
Journal of Vision (2021) 21(4):2, 1–26 1

The effect of target salience and size in visual search within
naturalistic scenes under degraded vision

Antje Nuthmann

Institute of Psychology, University of Kiel, Germany
Psychology Department, School of Philosophy,

Psychology and Language Sciences, University of
Edinburgh, UK

Adam C. Clayden

School of Engineering, Arts, Science and Technology,
University of Suffolk, UK

Psychology Department, School of Philosophy,
Psychology and Language Sciences, University of

Edinburgh, UK

Robert B. Fisher School of Informatics, University of Edinburgh, UK

We address two questions concerning eye guidance
during visual search in naturalistic scenes. First, search
has been described as a task in which visual salience is
unimportant. Here, we revisit this question by using a
letter-in-scene search task that minimizes any
confounding effects that may arise from scene guidance.
Second, we investigate how important the different
regions of the visual field are for different subprocesses
of search (target localization, verification). In
Experiment 1, we manipulated both the salience (low vs.
high) and the size (small vs. large) of the target letter (a
“T”), and we implemented a foveal scotoma (radius: 1°)
in half of the trials. In Experiment 2, observers searched
for high- and low-salience targets either with full vision
or with a central or peripheral scotoma (radius: 2.5°). In
both experiments, we found main effects of salience
with better performance for high-salience targets. In
Experiment 1, search was faster for large than for small
targets, and high-salience helped more for small targets.
When searching with a foveal scotoma, performance
was relatively unimpaired regardless of the target’s
salience and size. In Experiment 2, both visual-field
manipulations led to search time costs, but the
peripheral scotoma was much more detrimental than
the central scotoma. Peripheral vision proved to be
important for target localization, and central vision for
target verification. Salience affected eye movement
guidance to the target in both central and peripheral
vision. Collectively, the results lend support for search
models that incorporate salience for predicting
eye-movement behavior.

Introduction

In search for a specific target object in a naturalistic
scene, we use selective attention to deploy our limited
attentional resources, as well as our eyes, to candidate
targets. This deployment is guided by knowledge of
the basic features of the target and, when possible, by
the rules that govern the placement of that target in
a scene (Wolfe, 2015). Here, we investigate the causal
influence of bottom-up visual salience on gaze guidance
during scene search. To this end, we manipulate
the salience and size of context-free targets within
scenes. Moreover, we explore the importance of foveal
vision (Experiment 1) and central versus peripheral
vision (Experiment 2) for the task. We found that
search was more efficient for high-salience than for
low-salience targets. Salience affected eye movement
guidance to the target in both central and peripheral
vision.

It is widely agreed that eye movements in naturalistic
scenes are controlled by both bottom-up (stimulus-
driven) and top-down (task-driven, context-driven, or
goal-driven) factors (Malcolm, Groen, & Baker, 2016).
Research on bottom-up control has been dominated
by salience-driven approaches, in which a saliency
map is computed using low-level image features to
guide task independent gaze allocation (Borji & Itti,
2013; Borji, Sihite, & Itti, 2013a for reviews). The
first computational model of this kind was Itti, Koch,
and Niebur’s (1998) implementation of Koch and
Ullman’s (1985) computational architecture based on
the feature integration theory (Treisman & Gelade,
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1980). The feature integration theory explains human
behavior in visual search tasks involving covert shifts
of attention. Extending this research, the saliency
model was introduced as a model of covert and overt
orienting in search (Itti & Koch, 2000; Itti et al., 1998).
According to simulations by Itti and Koch (2000), the
saliency model performed similarly to, or better than,
human searchers looking for oriented lines among
distractor lines or for a camouflaged tank in a natural
environment. Still, when observers are given a visual
search task (or a task altogether), top-down influences
on attention and eye guidance are often believed
to dominate (Koehler, Guo, Zhang, & Eckstein,
2014).

Few empirical studies have investigated the role of
target salience in search within natural scenes. Whereas
some studies manipulated the salience of the target
object (Foulsham & Underwood, 2007; Underwood,
Templeman, Lamming, & Foulsham, 2008), others
used low-salience targets that were presented along
with high-salience distractors (Henderson, Malcolm,
& Schandl, 2009; Underwood, Foulsham, van Loon,
Humphreys, & Bloyce, 2006) or distractors that were
either high or low in salience (Underwood & Foulsham,
2006).

One of these search tasks required observers to
indicate whether there was a piece of fruit in the scene
(Underwood et al., 2006). If present, the piece of
fruit was always a low-salience object, according to
the saliency model by Itti and Koch (2000). Some of
the scenes also included a high-salience object, which
served as a distractor. There was little attentional
capture by the distractor. However, when there was a
high-salience distractor present, then the low-salience
target was fixated later than when it was absent, and
near distractors were more disruptive than those
furthest from the target. The authors concluded that
the purpose of inspection can provide a cognitive
override that renders visual salience secondary. The key
finding that the most salient region is neglected in favor
of a completely nonsalient target was replicated in a
subsequent study by different authors (Henderson et
al., 2009).

Underwood and Foulsham (2006) had subjects
search for a small gray rubber ball, which was inserted
into half of the scenes. This target was of very low
visual salience. Beyond that, the visual salience and
semantic congruency of two nontarget objects were
manipulated. The authors summarized that search
was unaffected by salience or congruency. On closer
inspection, the data showed an unexpected interaction.
When both nontarget objects were congruent with
the overall meaning of the scene, fixation of the more
salient of them was slow, rather than fast. Presumably,
the inspection of a bright object had low priority when
the task required the detection of a small dark target
(Underwood & Foulsham, 2006).

Foulsham and Underwood (2007) manipulated the
visual salience of the target directly by comparing
medium- and low-salience target objects; objects were
again chosen on the basis of their saliency model ranks.
The authors excluded high-salience targets based on
the argument that natural search is often performed
in situations where the target is not the most salient
object. There was little evidence that visual salience
was important in eye guidance during either category
or instance search. Underwood et al. (2008) used a
comparative visual search task in which target objects
were manipulated regarding their visual conspicuity
(i.e., salience) and semantic congruency. Manual
reaction times and eye movement guidance to the target
were not affected by visual salience.

Foulsham and Underwood (2011) used a slightly
different approach: rather than manipulating scenes and
objects, they used the predictions of the saliency model
by Itti and Koch (2000) to select target regions that were
either salient or nonsalient. As would be predicted by
the saliency model, behavioral search times were shorter
for highly salient regions than either low-salient regions
or control regions. Control regions and low-salient
regions did not differ reliably. Interestingly, salience did
not affect the process of localizing the target region in
space, as indexed by the latency to first fixation on the
region. This implies that the subsequent verification
process (is this the target?) took longer when the region
was low in salience and that this effect was large enough
to affect total search time. In a second experiment,
peripheral filtering of low-level features was expected to
modify the effect of target saliency on search, but this
was not the case (Foulsham & Underwood, 2011).

The main problem with identifying the causal
contribution of visual salience to gaze guidance is an
inherent correlation with higher-order factors such
as objects and semantics (Henderson, Brockmole,
Castelhano, & Mack, 2007; Nuthmann & Henderson,
2010; Stoll, Thrun, Nuthmann, & Einhäuser, 2015).
In the studies reviewed above, effects of salience
were assessed between different objects or scenes,
which potentially introduces additional confounds. To
address these issues, we used context-free letter targets
rather than contextually relevant search targets. In
two experiments, observers searched for a black letter
“T” embedded in grayscale photographs of real-world
scenes. We used our target embedding algorithm
(T.E.A., Clayden, Fisher, & Nuthmann, 2020)1 to
generate within-scene manipulations of target salience
(low vs. high) and—in Experiment 1—also target
size (small vs. large). Our approach minimizes any
confounding effects that may arise from various forms
of scene guidance (semantic, syntactic, and episodic
guidance; Biederman, Mezzanotte, & Rabinowitz,
1982; Henderson & Ferreira, 2004). Specifically, using
context-free targets prevents observers from using their
knowledge about the likely positions of targets to
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guide their attention and eye movements. Moreover, by
inserting the targets in an algorithmic manner via image
processing techniques, we also minimized artefacts that
may otherwise occur due to post hoc editing of scenes.

