
The residual errors are monitored and reduced by using
iterative algorithms which adjust weights associated with the
nodes in the hidden layer. Thus, such modeling approaches
could greatly increase the applicability of POCIS in environ-
mental monitoring studies through bypassing the need for
laboratory and in situ calibrations.
The aim of this work was to investigate the potential of

ANNs to model and predict Rs for POCIS devices for a range of
pharmaceuticals, endocrine disrupting chemicals, pesticides,
herbicides and drugs of abuse. The objectives were to identify
suitable analyte molecular descriptors to build, train and test a
range of suitable model types and architectures and then finally
to externally validate the approach for predicting Rs for several
compounds which were, for comparison, determined in parallel
by laboratory calibration. To the authors’ knowledge, this
represents the first study to draw together, harmonize and
predict the published Rs data for ionizable pharmaceutical
compounds on POCIS. Ultimately, where such tools can
provide adequate predictions using new data generated in the

future, this approach could reduce the analytical burden of
laboratory estimations of Rs.

■ MATERIALS AND METHODS
Selection of Data Sets, Molecular Descriptors and

ANN Models. A working data set derived from the literature
(2007-present) was used to build, train and optimize models
for Rs prediction on POCIS. A total of n = 73 compound Rs
data were derived from Fauvelle et al.28 and Morin et al.,24

which were generated using similar experimental conditions to
give the largest combined data set of all studies. Compounds
included herbicides, pesticides, endocrine disrupting com-
pounds and pharmaceuticals. Where duplicate compound Rs
data existed, both values were removed entirely from the data
set (six compounds). Generally, in these cases Rs differed and it
was uncertain which value was correct or whether an average
was appropriate for modeling. Simplified molecular input line
entry system (SMILES) strings were generated from
Chemspider (Royal Society of Chemistry, UK). Using these,
n = 185 molecular descriptors were generated from Parameter
Client freeware (Virtual Computational Chemistry Laboratory,
Munich, Germany) and an additional n = 16 descriptors were
from ACD laboratories Percepta software (Advanced Chem-
istry Development Laboratories, ON, Canada).
Two models were generated using two separate sets of

descriptors covering constitutional, topological, geometrical and
physicochemical properties that were investigated for their
comparative prediction performance. The first subset of 24
descriptors (see Supporting Information (SI), Table S1) was
generated using a genetic feature selection algorithm to
produce the genetically selected descriptor model (GSD-
model). Genetic feature selection algorithms follow evolu-
tionary concepts to convert input descriptors into binary
strings, in this case to prioritise descriptors for Rs prediction.
Using a process similar to natural selection, prioritised strings
are crossed to form a new population of strings. The
generational “breeding” of strings produced an optimized
selection of input variables for application to prediction. The
parameters for the GA were as follows; population = 100,
generation = 100, mutation rate = 0.1 and crossover rate = 1. In
an alternative approach, a much simpler descriptor data set
previously used to model elution from reversed-phase liquid
chromatography (RPLC) stationary phases was investigated to
assess any improvement (see SI Table S2).23,25 This model is
referred to as the retention time descriptor model (RTD-
model). POCIS devices contain a divinylbenzene and N-
vinylpyrrolidone copolymer, which enabled dual polar and
nonpolar interactions for retention. As retention on reversed-
phase chromatographic columns is governed predominantly by
hydrophobic interactions too, it is possible that these same
descriptors will also be important in passive sampling. No
retention data was available for the studies by Fauvelle et al.28

and Morin et al.24,29 However, correlation between Rs and 21
corresponding retention times (tR) gathered on a C18 stationary
phase in a study by Bade et al.30 showed a weak relationship (R
= 0.472).
For both descriptor subsets, several network types were