Saliency maps translate physical properties of the
stimulus such as luminance, orientation, color, and size
into saliency values. Since these stimulus dimensions
have different characteristics, combining them is a
nontrivial problem (Itti & Koch, 1999). The size feature
is typically accounted for in an implicit manner by
incorporating multiple spatial scales of processing.
In this way, saliency models attempt to account for
size over image regions and not over objects, which
is a limiting factor of this approach (Borji, Sihite, &
Itti, 2013b). Borji et al. (2013b) addressed this issue
by asking observers to choose which object (out of
two in a given image) stands out the most based on its
low-level features. Both saliency and object size were
important for selecting the object. Observers’ judgments
were well described by a linear combination of the two
variables in an integrated model of saliency and object
size. Moreover, previous investigations of object-based
selection in scenes found independent effects of object
size and object-based salience on fixation probability,
with large objects and highly salient objects being more
frequently selected for fixation (Nuthmann, Schütz, &
Einhäuser, 2020; Stoll et al., 2015). Regarding visual
search, in previous work we manipulated target size
while controlling for target salience by probing the
scene for locations of median salience (Clayden et al.,
2020). In these experiments, we observed better search
performance for larger targets. Extending this research,
we designed Experiment 1 to assess the independent
contributions of target salience and target size, as well
as their interaction.

If our vision was the same throughout the visual
field, visual search would be easy most of the time.
However, foveal and extrafoveal vision differ, owing to
our foveated visual systems (Rosenholtz, 2016). Saliency
models, as well as theories of search, oftentimes
ignore that visual acuity declines systematically from
the fovea into the periphery. Of course, there are
notable exceptions. For example, Itti (2006) added
a gaze-contingent foveation filter to a variant of
the saliency model, and the target acquisition model
(Zelinsky, 2008), as well as the MASC model (Adeli,
Vitu, & Zelinsky, 2017) implement a fixation-by-fixation
retina transformation of the search image. Previous
research has shown that foveal vision is less important
and peripheral vision is more important for scene
search than previously thought (Clayden et al., 2020;
McIlreavy, Fiser, & Bex, 2012; Nuthmann, 2014). Here,
we extend this research by assessing the role target
salience plays in foveal vision (Experiment 1) and
central versus peripheral vision (Experiment 2).

In visual search, guidance by basic features can be
bottom-up or top-down (Wolfe, 2015). Bottom-up

guidance is stimulus-driven, based on local differences.
Here, we tested the independent and combined effects
of target salience and size during active eye-movement
search. Top-down guidance is user-driven, based
on the observer’s understanding of the task. In our
experiments, on each trial participants were asked to
look for the letter “T.”Given that letters are overlearned
categories, observers were expected to use top-down
guidance to deploy attention to the target.

Any model where salience is combined with target
knowledge would predict that search should be more
efficient for high-salience than for low-salience targets.
Clearly, results from most of the studies reviewed above
did not lend support to this hypothesis. Here, we revisit
the question by using a task that emphasizes feature
guidance and minimizes the role of scene guidance.
Moreover, Experiment 1 allowed us to assess the
independent effects of target salience and size.

In our experiments, search with normal, nondegraded
vision was compared to search with a foveal scotoma
(radius: 1°) in Experiment 1, and to central and
peripheral scotomas (radius: 2.5°) in Experiment 2.
When searching with a foveal scotoma, we have found
performance to be relatively unimpaired regardless of
the target’s size (Clayden et al., 2020). In Experiment 1,
we explored whether foveal vision would gain a
more prominent role if the target’s salience was
reduced, along with its size. In Experiment 2, we
expect the peripheral scotoma to be more detrimental
than the central scotoma (cf. Nuthmann, 2014).
Analyzing subprocesses of search will allow us to test
the assumption of a central-peripheral dichotomy
according to which central vision is mainly for seeing
(decoding or recognizing) and peripheral vision is
mainly for looking (selecting) (Zhaoping, 2019).
Applied to the target acquisition task that we used, we
should find peripheral vision to be important for target
localization and central vision for verification. Thus
we expect the peripheral scotoma to selectively impair
target localization and the central scotoma to impair
target verification only (cf. Nuthmann, 2014). Beyond
that, the simulated scotomas allow us to assess the effect
of target salience in peripheral and central vision.

General method

Participants

Thirty-two participants (10 males) between the
ages of 18 and 27 (mean age 21 years) participated in
Experiment 1. Thirty-six participants (seven males)
between the ages of 18 and 27 (mean age 21 years)
participated in Experiment 2. All participants had
normal or corrected-to-normal vision by self-report.
They gave their written consent before the experiment
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and either received study credit or were paid at a rate
of £7 per hour for their participation, which lasted
about one hour. The experiments were approved
by the Psychology Research Ethics Committee of
the University of Edinburgh and conformed to the
Declaration of Helsinki.

Apparatus

Working with gaze-contingent displays requires
minimizing the latency of the system (Loschky &
Wolverton, 2007; Saunders & Woods, 2014). Moreover,
gaze-contingent manipulations of foveal vision call for
eye-tracking equipment with high spatial accuracy and
precision (Geringswald, Baumgartner, & Pollmann,
2013). Participants’ eye movements were recorded
binocularly with an EyeLink 1000 Desktop mount
system (SR Research, Ottawa, ON, Canada) with high
accuracy (0.15° best, 0.25° to 0.5° typical) and high
precision (0.01° root-mean-square [RMS]). The Eyelink
1000 was equipped with the 2000 Hz camera upgrade,
allowing for binocular recordings at a sampling rate of
1000 Hz per eye. Stimuli were presented on a 21-inch

CRT monitor with a refresh rate of 140 Hz at a viewing
distance of 90 cm, taking up a 24.8° × 18.6° (width ×
height) field of view. A chin and forehead rest was used
to keep the participants’ head position stable.

The experiments were programmed in MATLAB
2013a (The MathWorks, Natick, MA, USA) using the
OpenGL-based Psychophysics Toolbox 3 (Brainard,
1997; Kleiner, Brainard, & Pelli, 2007), which
incorporates the EyeLink Toolbox extensions (F. W.
Cornelissen, Peters, & Palmer, 2002). A game controller
was used to record participants’ behavioral responses.

Stimulus materials

In both experiments, we used 120 grayscale images of
naturalistic scenes (800 × 600 pixels), which came from
a variety of categories; 98 of these photographs were
previously used as colored images in Nuthmann (2014).
Additional images were used as practice scenes.

The search target was always the letter “T,”which was
inserted into the scene by using the T.E.A. introduced
by Clayden et al. (2020). Specifically, the T was inserted
in sans-serif style; that is, consisting of two bars. For

Small size, without target

M
o
 = 0.131 C

img
 = 146.50

Large size, without target

M
o
 = 0.118 C

img
 = 146.50

Small size, with target

M
w

 = 0.558 C
img

 = 146.46

Large size, with target

M
w

 = 0.583 C
img

 = 146.34

Figure 1. Target embedding algorithm. In this example, the squared evaluation box (in red) is positioned at (r,c) = (125, 85) in all
panels. The local RMS contrast is calculated both without the target letter (Mo, top row) and with the target letter inserted (Mw,
bottom row), for both the small target (left column) and the large target (right column). Cimg denotes the mean luminance of the
image, without the target letter (top row) or with (bottom row). The outer rectangle (in red) marks the region of the image border
that was not considered for target insertion.
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Figure 2. Algorithmic target placement at low and high salient regions within the scene. Left: Contrast difference maps for the small
and large target size used in Experiment 1, for the example scene used in Figure 1 and Figure 7. Right: Summed contrast difference
map (bottom) and the distribution of the map’s values (top). Two vertical lines were added to the histogram to mark the lower (light
blue) and upper (salmon) quartiles of the distribution. These values were used to determine suitable positions for low- and
high-salience targets in the scene image. For the example image, the final target positions are marked with colored dots in the
summed contrast difference map. For visualization purposes, the values of a given map were scaled to the same range (i.e., to [0,1]).

the small target letter, the horizontal bar was 13 pixels
in length and two pixels in width, whereas the vertical
bar was 16 pixels in length and three pixels in width. For
the large target letter, the horizontal bar was 33 pixels
in length and four pixels in width, whereas the vertical
bar was 40 pixels in length and five pixels in width.

To determine suitable positions for low- and
high-salience targets, we inserted the T into every
possible location of the original scene image and
calculated how much it would stand out from the scene
background. To this end, a rectangular region that was
slightly larger than the target was moved pixel-by-pixel
through the image. Using the larger dimension of the
target letter (i.e., its height) as a reference, the region’s
size was determined by adding a constant buffer of
three pixels to either side (plus one pixel to center the
region on the current position). As a result, the region
size was 23 × 23 pixels for small target letters and 47 ×
47 pixels for large target letters.

As a measure of visual salience, we used a version
of RMS contrast: the standard deviation of luminance
values of all pixels in the evaluated region was divided
by the mean luminance of the image (Bex & Makous,

2002; Nuthmann & Einhäuser, 2015; Reinagel & Zador,
1999). First, the RMS contrast Mo was calculated
for the evaluation box at each position in the image,
see Appendix A for the mathematical details of the
calculations. Next, the black target letter was inserted
at a given position by replacing pixel values of the
original image by the pixel values of the target. After
target insertion, the RMS contrast Mw was computed
for the evaluation box comprising the T. Afterward, the
contrast change value �C = Mw – Mo was computed
to quantify the visual salience of the target letter at a
given location within the scene.

To provide an example, in Figure 1 the evaluation
box is centered on image position (r,c) = (125, 85),
with (r,c) denoting the rows and columns of the image.
For the large target, we obtain Mo = 0.118 and Mw
= 0.583, with �C = 0.464. Thus adding a black T
to a relatively bright region of the image leads to
a relatively large change in local contrast. For the
example image used in Figures 1 and 2, our GitHub
page (see footnote 1) shows a dynamic visualization
of the contrast calculations for all possible target
positions.
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Calculating �C at each pixel in the image yields
a map comprising the contrast difference values
within the image. The contrast difference map was
calculated separately for small and large targets
(Figure 2). Afterward, the two resultant maps were
summed together. This allowed us to compute a single
location for both target sizes, because the values of
the two difference maps varied slightly. The summed
difference map was then probed by our algorithm to
locate suitable pixel (i.e., potential target) positions.
The criteria for choosing the low- and high-salience
regions were the lower and upper quartile changes in
local contrast when inserting the letter into the scene.
If the exact value for the lower or upper quartile of
the distribution did not exist in the summed contrast
difference map, the closest existing value was used.
Candidate locations were tested against two exclusion
criteria (Clayden et al., 2020). In the experiments,
participants started their search at the center of the
scene, with a foveal or central scotoma blocking their
view on many of the trials. Therefore locations within
3° from the center were excluded. To avoid truncation
of the letter, locations at image boundaries were also
excluded (Figures 1 and 2). If there was more than one
possible target location left, one was selected at random
as the location of the target for that scene image and
salience condition. The resulting distributions of target
positions reveal broad coverage (Figure B1). For further
validation, each target’s eccentricity was calculated as
the Euclidean distance between target position and
image center. Mean eccentricities did not differ for low-
and high-salience targets, t(119) = −0.32, p = 0.746.

Creation of gaze-contingent scotomas

In Experiment 1, we implemented a foveal scotoma;
in Experiment 2, we contrasted a central scotoma with a
peripheral scotoma. For the foveal and central scotomas,
we used a gaze-contingent technique that was originally
introduced by Rayner and Bertera (1979) for sentence
reading. The authors referred to their implementation
as moving mask; other terms include simulated scotoma
(Bertera, 1988). When applied to scene viewing, the
moving mask paradigm is analogous to viewing the
scene with a “blindspot”: information in the center
of vision is blocked from view, whereas information
outside the window is unaltered (Miellet, Zhou, He,
Rodger, & Caldara, 2010; Nuthmann, 2014). As in
our previous study (Clayden et al., 2020), the foveal
scotoma in Experiment 1 was a symmetric circular
gray mask with a radius of 1° to completely obscure
foveal vision (see Figure 3 below). The central scotoma
(Experiment 2) had a radius of 2.5°, thereby eliminating
both foveal and part of parafoveal vision (Figure 7b
below). For the peripheral scotoma (Experiment 2),
we used the gaze-contingent moving window technique

(McConkie & Rayner, 1975, for reading). Applied
to scene viewing, the moving window paradigm is
analogous to viewing the scene through a “spotlight”:
a defined region in the center of vision contains
unaltered scene content, while the scene content outside
the window is blocked from view (Caldara, Zhou,
& Miellet, 2010; Nuthmann, 2014). Our central and
peripheral scotomas had equal radii (2.5°) and so were
inverse manipulations of one another (Figure 7 below).

The general idea underlying our scotoma
implementation is to mix a foreground image and a
background image via a mask image (van Diepen,
De Graef, & Van Rensbergen, 1994). The foreground
image is formed by the experimental stimulus; that is,
by the current scene image. The background image
defines the content of the masked area. In the present
experiments, the background image was a monochrome
image (gray, RGB-value: 128, 128, 128), which implies
that the moving scotomas were drawn in that color
(Clayden et al., 2020). The mask image defines the type,
shape, and size of the gaze-contingent scotoma. It was
a normalized grayscale image, where pixel values of 255
(white) represent portions of the foreground image that
show through while values of 0 (black) are masked and
therefore replaced by the corresponding background
image pixels. For the foveal and the central scotoma, a
circular 0-center, 255-surround map formed the mask.
For the peripheral scotoma, an inverted mask was used;
that is, a circular 255-center, 0-surround map. To avoid
sharp-boundary scotomas, the perimeter of the circular
mask or window was slightly faded through low-pass
filtering (Clayden et al., 2020).

To minimize the latency of the measurement system,
we used an eye tracker with a binocular sampling
rate of 1000 Hz and fast online access of new gaze
samples. Specifically, the eye tracker computed a new
gaze position every millisecond and made it available in
less than 2 ms. Moreover, the Psychophysics Toolbox 3
for MATLAB offers fast creation of gaze-contingent
scotomas using texture-mapping and OpenGL (Open
Graphics Library). This technique provides various
blending operations that enable image combinations
to take place via an image’s alpha channel (see
Duchowski & Çöltekin, 2007, for details on the general
technique). The mask image served as the alpha mask
for blending of the foreground and background images.
To obtain a composite rendering of the scene image
with the scotoma, three textures were created—for the
foreground image, background image, and mask image,
respectively. During the search trial, the center of the
mask texture was translated to the coordinates of the
current gaze position. Thus, gaze contingency was
realized by moving the mask across the stimulus. This
solution avoids the need for computationally expensive
real-time image synthesis.

Because scene images typically occupy the entire
monitor space, a full refresh cycle is required to
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Figure 3. Four foveal-scotoma conditions for one of the scenes used in Experiment 1. Left column: low-salience targets, right column:
high-salience targets; top row: small targets, bottom row: large targets. The gray disk in the center of the image is the foveal mask that
moved concomitantly with the participant’s gaze. In the figure, the foveal scotoma is highlighted with a red circle. In the experiment,
each observer searched each scene in one of the size × salience conditions only, either with or without a simulated foveal scotoma.

update the screen. In the experiments, the stimuli were
displayed on a 140-Hz CRT monitor, which means
that it took 7.14 ms for one refresh cycle to complete.
Throughout the experimental trial, gaze position was
continuously evaluated online. The algorithm first
checked whether new valid binocular gaze samples
were available. If that was the case, the center of the
mask was re-aligned with the average horizontal and
vertical position of the two eyes (Nuthmann, 2013, for
discussion). Even with a state-of-the-art system, small
temporal delays in updating the display contingent on
the participant’s gaze are unavoidable. Any mismatch
between gaze position and scotoma position that may
result should be largest during a saccade and right after
a saccade. However, observers are blind to mismatches
during this period, due to saccadic suppression and the
time needed for perception to be restored (McConkie &
Loschky, 2002).

Procedure

At the beginning of the experiment, the eye tracker
was calibrated using a series of nine fixed targets
distributed around the display, followed by a 9-point
accuracy test. At the start of each trial, a fixation cross

was presented at the center of the screen for 600 ms
and acted as a fixation check. The fixation check was
judged successful if gaze position, averaged across both
eyes, consistently remained within an area of 40 ×
40 pixels (1.24° × 1.24°) for 200 ms. If this condition
was not met, the fixation check timed out after 500 ms.
In this case, the fixation check procedure was either
repeated or replaced by another calibration procedure.
If the fixation check was successful, the scene image
appeared on the screen. Once subjects had found the
target letter, they were instructed to fixate their gaze on
it and press a button on the controller to end the trial
(cf. Clayden et al., 2020; Glaholt, Rayner, & Reingold,
2012; Nuthmann, 2014). Trials timed-out 15 seconds
after stimulus presentation if no response was made.
There was an intertrial interval of one second before
the next fixation cross was presented.

Data analysis

The SR Research Data Viewer software with default
settings was used to convert the raw data obtained
by the eye tracker into a fixation sequence matrix.
Data from the right eye were analyzed. The behavioral
and eye-movement data were further processed and
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analyzed using the R system for statistical computing
(R Development Core Team). Figures were created
using MATLAB (Figures 1 to 3 and 7) or the ggplot2
package (version 3.2.1; Wickham, 2016) supplied in R
(remaining figures). The T.E.A. was programmed in
MATLAB.