tested for predictive ability using Trajan 6.0 neural network
software (Trajan Software Ltd., Lincolnshire, UK) and these
included radial basis function (RBF), generalized regression
neural networks (GRNNs) and multilayer perceptrons (MLPs).
Following training and optimization using both data sets, the
GSD- and RTD-models were produced. The GSD-model
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architecture was a four-layer MLP with 24 descriptors in the
input layer (independent variables); two hidden layers
containing 17 and 14 nodes and the dependent variable output
layer (Rs). Training involved two types of algorithms, the first
was back-propagation (BP) and the second was conjugate
gradient descent (CGD). The data set was split into 45:14:14
cases for the training, verification and test subsets (optimized).
The RTD-model architecture was also a four-layer MLP using
both BP and CGD. The first and fourth layers were the inputs
(using the set of descriptors previously used for chromato-
graphic retention modeling) and outputs (Rs), respectively, and
the second and third layers (hidden layers) contained 14 and 9
nodes, respectively. The division of cases included 51
compounds for training, 11 compounds for verification and
11 compounds for blind testing (optimized).27 All cases were
randomly selected to avoid bias. The verification data set was
used to characterize network predictive performance during
training and also to allow regularisation to prevent overfitting.
The test set was then used to validate the model to ensure that
the model generalized well to new cases. The optimized models
were selected based on the lowest errors and consistency across
the training, verification and test subsets.
Laboratory Calibration of Sampling Rates to Test

Model Generalizability. Sampling rates (L d−1) were
determined using a static renewal method over a 14 day
exposure period and in a similar manner to data in the literature
which were used for modeling here.28 Briefly, 3 L of high-
density polyethylene vessels were filled with ultrapure water,
the pH adjusted to 7.6 with 20 mg L−1 NaHCO3 and spiked
with the mixture of respective compounds to expose the
POCIS. Each vessel contained three POCIS devices for
exposure to an aqueous-based standard mixture of 200 ng
L−1 of each target compound (solvent <0.001%). This standard
solution was prepared and replaced daily in 3 L volumetric
flasks to maintain the nominal concentration. Following this, all
three POCIS were removed from each vessel at day 4, 7, and
14, rinsed with ultrapure water and frozen at −20 °C.
Extraction of POCIS sorbents was performed using a wash
phase of 5 mL of ultrapure water and then elution using 5 mL
of MeOH. Eluate was dried under nitrogen at 35 °C for 40 min.
The dried residue was then reconstituted in 0.5 mL of starting
mobile phase. The analysis of the benzodiazepines was

performed on an Acquity UPLC system coupled to a Xevo
G2 S QTOF mass analyzer (Milford, MA) with an online Oasis
HLB Direct Connect HP loading column. Analyte separation
was performed on an Acquity UPLC BEH C18 column (1.7 μm,
50 × 2.1 mm) from Waters (Milford, MA) at 50 °C. Gradient
elution (0.6 mL min−1) for analyte separation was with 0.1%
(v/v) formic acid in water (phase A) and 0.1% formic acid in
methanol (phase B). Full method details for the laboratory
calibration experiments and analysis are given in the SI.

■ RESULTS AND DISCUSSION

Rs Prediction Using a GSD-Model. Following genetic
feature selection, a 24−17−14−1 MLP yielded the best
performance using 24 input descriptors with R2 = 0.8800,
0.8694, and 0.8050 for training, verification and blind test sets
respectively (sum of squared residual errors were 0.084, 0.062,
and 0.116, respectively). Therefore, this model initially seemed
quite promising for application to prediction of Rs for new
compounds (Figure 1a). Many shortlisted descriptors were
derived from topological indices, but some others were
expected to have more importance for this application, such
as those that describe molecular hydrophobicity. These include
the octanol−water partition coefficient (logP) and the
distribution ratio between octanol and water (logDow). The
latter takes into account the ionised proportion of a compound
at a particular pH and is dependent on the logP and the pKa of
all ionizable functional groups in a molecule. An investigation
by Booij et al.,31 demonstrated that uptake rates in SPMDs
correlated well with logP where Rs ≈ P−0.044. Correlations
between logP and Rs has also been observed for POCIS
devices.32−34 Assessment of the collinearity with Rs (SI Table
S7) showed rather unsurprisingly for so many ionizable
compounds that logDow had, by far, the highest correlation
(R = 0.59), but was insufficient by itself to describe sorption to
POCIS sorbents. To the authors knowledge, no previous
investigations have used logDow to model Rs, although it has
been weakly correlated with Rs.