Analyses of fixation durations and saccade lengths
excluded fixations that were interrupted with blinks.
Analysis of fixation durations disregarded the initial,
central fixation in a trial. However, its duration was
analyzed separately as search initiation time. The
button press terminating the search took place during
the last fixation in a trial. Therefore, the last fixation
was also excluded from analysis of fixation durations.
However, its duration contributed to the measurement
of verification time. Fixation durations that are very
short or very long are typically discarded, based
on the assumption that they are not determined by
online cognitive processes (Inhoff & Radach, 1998).
In the present study, this precaution was not followed
because the presence of a foveal scotoma may affect eye
movements (e.g., fixations were predicted to be longer
than normal).

Distributions of continuous response variables were
positively skewed. In this case, variables are oftentimes
transformed to produce model residuals that are more
normally distributed. To find a suitable transformation,
the optimal λ-coefficient for the Box-Cox power
transformation (Box & Cox, 1964) was estimated
using the boxcox function of the R package MASS
(Venables & Ripley, 2002) with y(λ) = (yλ – 1)/λ if λ
�= 0 and log(y) if λ = 0. For all continuous dependent
variables, the optimal λ was different from 1, making
transformations appropriate. Whenever λ was close to
0, a log transformation was chosen. We analyzed both
untransformed and transformed data. As a default, we
report the results for the raw untransformed data and
additionally supply the results for the transformed data
when they differ from the analysis of the untransformed
data.

Statistical analysis using mixed models

We used linear mixed-effects models (LMM) for
analyzing continuous response variables, specifically
search time and its three subcomponents, saccade
amplitude, and fixation duration. Search accuracy was
analyzed using binomial generalized linear mixed-effects
models (GLMM). A technical introduction to both
types of mixed models is provided by Demidenko
(2013). The analyses were conducted with the R
package lme4 (version 1.1.-23; Bates, Maechler, Bolker,
& Walker, 2015). Separate (G)LMMs were estimated
for each dependent variable.

Search accuracy was assessed through a binary
variable; in a given trial, the search target was correctly

located (1) or not (0). In the GLMM, the resulting
probabilities were modeled through a link function
(Bolker et al., 2009). For binary data, there are three
common choices for link functions: logit, probit,
and complementary log-log (Demidenko, 2013). For
our analyses we used the logit transformation of
the probability, which is the default for the glmer
function in the R package lme4. Thus, in a binomial
GLMM, parameter estimates are obtained on the
log-odds or logit scale, which is symmetric around zero,
corresponding to a probability of 0.5, and ranges from
negative to positive infinity (Jaeger, 2008).

A mixed-effects model contains both fixed-effects
and random-effects terms (Bates et al., 2015). Because
mixed models are regression techniques, factors of the
experimental design usually enter the model as contrasts
(Schad, Vasishth, Hohenstein, & Kliegl, 2020). For
Experiment 1, to specify the contrasts simple coding
(also known as deviation coding or effects coding)
was used for all three factors of the experimental
design (−0.5/+0.5). The reference levels were small
size, low-salience, and no scotoma. The mixed-model
equation is provided in Appendix C.

For Experiment 2, simple coding was used for the
two-level factor target salience. For the three-level
factor scotoma type, contrasts were chosen such that
they tested hypotheses about the expected pattern
of means. More generally, the different scotomas
were expected to affect overall task difficulty, which
may lead to differences in search performance and
global eye movement measures. For example, search
times were expected to be longest for search with a
peripheral scotoma. In this case, factor levels were
ordered accordingly (no scotoma, central scotoma,
peripheral scotoma), and backward difference coding
(also known as sliding differences or repeated contrasts)
was used to compare the mean of the dependent
variable for one level of the ordered factor with the
mean of the dependent variable for the prior adjacent
level (Venables & Ripley, 2002). Moreover, we reasoned
that a specific type of scotoma may selectively impair a
specific subprocess of search. To test these more specific
hypotheses, simple coding was used. The no-scotoma
control condition served as the reference level, which
allowed us to test whether there were any differences
between the central scotoma and the control condition
or between the peripheral scotoma and the control
condition. Simple coding and backward difference
coding yield centered contrasts, in which case the model
intercept reflects the grand mean of the dependent
variable.

The mixed models included subjects and scene
items as crossed random factors. The overall mean
for each subject and scene item was estimated as a
random intercept. In principle, the variance-covariance
matrix of the random effects not only includes random
intercepts but also random slopes, as well as correlations
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between intercepts and slopes (Barr, Levy, Scheepers,
& Tily, 2013). Random slopes estimate the degree to
which each fixed effect varies across subjects and/or
scene items. For example, the by-item random slope for
salience captures whether scene items vary in the extent
to which target salience affects search performance or
eye-movement parameters (see Nuthmann, Einhäuser,
& Schütz, 2017, for an example).

To select an optimal random-effects structure for
(G)LMMs, we pursued a data-driven approach using
backward model selection. To minimize the risk of Type
I error, we started with the maximal random-effects
structure justified by the design (Barr et al., 2013).
For Experiment 1, where the same contrast coding
was used for all dependent variables, the maximal
variance-covariance matrix of the random effects
is provided in Appendix C. Across experiments,
none of these maximal models converged (maximal
number of iterations: 106). For LMMs, the maximal
random-effects structure was backward-reduced using
the step function of the R package lmerTest (version
3.1-2; Kuznetsova, Brockhoff, & Christensen, 2017).
If the final fitted model returned by the algorithm had
convergence issues, we proceeded to fit zero-correlation
parameter models in which the random slopes are
retained but the correlation parameters are set to
zero (Matuschek, Kliegl, Vasishth, Baayen, & Bates,
2017; Seedorff, Oleson, & McMurray, 2019). The
full random-effects structure of the zero-correlation
parameter LMM required 16 (Experiment 1) or 12
(Experiment 2) variance components to be estimated.
This random-effects structure was evaluated and
backward-reduced to arrive at the model that was
justified by the data.

Model nonconvergence tends to be a much larger
issue with GLMMs than with LMMs (Seedorff et al.,
2019). Indeed, the GLMMs we report are random
intercept models because random slope models did not
converge.

For parameter optimization, the bobyqa optimizer
was used for LMMs, and a combination of Nelder-
Mead and bobyqa for GLMMs. LMMs were estimated
using the restricted maximum likelihood criterion.
GLMMs were fit by Laplace approximation. For the
coded contrasts, coefficient estimates (b) and their
standard errors (SE) along with the corresponding
t-values (LMM: t = b/SE) or z-values (GLMM: z
= b/SE) are reported. For GLMMs, p-values are
additionally provided. For LMMs, a two-tailed
criterion (|t| > 1.96) was used to determine significance
at the alpha level of 0.05 (Baayen, Davidson,
& Bates, 2008).

In the (G)LMM analyses, data from individual trials
(subject–item combinations) were considered. For
the data depicted in Figures 5, 6, and 9 to 11, means
were calculated for each subject, and these were then
averaged across subjects. Result figures display the data

on their original scale. When using the T.E.A. to prepare
the stimulus material, for one of the photographs the
different versions were not saved into the correct folders
on the lab computer because of human error. For three
additional scenes, participants had difficulty finding the
low-salience target. These four scenes were therefore
excluded from analysis.

Experiment 1

Design

Experiment 1 had a 2 × 2 × 2 within-subjects
design with two-level factor target size (small vs. large),
two-level factor target salience (low vs. high) and
two-level factor foveal scotoma (absent vs. present),
see Figure 3. Small targets were 0.41° in size (letter
width), and large targets were 1.08°2. Scene locations
for low- and high-salience targets were algorithmically
determined, as described above, at the lower and
upper quartile level of salience change. The factor
scotoma refers to the implementation of a visual field
manipulation. In the scotoma condition, foveal vision
was blocked by a gaze-contingent moving mask. This
was contrasted with a normal-vision control condition.

The 120 scenes used in the experiment were
assigned to eight lists of 15 scenes each. The scene
lists were rotated over participants, such that a given
participant was exposed to a list for only one of the
eight experimental conditions created by the 2 × 2 × 2
design. There were eight groups of four participants,
and each group of participants was exposed to unique
combinations of list and experimental condition.
To summarize, participants viewed each of the 120
scene items once, with 15 scenes in each of the eight
experimental conditions. Across the 32 participants,
each scene item appeared in each condition four times.

The visual field manipulation was blocked so that
participants completed two blocks of trials in the
experiment: in one block observers’ foveal vision was
available, in the other block it was obstructed by a
simulated foveal scotoma. Each block started with
four practice trials, one for each target salience × size
condition. The order of blocks was counterbalanced
across subjects. Within a block, scenes were presented
randomly.

Results

In a first step, we analyzed different measures of
search accuracy as indicators of search efficiency.
For correct trials, we then analyzed search time and
its subcomponents. Finally, we examined saccade
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Figure 4. Measures of search accuracy for Experiment 1. Top row: small targets, bottom row: large targets. Each column presents
means obtained for a designated dependent variable (see text for definitions). In each panel, data are shown for low- and
high-salience targets during visual search with a simulated foveal scotoma (red) or without one (black). Data points are binomial
proportions; error bars are 95% binomial proportion confidence intervals (Wilson, 1927).

amplitude and fixation duration across the viewing
period.

Search accuracy
The first set of analyses examined the likelihood

of finding the target letter in the scene. Performance
for each experimental condition was divided into
probabilities of “hit,” “miss,” and “timeout” cases
(Clayden et al., 2020; Nuthmann, 2014). If the
participant had not responded within 15 seconds, the
trial was coded as a “timeout.” A response was scored
as a “hit” if the participant indicated to have located
the target by button press and their gaze was within
the rectangular area of interest comprising the target;
otherwise, the response was scored as a “miss.” The
area of interest was 2.9° × 2.9° in size (Clayden et al.,
2020). It was the same for both target sizes and included
a buffer, following recommendations by Holmqvist and
Andersson (2017).

There was a significant effect of scotoma on the
probability of “hitting” the target such that participants
were less likely to correctly locate and accept the target
when foveal vision was not available, b = −0.70, SE
= 0.13, z = −5.49, p < 0.001 (Figure 4, left column).
Moreover, search accuracy was significantly higher
for large as compared to small targets (b = 0.41, SE
= 0.13, z = 3.22, p = 0.001), and it was higher for
high-salience compared to low-salience targets (b =
0.56, SE = 0.13, z = 4.43, p < .001). Only one of the
interactions was significant (Table 1). Specifically, there
was a significant size × salience interaction (b = −0.73,
SE = 0.25, z = −2.87, p = 0.004), indicating that the
salience effect was smaller for large as compared to
small targets. As a matter of fact, the data displayed
in Figure 4 suggest that the effect of one variable was
absent for the easier condition of the other variable.
To test this explicitly, we specified a posthoc GLMM
using dummy-coded variables with the following
reference levels: large targets, high-salience targets,
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Intercept Target size Target salience Foveal scotoma Size × salience Size × scotoma Salience × scotoma Size × salience × scotoma
Probability correct b 2.71 0.41 0.56 −0.7 −0.73 0.08 0.1 −0.67

SE 0.15 0.13 0.13 0.13 0.25 0.25 0.25 0.51
z 18.35 3.22 4.43 −5.49 −2.87 0.32 0.38 −1.32
p <0.001 0.001 <0.001 <0.001 0.004 0.746 0.704 0.186

Search time b 2086.33 −927.79 −1230.15 149.09 958.04 −62.7 75.1 −251.91
SE 112.75 99.45 121.26 81.54 166.65 101.36 128.17 202.45
t 18.5 −9.33 −10.14 1.83 5.75 −0.62 0.59 −1.24

Search initiation time b 269.41 −9.02 −19.83 38.14 −9.33 −8.04 −11.61 0.35
SE 8.35 3.44 4.1 12.1 6.88 6.88 6.87 13.76
t 32.26 −2.62 −4.84 3.15 −1.35 −1.17 −1.69 0.03

Scanning time b 1127.95 −723.15 −968.64 −16.72 768.16 6.73 185.87 −296.28
SE 71.43 80.07 104.24 46.4 135.65 92.8 92.7 185.42
t 15.79 −9.03 −9.29 −0.36 5.66 0.07 2.01 −1.6

Verification time b 677.29 −178.51 −225.95 118.25 172.78 −60.1 −92.32 42.14
SE 69.39 36.97 37.34 45.73 64.39 50.45 57.28 100.78
t 9.76 −4.83 −6.05 2.59 2.68 −1.19 −1.61 0.42

Saccade amplitude b 5.3 −0.43 −0.57 0.4 −0.22 −0.26 0.01 −0.4
SE 0.11 0.06 0.1 0.08 0.12 0.12 0.12 0.24
t 49.19 −6.96 −5.99 4.89 −1.81 −2.11 0.04 −1.63

Fixation duration b 204.56 −9.49 −20.01 19.85 7.68 7.85 7.09 3.63
SE 4.1 2.55 2.86 3.88 3.52 4.09 3.52 9.69
t 49.85 −3.72 −6.99 5.12 2.18 1.92 2.02 0.37

Table 1. Linear and generalized linear mixed models (LLM and GLMM, respectively) for Experiment 1: Means (b), standard errors (SE),
and test statistics (LLMs: t-values; GLMMs: z-values, and p-values) for fixed effects. Notes: Nonsignificant coefficients are set in bold
(LLMs: |t| < 1.96; GLMMs: p > 0.05). See text for further details.

Figure 5. Search time and its three epochs for Experiment 1. Each panel displays the means for a designated dependent variable (see
panel title); note the different y-axis scales for the different measures. Targets differed in visual salience (x-axis) and size (small:
dashed line, large: solid line). Observers searched the scene either with a simulated foveal scotoma (red line) or without one (black
line). Search times are the sum of search initiation, scanning, and verification times. Error bars are within-subjects standard errors,
using the Cousineau-Morey method (Cousineau, 2005; Morey, 2008).

foveal scotoma. The simple effect for target size,
representing the size effect for high-salience targets,
was not significant (b = 0.10, SE = 0.24, z = 0.41,
p = 0.685). The simple effect for target salience,
representing the salience effect for large targets, was
also not significant (b = −0.07, SE = 0.23, z = −0.31,
p = 0.754). However, the size × salience interaction

was significant (b = −1.05, SE = 0.31, z = −3.37,
p < 0.001).

When searching with a scotoma, the probability of
missing the target was increased (b = 0.72, SE = 0.14,
z = 5.00, p < 0.001). Timeout probability was low, with
no timeouts for large high-salience targets; no statistical
analysis was performed.
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Search time and its subcomponents
Search time is the time taken from scene onset to

participants’ button press terminating the search.
Participants’ gaze data were used to split search time
into three subcomponents: search initiation time,
scanning time, and verification time (e.g., Clayden et al.,
2020; Malcolm & Henderson, 2009; Nuthmann, 2014;
Nuthmann & Malcolm, 2016). Search initiation time is
the interval between scene onset and the initiation of
the first saccade (i.e., initial saccade latency). Scanning
time is the time from the first eye movement until the
participant’s gaze enters the target’s area of interest.
Verification time is the time from first entering the
target interest area until the participant confirms their
decision via button press. Whereas the scanning time
measure reflects the process of localizing the target
in space, verification time reflects the time needed to
decide that the fixated object is the target (Malcolm
& Henderson, 2009). Longer scanning times indicate
weaker target guidance. Long verification times tend
to include instances in which observers fixated the
target but then continued searching before returning
to it (Castelhano, Pollatsek, & Cave, 2008; Clayden
et al., 2020; Rutishauser & Koch, 2007; Zhaoping &
Frith, 2011; Zhaoping & Guyader, 2007). Moreover,
in the absence of foveal or central vision, the eyes may
move off the target to unmask it and then process
it in parafoveal or peripheral vision (Clayden et al.,
2020; Nuthmann, 2014). In both cases, there will be
off-target fixations between the first and final fixation
on the target, the number of which appears to depend
on the difficulty of the search (Clayden et al., 2020;
Rutishauser & Koch, 2007).

We manipulated both the target’s size and its salience
to explore how the effects combine. Specifically, if
high-salience helps more for small targets, we should
observe an interaction between target size and target
salience. In previous letter-in-scene search experiments,
in which target size was varied, we found that the
verification process was slowed down when foveal
vision was not available, whereas the actual search
process, indexed by scanning time, remained unaffected
(Clayden et al., 2020). Moreover, we tested whether
the importance of foveal vision to target verification
depended on the size of the target, but the data
remained ambiguous (Clayden et al., 2020). With the
present experiment, we wanted to test whether the
availability of foveal vision during target verification
was more important if the target’s salience was reduced,
along with its size. If that were the case, the foveal
scotoma should be more detrimental for low-salience
than for high-salience targets, and it should be most
detrimental for targets that are small and low in salience.