35 Furthermore, interinput
descriptor collinearity also existed and especially for constitu-
tional descriptors such as the number of non-H bonds (nBO)
and the sum of conventional bond orders (SCBO); as well as
topological descriptors such as log Narumi simple topological

Figure 1. Measured Rs against predicted Rs for (a) the GSD-model and (b) the RTD-model. Crosses, circles and triangles are the training,
verification and test subsets, respectively. Open circles and triangles indicate predicted inaccuracies of >30% of the measured value.
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index (Snar), second Zagreb index (ZM2). Pearson’s
coefficients were ≥0.8 for these descriptors with at least eight
other descriptors. Therefore, though genetic algorithms short-
listed useful descriptors for potential Rs modeling here, back-
interpretation of model sensitivity to descriptor data for
derivation of mechanistic understanding of physicochemical
POCIS uptake mechanisms would be limited. However, as a
tool to predict Rs, the training set overall displayed good
accuracy within 22% of the measured value on average. In
comparison, the verification and test subsets were predicted on
average within 19% of their measured values showing
consistency across all subsets (SI, Figure S1). For particular
blind test cases, however, some notably large inaccuracies were
observed such as for sotalol (80% inaccuracy) where the lower
hydrophobicity of this molecule may explain poorer correlation
with Rs.

31 Larger errors were also recorded for acetochlor
ethanesulfonic acid (40%), diclofenac (39%) and sulcotrione
(38%). The verification subset contained two largely inaccurate
predictions (2,4-dichlorophenoxyacetic acid at 59% and timolol
at 31%), but all remaining compounds were within 20% of
measured Rs. Larger inaccuracies may be related to poor
learning from selected training data. For example, mesotrione
had a 59% inaccuracy to the measured value in the training set
which may explain the poor prediction of another structurally
similar compound, sulcotrione, in the test set. Overall,
inaccuracy was most prevalent for sulfonate-containing
compounds where genetic selection did not sufficiently
prioritise descriptors for this portion of cases for reliable Rs
prediction. As the number of available cases expands, genetic

selection of descriptors may improve for such compounds in
the future. It is also unclear whether sulfonate bearing
molecules are subject to steric and/or repulsive forces arising
from the PES membrane. Furthermore, larger inaccuracies
(>30%) in the full data set generally corresponded to
compounds with Rs < 0.1 such as 2,4-dichlorophenoxyacetic
acid, sotalol, sulcotrione and nicosulfuron. However, when
predictive accuracy was plotted against Rs for all compounds,
no correlation was observed for other compounds with Rs < 0.1
(SI, Figures S2 and S3).

Rs Prediction Using a RTD-Model. The correlation of
predicted versus measured Rs for the RTD-model is shown in
Figure 1b. The error (sum squared) for the subsets were 0.092,
0.062, and 0.121 for the training, verification and test sets,
respectively. The model was, again, a four-layered MLP with a
16:14:9:1 architecture. Generally, acceptable correlations were
achieved for the training, verification and blind test sets (R2 =
0.8511, 0.9085, and 0.6425, respectively) though this model
performed slightly worse (training and test) than the GSD-
model. The training subset showed several larger errors which
corresponded to the compounds t-butylphenol (149%), 2,4-
dichlorphenol (41%), and simazine (41%). The compound
sulfamethoxazole showed an 81% overestimation of its
experimentally determined Rs. As discussed earlier, this large
inaccuracy was also reflected in the GSD-model which showed
an overestimation of 230% for sulfamethoxazole which also
bears a sulfonate group. Overall, however, the model showed
relatively good predictions of Rs (mean absolute error for
training set = 15%; and for both verification and test subsets =

Figure 2. RTD-model residual plot of predicted Rs values for the verification and test subset only, ordered in parentheses by their ascending
distribution ratio values between octanol and water (logDow). Circles and triangles represent the verification and test subset, respectively. The
measured Rs values are displayed in parentheses on the x-axis. 2,4-D (2,4-dichlorophenoxyacetic acid), ESA (ethanesulfonic acid), OA (oxanilic acid),
and IPPMU (isoproturon-monodemethyl).

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b01407
Environ. Sci. Technol. 2016, 50, 7973−7981

7976

http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b01407/suppl_file/es6b01407_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.6b01407/suppl_file/es6b01407_si_001.pdf
http://dx.doi.org/10.1021/acs.est.6b01407


22%). The average error ± standard deviation across the
verification and blind test subsets was 0.03 ± 0.02 L day−1

showing acceptable overall predictive accuracy for Rs. Atenolol,
the compound with the lowest Rs, yielded poor prediction
accuracy (predicted Rs = 0.067, measured Rs = 0.025) which
was initially thought to be due its higher polarity in comparison
to others selected for this study. However, no correlation was
observed between predictive accuracy and logDow (Figure 2).
Average predictive mean error of the verification and blind test
sets both reduced to ∼15% upon removal of the atenolol data-
point. Importantly, as very polar compounds are generally not
retained well by n-vinylpyrrolidone-co-divinylbenzene-based
polymer sorbents, inaccuracy in measured Rs may be
compound specific as a result, which in turn may contribute
to RTD-model prediction errors. This highlights the lack of
consistent measurements available for training of such models
for predictive purposes. Nonetheless, considering this perform-
ance alongside the potential for inaccuracy in Rs data from
different laboratory calibrations, predictions using these models
were considered reasonable.
Model Interpretation and Descriptor Contribution to

Rs Prediction. Given the level of multicollinearity observed for
GSD-model descriptors, a sensitivity analysis could only be
performed to identify the relative contribution of each
descriptor to predictions in the RTD-model. This was
represented as the error ratio, i.e. the ratio between the
model error using all descriptors and the model error when one
descriptor was removed. However, like in the GSD-model, the
use of sensitivity analysis to further mechanistic understanding
of sorption processes should be approached with caution if
some individual descriptors display multicollinearity (please
refer to SI Tables S1−S3 for full descriptor details and data).
The logDow, the Moriguchi octanol−water partition coefficient
(MlogP), the Ghose-Crippen octanol−water partition coef-
ficient (AlogP) and the number of Benzene rings (nBnz) were
the top four descriptors used by the RTD-model (Figure 3).
This is in agreement with Baüerlein et al., who showed that
hydrophobicity and pi-pi interactions (e.g., via benzene rings)
were important for adsorption to HLB sorbents in batch
experiments36 and which can also affect diffusion. Other
important descriptors were the number of triple bonds (nTB;

error ratio = 1.2165), number of five-membered rings (nR05;
error ratio = 1.2041) and number of nine-membered rings
(nR09; error ratio = 1.4544). The importance of the n-
membered ring descriptors could be attributed to molecular
size and flexibility thus affecting the diffusivity of molecules
through the water boundary layer (WBL), PES membrane
(pore = 0.1 μm) or pores of the HLB copolymer (80 Å).37−39 A
previous investigation showed that size descriptors were also
important for predicting soil sorption coefficients for
pesticides.39 We also previously showed these descriptors
were important for ANN-based predictions of pharmaceutical
sorption to soils and sludge.40 In addition to those mentioned
above, the number of carbons (nC), number of oxygens (nO)
and hydrophilic factor (Hy) also showed that they were
important to the RTD-model. Hy relates to the number of
hydrophilic groups in the molecule such as hydroxyls, thiols and
sulfonates. As polar surface area has been previously shown to
influence interactions with HLB sorbents, it is logical that
hydrophilicity/polarity related descriptors would have some
importance.36 Several authors have suggested that diffusion is
the main factor governing uptake rates in PSDs.41 We have
attributed the importance of the descriptors mainly to sorbent
interactions so far, but it is also possible that these same
descriptors could relate to diffusion processes due to the
number of molecular properties that will affect it including
dipole moments, polarizability, molecular size (including
hydration radius) and electrostatic charge.42 The genetic
feature selection algorithm did not select some recognized
diffusion-related descriptors, such as molecular weight as a
simple example. However, it did select other descriptors that
showed interdependencies on factors affecting diffusion such as
number of atoms, number of rotatable bonds, and electro-
topological states. Rs has been attributed mainly in the past to
diffusion processes in partition samplers such as silicone
rubbers.41 The portion of Rs governed by diffusion in
adsorption samplers using HLB-type sorbents in POCIS
remains unclear especially whether sorption of analytes via
hydrogen bonding, dipole−dipole, dipole−induced dipole, van
der Waals and pi-pi interactions plays a more significant role. It
is also possible that the models presented here for Rs prediction
could be developed and improved further with additional or
alternative descriptors, such as diffusion coefficients. However,
adding such descriptors may introduce a greater uncertainty
into the model as estimates can be based on several different
approaches.43−45 In addition, diffusion coefficients will be
affected by numerous environmental factors and hydrodynamic
conditions that would be difficult to replicate or control in situ.
Inclusion of larger numbers of descriptors to cover all the
processes involved will likely inhibit model generalizability.
Indeed, ANNs learn more holistically, making predictions
possible without the need for such comprehensive a priori
information. However, such a holistic approach obviously limits
deeper understanding of the precise contribution of individual
mechanisms involved in POCIS.
By comparison, the GSD-model featured many more