The analysis of search times showed a significant
effect of target size with faster searches for large as
compared to small targets (b= −927.79, SE= 99.45, t=

−9.33). The effect of target salience was also significant,
with shorter search times for high-salience as compared
to low-salience targets (b = −1230.15, SE = 121.26,
t = −10.14). There was also a significant interaction
between target size and salience such that the salience
effect was smaller for large targets (b = 958.04, SE =
166.65, t = 5.75). Analyses of the three subprocesses
of search showed the same pattern of results (Table 1).
The only exception was a nonsignificant target size
× salience interaction for search initiation time (b =
−9.33, SE = 6.88, t = −1.35).

The presence of a foveal scotoma had a significant
effect on search initiation and verification, with both
subprocesses of search being slowed down (Table 1).
Importantly, scanning time was not prolonged when
searching with a foveal scotoma (b = −16.72, SE =
46.4, t = −0.36). Button-press search times are the
sum of search initiation, scanning, and verification
times. For the untransformed data, the search-time
difference between the foveal scotoma and the control
condition was not significant (b = 149.09, SE = 81.54, t
= 1.83). For the transformed data, however, the effect
of scotoma was significant (b = 0.003, SE = 0.001, t
= 3.84); it was qualified by a significant scotoma ×
salience interaction such that the detrimental effect of a
foveal scotoma was larger for high-salience targets (b =
0.002, SE = 0.001, t = 3.16).

For none of the dependent variables was there a
significant scotoma × size interaction (Table 1). There
was no significant scotoma × salience interaction
for search initiation, scanning, and verification times
(Table 1). The three-way interaction was not significant
for any of the dependent variables (Table 1).

Saccade amplitudes and fixation durations
Saccade amplitudes and fixation durations were

analyzed to characterize eye-movement behavior during
visual search (Figure 6). During scene search with
a simulated foveal scotoma, we expected to observe
larger saccade amplitudes and longer fixation durations
(Clayden et al., 2020; Nuthmann, 2014). Moreover, in
previous experiments we found an increase in target size
to be associated with shorter saccade amplitudes and
shorter fixation durations (Clayden et al., 2020).

For saccade amplitudes we observed a significant
effect of scotoma, with longer saccades when searching
with a foveal scotoma than without (b = 0.40, SE =
0.08, t = 4.89; Figure 6, top row). There was also a
significant effect of target size with shorter saccade
amplitudes for large as compared to small targets (b
= −0.43, SE = 0.06, t = −6.96). In addition, there
was a significant effect of target salience with shorter
saccade amplitudes for high-salience as compared to
low-salience targets (b = −0.57, SE = 0.10, t = −5.99).
The interaction between target size and scotoma was
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Figure 6. Mean saccade amplitudes (top row) and fixation durations (bottom row) for small targets (left column) as opposed to large
targets (right column) in Experiment 1. In each panel, data are presented for low- and high-salience targets during visual search with
or without a simulated foveal scotoma. Error bars are within-subjects standard errors.

significant (b = −0.26, SE = 0.12, t = −2.11), indicating
that the size effect was larger (i.e., more negative) with
a foveal scotoma than without. For the transformed
data, however, this interaction was not significant (b =
−0.07, SE = 0.04, t = −1.76). Thus the interaction was
transformed away, making it noninterpretable (Loftus,
1978; Wagenmakers, Krypotos, Criss, & Iverson,
2012). None of the other interactions were significant
(Table 1).

The analysis of fixation durations revealed a similar
pattern of results. There was a significant effect
of scotoma, with longer fixation durations when
searching with a foveal scotoma than without (b =
19.85, SE = 3.88, t = 5.12; Figure 6, bottom row).
There was also a significant effect of target size with
shorter fixation durations for large as compared to
small targets (b = −9.49, SE = 2.55, t = −3.72). In
addition, there was a significant effect of target salience
with shorter fixation durations for high-salience as
compared to low-salience targets (b = −20.01, SE =
2.86, t = −6.99). Furthermore, there was a significant
size × salience interaction (b = 7.68, SE = 3.52, t
= 2.18) that was absent for the transformed data
(b = 0.08, SE = 0.05, t = 1.71). Moreover, there
was a significant scotoma × salience interaction
(b = 7.09, SE = 3.52, t = 2.02), indicating that the
salience effect was smaller with a foveal scotoma than
without. None of the other interactions were significant
(Table 1).

Experiment 2

Design

In Experiment 2, we dropped the manipulation of
target size and instead used the small targets from
Experiment 1 throughout. As in Experiment 1, we
manipulated the visual salience of the target letter (low
vs. high). This was crossed with another visual field
manipulation: observers searched for the target with a
central or peripheral scotoma, for which the normal-
vision control condition provided a baseline (Figure 7).
Compared with the foveal scotoma in Experiment 1
(radius: 1°), the central scotoma in Experiment 2 had a
larger radius (2.5°). The central scotoma was contrasted
with the inverse manipulation of a peripheral scotoma
with the same radius. In the visual-cognition literature,
central vision is defined as extending to about 5°
from fixation, with peripheral vision being everything
beyond 5° (Loschky, Szaffarczyk, Beugnet, Young, &
Boucart, 2019). Technically, our central scotoma did
not completely cover central vision, and our peripheral
scotoma obscured more than peripheral vision.

To facilitate comparisons across experiments, we
used the same scenes with the same locations for low-
and high-salience targets as in Experiment 1. A given
participant saw each of the 120 scene items once, with
20 scenes in each of the six experimental conditions.
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(a) Control condition (b) Central scotoma (c) Peripheral scotoma

Figure 7. Scotoma conditions used in Experiment 2. Observers searched the scene either with full vision (control condition), or with a
central or peripheral scotoma (radius: 2.5°). Note that the colored borders match the colors used to distinguish the scotoma-type
conditions in Figures 8 to 11. Search targets varied in visual salience; the example scene used for this figure includes the high-salience
target.

Figure 8. Measures of search accuracy for Experiment 2. Each panel presents means obtained for a designated dependent variable,
which is specified in the panel title. Data are shown for low- and high-salience targets and for different scotoma types (red: central
scotoma; blue: peripheral scotoma; black: no-scotoma control condition). Data points are binomial proportions, error bars are 95%
binomial proportion confidence intervals (Wilson, 1927).

The visual field manipulation was blocked so that
participants completed three blocks of trials in the
experiment. Each block started with four practice trials,
two for each target salience condition. The order of
blocks was counterbalanced across subjects. Within a
block, scenes were presented randomly.

Results

Search accuracy
The type of the simulated scotoma affected the

probability of “hitting” the target, with highest
probabilities in the no-scotoma control condition and

lowest probabilities for the central scotoma (Figure 8a).
The effect of scotoma type on search accuracy was
tested using backward difference coding (Table 2). The
GLMM results substantiated that search accuracy
was significantly reduced for the peripheral scotoma
condition (P) compared to the no-scotoma control
condition (No) (P-No: b = −1.44, SE = 0.14, z =
−10.19, p < 0.001). For the central scotoma (C), search
accuracy was lower than for the peripheral scotoma
(C-P: b = −0.77, SE = 0.13, z = −6.01, p < 0.001).
As in Experiment 1, there was a significant main effect
of target salience on search accuracy, with better
performance for high-salience than for low-salience
targets (b = 1.21, SE = 0.10, z = 11.94, p < 0.001).
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Dependent variable
Contrast coding
(scotoma type) Reference level

Scot 1
(definition)

Scot 2
(definition) Intercept Target salience Scot 1 Scot 2 Salience × Scot 1 Salience × Scot 2

Probability correct BWD No – P – C P - No C - P b 1.76 1.21 −1.44 −0.77 −0.62 0.74
SE 0.15 0.1 0.14 0.13 0.27 0.19
z 11.9 11.94 −10.19 −6.01 −2.31 3.82
p <0.001 <0.001 <0.001 <0.001 0.021 <0.001

Search time BWD No – C – P C - No P - C b 3932.88 −1523.04 756.36 2995.29 −707.37 1761.53
SE 123.55 156.45 117.71 214.97 227.02 354.56
t 31.83 −9.74 6.43 13.93 −3.12 4.97

Search initiation time Simple No scotoma C - No P - No b 273.21 −8.62 17.09 81.99 4.06 12.85
SE 6.83 3.77 8.18 7.43 8.91 9.45
t 39.98 −2.29 2.09 11.03 0.46 1.36

Scanning time Simple No scotoma C - No P - No b 2709.84 −1043.68 85.21 3725.53 6.18 978.91
SE 92.54 124.55 108.27 187.46 209.5 304.12
t 29.28 −8.38 0.79 19.87 0.03 3.22

Verification time Simple No scotoma C - No P - No b 910.92 −442.75 564.89 −36.76 −660.97 54.2
SE 59.84 63.09 98.63 64.28 172.18 84.33
t 15.22 −7.02 5.73 −0.57 −3.84 0.64

Saccade amplitude Simple No scotoma C - No P - No b 4.87 −0.42 1.6 −2.2 −0.18 0.43
SE 0.1 0.06 0.15 0.1 0.16 0.08
t 47.11 −6.5 10.63 −21.7 −1.16 5.27

Fixation duration BWD No – C – P C - No P - C b 211.77 −12.24 17.09 18.79 11.58 10.29
SE 3.82 2.12 4.5 6.33 4.07 4.23
t 55.42 −5.78 3.8 2.97 2.85 2.43

Table 2. Linear and generalized linear mixed models (LLM and GLMM, respectively) for Experiment 2: Means (b), standard errors (SE),
and test statistics (LLMs: t-values; GLMMs: z-values, and p-values) for fixed effects. Notes: Nonsignificant coefficients are set in bold
(LLMs: |t| < 1.96; GLMMs: p > .05). BWD = backward difference. See text for further details.