topological and geometrical descriptors than in the RTD-
model. These descriptors showed multicollinearity and there-
fore the sensitivity analysis could not be performed reliably
(Table S7). Simply adding noncollinear descriptors to the
RTD-model is also disadvantageous at this point. As the
number of descriptors increases, overfitting of data is more
likely to occur and would require significantly more case
examples for valid application.46 Model complexity will also

Figure 3. Sensitivity analysis of the optimized RTD-model. Acronyms:
nDB/nTB = number of double/triple bonds; nC/nO = number of
carbon/oxygen atoms; nR04-nR09= number of 4−9 membered rings;
Ui = unsaturation index; Hy = hydrophilic factor; nBnz = number of
benzene-like rings; MlogP/AlogP = Moriguchi/Ghose-Crippen
logarithm of octanol−water partition coefficient; logD7.6 = logarithm
of distribution ratio between octanol and water at pH 7.6.
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limit the ability of the network to generalize when predicting
unknown compounds therefore a smaller number of descriptors
(and nodes in the hidden layer(s)) is ultimately more
beneficial.
Reproducibility of Predicted and Experimentally

Determined Rs. Model performance and generalizability is
limited by the quality of input data. Measured Rs can differ
considerably even within calibration studies performed in the
same laboratory. The largest variance in measured Rs used
corresponded to diclofop which had a 60% relative standard
deviation (RSD), n = 15.28 Many of the reported Rs values vary
by more than 2-fold depending on the methodology used for
their estimation.29 Although pH and temperature during
collection of both sets of data used herein were similar, the
type of calibration experiment applied was slightly different
(flow-through and static renewal) therefore the resulting
differences in the Rs estimates from each investigation could
have affected the performance of a model. For the six
compounds common to both calibration methods that were
removed from the original data set used for model
optimization, the absolute difference in Rs was 0.088 ± 0.072
L day−1 between measurements.
The average % RSD of measured Rs data used herein was

11% (mean deviation was ±0.017 L day−1) (Figure 4). In 45%
of all cases, the % RSDs of predicted Rs across triplicate
network trained ab initio were better than the % RSDs of the
measured data. For several specific cases, such as DET, DIA,
diclofop and ioxynil, the experimental variation was relatively

large when compared to the variation in predicted Rs. Such
deviation in experimentally derived sampling rates can be
attributed to several similar factors to those already discussed
above (e.g., temperature, pH, flow rate etc.). Figure 4 shows
that for cases which had poor predictive accuracy with respect
to the mean true value, such as for acetochlor ESA, the standard
deviation of the predicted Rs overlapped with the reported
experimental variance. A review by Harman et al., suggests that
literature reported Rs data should only be considered as an
approximation.47 However, in the absence of a standardized
method for POCIS calibration, either in the laboratory or in the
field, it would seem that Rs modeling in this way offers similar
accuracy and precision without being labor or resource
intensive. Calibration experiments for each compound can
take several weeks, requiring a large mass of reference material
for static renewal and flow through experiments, or very
frequent and accurate water sampling for in situ experiments.
Furthermore, given that models developed herein are derived
from a very limited number of training cases, any new reported
Rs data generated by similar methods to those used herein will
likely enable better generalizability in the future, as was
observed with retention time predictions in reversed-phase
liquid chromatography.27

External Application to Rs Prediction. To further
support the application of the optimized modeling approach,
Rs data for several additional benzodiazepines were exper-
imentally determined in our laboratory using a similar
approach. In the previous sections, blind test compounds

Figure 4. Comparison of the measured and predicted Rs values and their respective variances against the variance in predicted Rs (n = 73) from
replicate RTD-models (n = 3). Inset: Optimized 16−14−9−1 model architecture. Compounds in bold represent the verification and blind test cases.
All others were used for model training.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.6b01407
Environ. Sci. Technol. 2016, 50, 7973−7981

7978

http://dx.doi.org/10.1021/acs.est.6b01407


were structurally diverse which is logical for testing model
accuracy.48 However, for this experiment, structural similarity
was deliberately chosen to externally test its discriminative
power. Despite this similarity, it was expected that measured Rs
could be different on POCIS given their slight differences in
chromatographic retention on C18 phases. The retention order
of the benzodiazepines was as follows: oxazepam (3.26 min)
nitrazepam (3.26 min), clonazepam (3.29 min), lorazepam
(3.29 min), alprazolam (3.31 min), midazolam (3.32 min),
flunitrazepam (3.37 min) and diazepam (3.58 min). As
discussed previously, measurement of Rs often suffers from
some imprecision. The calibration experiment performed here
was not exempt from this either. Two compounds, lorazepam
(Rs: 0.205 L d−1) and oxazepam (Rs: 0.226 L d−1), were
originally present in the training set and verification set
respectively during model development. The Rs values for these
compounds were experimentally determined again here to
characterize the variance between the selected calibration
method used here and the method by Morin et al.24 The Rs
determined here varied by approximately 0.1 L d−1 for both
compounds (lorazepam: 0.302 L d−1 and oxazepam: 0.327 L
d−1). This observation showed again that the difference in
calibrations between flow-through and static renewals is not
negligible and was an unavoidable limitation of the calibration
experiment used here. Standard deviations for the six
compounds ranged from ±0.024 to ±0.055 L day−1 (n = 9).
Overall, the average RSD for all compounds was 20 ± 6%
(flunitrazepam: 19%; clonazepam: 13%; nitrazepam: 13%;
midazolam: 23%; diazepam: 23%; and alprazolam: 29%) and
this variance was consistent with other studies.29

As shown in Figure 5, both the GSD- and RTD-models
predicted Rs well to within the measured value for all six
compounds. The two largest errors in the RTD-model
corresponded to those substances with the highest Rs variance
(diazepam and alprazolam at 16 and 17%, respectively), but the

four remaining compounds showed little inaccuracy (≤5%). In
terms of absolute inaccuracy of the measured Rs however,
examination of the RTD-model residual errors showed that for
all compounds except nitrazepam, that predictions were slightly
overestimated. The GSD-model performed worse by compar-
ison (Figure 5). The two largest errors corresponded to
nitrazepam and midazolam that were 37% and 43% inaccurate,
respectively. The remaining compound inaccuracies were
alprazolam (28%), clonazepam (18%), diazepam (10%) and
flunitrazepam (19%). The average absolute error for the GSD-
model predictions was 0.0437 L d−1 and all compounds were
predicted within ±0.075 L d−1. By contrast, the RTD-model
had an average absolute error of 0.0145 L d−1 for these
benzodiazepines (and Rs for all compounds were predicted
within 0.03 L day−1). These predictions again demonstrated
that predicted Rs were similar enough to those determined by
experimental determination to be practical.
Passive sampling for nonhydrophobic compounds is mainly

used for screening purposes and as a semiquantitative
technique. Furthermore, in situ exposures are difficult to
quantify accurately as laboratory calibrations may not translate
well into field Rs due to several factors such as biofouling and
other matrix- or environmentally related effects on diffusion, for
example. In addition, for reliable quantification the performance
reference compound approach has limited availability and
application for polar passive sampling due to the strong
retention of analytes on HLB sorbents.49 However, modeling
approaches could potentially overcome these limitations if
models were built from in situ calibration data. It is also
possible that estimation of Rs by in silico approaches may offer
a viable alternative for compounds where Rs data cannot be
estimated by field studies due to poor correlation of
concentrations in water to sample mass on the PSD.35 Lastly,
the two different approaches to the molecular descriptor
selection presented show acceptable predictive accuracy for
polar compound passive sampling. However, the use of
descriptors derived for tR prediction in a model for Rs
prediction holds significant potential for application to new
compounds based solely on their SMILES strings by
simultaneously allowing preliminary identification (by tR and
high resolution m/z, for example) and estimation of Rs using
the same descriptors.
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