The salience effect was significantly reduced for the
peripheral scotoma compared to the no-scotoma
control condition (salience × P-No interaction: b =
−0.62, SE = 0.27, z = −2.31, p = 0.021). The salience
effect was significantly increased for the central scotoma
compared to the peripheral scotoma (salience × C-P
interaction: b = 0.74, SE = 0.19, z = 3.82, p < 0.001).

The drop in performance for search with a peripheral
scotoma was due to an increase in timed out trials
(Figure 8b). The further loss in performance when
searching with a central scotoma originated from two
sources. On the one hand, there were more timed out
trials than in the control condition but fewer than with
a peripheral scotoma (Figure 8b). On the other hand,
the probability of missing the target was increased
(Figure 8c).

Search time and its subcomponents
Trials with correct responses were analyzed further.

The type of the simulated scotoma affected button-press
search times, which were shortest in the no-scotoma
control condition and longest when searching with a
peripheral scotoma (Figure 9a). The effect of scotoma
type on search times was tested using backward
difference coding. Search times were significantly longer
during search with a central scotoma than during search
without a scotoma (C-No: b = 756.36, SE = 117.71,
t = 6.43). Search times were further increased for the
peripheral scotoma compared to the central scotoma
(P-C: b = 2995.29, SE = 214.97, t = 13.93). Moreover,
there was a significant main effect of target salience
with shorter search times for high-salience compared to
low-salience targets (b = −1523.04, SE = 156.45, t =

−9.74). The salience effect was significantly increased
for the central scotoma compared to the no-scotoma
control condition (salience × C-No interaction: b =
−707.37, SE = 227.02, t = −3.12). The salience effect
was significantly reduced for the peripheral scotoma
compared to the central scotoma (salience × P-C
interaction: b = 1761.53, SE = 354.56, t = 4.97).

Based on participants’ gaze data, button-press
search times were decomposed into search initiation,
scanning, and verification times (Figures 9b through d).
To evaluate the effect of scotoma type, we used simple
coding with the no-scotoma control condition as the
reference level. For search with a peripheral scotoma,
search initiation time was significantly increased (b =
81.99, SE = 7.43, t = 11.03). Search initiation times
were also increased for the central scotoma; this effect
was significant for the untransformed data (b = 17.09,
SE = 8.18, t = 2.09) but not for the transformed data
(b = 2.16, SE = 1.16, t = 1.86). Moreover, there was a
significant main effect of target salience with shorter
search initiation times for high-salience compared
to low-salience targets (b = −8.62, SE = 3.77, t =
−2.29). The two interactions involving salience were
not significant (Table 2).

Scanning time was significantly prolonged when
searching with a peripheral scotoma (b = 3725.53, SE
= 187.46, t = 19.87). For the central scotoma, there
was a numerical increase in scanning time which was
not significant (b = 85.21, SE = 108.27, t = 0.79); for
the transformed data, however, it was significant (b =
0.14, SE = 0.06, t = 2.38). Scanning times were shorter
for high-salience compared to low-salience targets (b =
−1043.68, SE = 124.55, t = −8.38). The effect of target
salience was significantly reduced for the peripheral
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Figure 9. Search time and its three epochs for Experiment 2. Each panel displays the means for a designated dependent variable (see
panel title); note the different y-axis scales for the different measures. Results are presented for low- and high-salience targets and for
different scotoma types (red: central scotoma; blue: peripheral scotoma; black: no-scotoma control condition). Error bars are
within-subjects standard errors, using the Cousineau-Morey method (Cousineau, 2005; Morey, 2008).

scotoma (b = 978.91, SE = 304.12, t = 3.22) but not for
the central scotoma (b = 6.18, SE = 209.5, t = 0.03).

Verification time was significantly prolonged when
searching with a central scotoma (b = 564.89, SE
= 98.63, t = 5.73) but not when searching with a
peripheral scotoma (b = −36.76, SE = 64.28, t =
−0.57). Verification times were shorter for high-salience
compared to low-salience targets (b = −442.75, SE =
63.09, t = −7.02). This effect was significantly increased
for the central scotoma (b = −660.97, SE = 172.18, t =
−3.84) but not for the peripheral scotoma (b = 54.2, SE
= 84.33, t = 0.64).

Saccade amplitudes and fixation durations
Moving-window studies that implemented something

akin to our peripheral scotoma have consistently
reported shorter saccade amplitudes and longer fixation
durations than in a normal vision control condition
(e.g., Loschky & McConkie, 2002; Nuthmann, 2014).
By contrast, masking or degrading central vision tends
to increase both saccade amplitudes and fixation
durations (Miellet et al., 2010; Nuthmann, 2014).

The present data replicate the “windowing effect”
on saccade amplitudes. Compared to the no-scotoma
control condition, saccade amplitudes were significantly
longer when searching with a central scotoma (b = 1.6,
SE = 0.15, t = 10.63) and significantly shorter when
searching with a peripheral scotoma (b = −2.2, SE =
0.1, t = −21.7). Moreover, as in Experiment 1 there
was a significant main effect of target salience with

shorter saccade amplitudes for high-salience compared
to low-salience targets (b = −0.42, SE = 0.06, t =
−6.5). There was also a significant salience × peripheral
scotoma interaction (b = 0.43, SE = 0.08, t = 5.27),
indicating that the effect of target salience was reduced
for the peripheral scotoma. The interaction between
salience and central scotoma was not significant
(Table 2).

The type of the simulated scotoma also affected
fixation durations, which were shortest in the no-
scotoma control condition and longest when searching
with a peripheral scotoma (Figure 10b). The effect of
scotoma type on fixation durations was tested using
backward difference coding (Table 2). The LMM results
substantiated that fixation durations were significantly
longer during search with a central scotoma than
during search without a scotoma (C-No: b = 17.09, SE
= 4.5, t = 3.8). For the peripheral scotoma, fixation
durations were significantly increased compared to
the central scotoma (P-C: b = 18.79, SE = 6.33, t =
2.97). As in Experiment 1, there was also a significant
main effect of target salience with shorter fixation
durations for high-salience compared to low-salience
targets (b = −12.24, SE = 2.12, t = −5.78). The
salience effect was significantly reduced for the central
scotoma compared to the no-scotoma control condition
(salience × C-No interaction: b = 11.58, SE = 4.07, t
= 2.85). The salience effect was further reduced for the
peripheral scotoma compared to the central scotoma
(salience × P-C interaction: b = 10.29, SE = 4.23,
t = 2.43).
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Figure 10. Mean saccade amplitudes (a) and fixation durations (b) in Experiment 2 as a function of target salience and scotoma type:
red: central scotoma; blue: peripheral scotoma; black: no-scotoma control condition. Error bars are within-subjects standard errors.

Figure 11. Mean fixation durations in Experiment 2 as a function of target salience, scotoma type, and whether the target was outside
(a) or inside (b) the scotoma window that moved with the participants’ eyes. Error bars are within-subjects standard errors. N =
number of observations for a given scotoma-type condition.

Control analyses
With a peripheral scotoma, the target was not

visible to the observer during their initial fixation
at the center of the scene. During most subsequent
valid fixations, the target remained invisible because
it was outside the window in which scene content
was available. Thus, search initiation times, saccade
amplitudes, and fixation durations should be unaffected
by target salience in this condition. To test this
explicitly, we specified additional LMMs using dummy
coding and the peripheral scotoma as reference
level. In such a model, the simple effect for target

salience represents the salience effect for the peripheral
scotoma. No significant salience effects were found
(search initiation times: b = −0.52, SE = 6.32, t =
−0.08; saccade amplitudes: b = −0.03, SE = 0.04,
t = −0.87; fixation durations: b = −0.02, SE = 0.01,
t = −1.64).

Results from existing studies suggest that visual
information within both foveal, parafoveal, and
peripheral vision can influence fixation duration
(Einhäuser, Atzert, & Nuthmann, 2020, for review).
Therefore an additional analysis explored whether
effects of target salience on fixation duration arise
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from both central and peripheral processing. For each
individual fixation, we determined whether the target
was inside or outside the circular window that was used
to create the two scotomas. As an approximation, the
midpoint of the target was used for this evaluation.
For the central scotoma, the target was visible if it was
outside the window (see Figure 7b), and invisible if it
was inside the window. Conversely, for the peripheral
scotoma the target was visible if it was inside the
window, and invisible if it was outside the window
(see Figure 7c). We expected target salience to only
modulate fixation durations if the target was visible.
The data are consistent with this prediction. For
the central scotoma, the salience effect was present
when the target was outside the window (Figure 11a),
whereas it was absent when the target was inside the
window (Figure 11b). For the peripheral scotoma, a
salience effect emerged if the target was inside the
window (Figure 11b), whereas it was absent when the
target was outside the window (Figure 11a). For the
no-scotoma control condition, where the target was
always present, the salience effect was present for both
types of fixations. Interestingly, the data also suggest
that fixation durations during search with the central
scotoma were not elevated when the target was visible
in the periphery (Figure 11a). Given the post hoc
nature of this explorative analysis, no formal statistical
analyses were conducted. The number of cases in which
the target was outside the window during the fixation
amounted to 88% (see Figure 11 for a breakdown).
This is why the analysis of all valid fixations yielded
no salience effect for the peripheral scotoma and
a reduced salience effect for the central scotoma
(Figure 10b).

General discussion

Previous research on visual search has demonstrated
that eye guidance by visual salience can be moderated,
or even completely overridden by top-down guidance
(Einhäuser, Rutishauser, & Koch, 2008; Henderson et
al., 2009; Underwood & Foulsham, 2006). Accordingly,
the role of visual salience has been marginalized in the
literature on active search through eye movements.
Using a letter-in-scene search task, we demonstrate in
two experiments that visual salience can affect both
the process of localizing the target in space and the
process of accepting the target as the target. Moreover,
in Experiment 1 we found an interaction between target
salience and size, and that foveal vision was relatively
unimportant even for small low-salience targets. Results
from Experiment 2 showed that salience affected eye
guidance during search in both central and peripheral
vision.

The role visual salience plays during search was first
investigated using simple displays which observers are
asked to search covertly; that is, without making eye
movements (Wolfe, 2015, for review). A complementary
approach is to record eye movements during visual
search for a target in relatively large and dense arrays
(Rutishauser & Koch, 2007). Using this approach,
Zhaoping and Guyader (2007) compared two efficient
simple feature search tasks with two inefficient search
tasks. The inefficient search tasks varied in difficulty
because of differences in target-distractor similarity.
Scanning times were longer for the inefficient searches
than for efficient pop-out searches. For the two
inefficient searches, the authors observed differences in
verification time (dubbed eye-to-hand latency) but not
scanning time. Thus visual salience can affect target
localization and verification in densely packed arrays
of simple stimuli, in a manner that is specific to the
respective task (see also Zhaoping & Frith, 2011).

Investigating the causal influence of features on
gaze guidance during scene search requires one to
use an experimental approach in which objects or
regions in natural scenes are manipulated (Foulsham
& Underwood, 2007). In the studies reviewed in the
Introduction, the approach has been to select targets
based on the output from versions of a popular
saliency map model. When manipulating properties of
real-world objects in naturalistic scenes, it is impossible
to exert perfect experimental control over relevant
dimensions. Therefore the possibility exists that—in
some existing scene sets—visual salience is confounded
with other variables like object size, eccentricity, and
semantic congruency. To address these issues, we used
the T.E.A. (Clayden et al., 2020) to parametrically
manipulate target salience and size in a letter-in-scene
search task. In this task, the location of the target is not
predicted by the meaning of the scene or by the identity
of objects in the scene. Our task still approximates
natural behavior because there are real-world searches
for which there is minimal guidance by scene context
(e.g., search for a fly). Moreover, scene processing
and object identification are not totally suppressed
when searching for a “T” overlaid onto the scene
(T. H.W. Cornelissen & Võ, 2017). One caveat regarding
generalizing from letter search to object search in scenes
is that the letter targets tend to violate the physical rules
of the scene environment in which they appear, such as
gravity and surface reflectance. Additionally, although
we used images of naturalistic scenes to improve the
ecological validity of the search task, these scenes
are still two-dimensional static representations of the
environment, and so generalization to the natural world
should be made with caution.

In both of our experiments, we found main effects of
salience with faster search times for high-salience than
for low-salience targets. Existing research has provided
inconsistent results in this regard. On the one hand,
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null effects were found in studies in which targets were
real objects in composed scene photographs (Foulsham
& Underwood, 2007; Underwood et al., 2008). On
the other hand, salience did affect search times when
scene cutouts were used as targets (Foulsham &
Underwood, 2011, Experiment 1). In the latter study,
salience affected verification time only, but not the
latency to first fixation on the target (i.e., search
initiation time plus scanning time). In contrast, our
results demonstrate that visual salience can facilitate
both eye-movement guidance to the target as well as
target verification. The different results may be due to
differences in the task requirements. We used a target
acquisition task (Zelinsky, 2008) whereas Foulsham
and Underwood (2011) required observers to decide
about the presence/absence of the target. Moreover,
their targets were much bigger (6° squares) than ours.
These design features may also account for the fact that
their mean verification times were more than twice as
long as scanning times.

Using context-free targets in our experiments
implied that scene context and semantic relationships
could not facilitate search guidance. An alternative
approach is to disrupt scene context by “scrambling”
the images (Biederman, 1972). In a study by Foulsham,
Alan, and Kingstone (2011), observers searched for
contextually relevant targets against intact or scrambled
scene backgrounds. Correlational analyses suggested
that more salient targets were fixated more quickly in
scrambled scenes only.

In sum, our results provide an existence proof that
eye guidance by visual salience is possible during
active search in naturalistic scenes. Depending on
the specific task demands, this bottom-up guidance
can be moderated or completely overridden by
top-down guidance (Einhäuser et al., 2008; Foulsham &
Underwood, 2007; Henderson et al., 2007; Henderson
et al., 2009; Underwood & Foulsham, 2006; Underwood
et al., 2006; Underwood et al., 2008).

In Experiment 1, we also manipulated the size of
the target and found that large targets were easier and
faster to find than small targets (cf. Clayden et al.,
2020). As a novel result, we not only found independent
effects of target salience and size, but also an interaction
between the two variables. For search accuracy, the
salience effect was only present for small targets, and
the size effect was only present for low-salience targets.
For scanning times, verification times, and search times,
the interaction implied that the effect of target salience
was larger for small than for large targets (Figure 5).
Future work could involve testing whether the size ×
salience interaction generalizes from letter search to
object-based fixation selection in scenes (cf. Nuthmann
et al., 2020; Stoll et al., 2015). More generally, our
results lend support to the view that saliency models
may be enhanced by addressing the size feature more
explicitly (Borji et al., 2013b).

The results for the foveal, central, and peripheral
scotomas tell us how important the different regions of
the visual field are for visual search and its subprocesses.
During search with any type of scotoma, observers
were significantly less likely to find the target than with
normal vision. However, when the target was found
despite the presence of a simulated foveal scotoma
(Experiment 1), search times were not much elevated
(Figure 5a, Table 1). In contrast, the presence of
a central or peripheral scotoma (Experiment 2) led
to clear search time costs (Figure 9a, Table 2). As
expected, the peripheral scotoma was much more
detrimental than the central scotoma, confirming
that eye movements are guided by peripheral
vision.

Analyzing sub-processes of search allowed for testing
the assumption of a central-peripheral dichotomy
according to which peripheral vision is mainly for
selecting or looking, while central vision is mainly
for seeing or recognizing (Zhaoping, 2019). In
Experiment 1, we found that verification times, but
not scanning times, were significantly prolonged when
searching with a foveal scotoma (see also Clayden et al.,
2020). In Experiment 2, we found that scanning times
were prolonged for the peripheral but not for the central
scotoma, whereas verification times were prolonged
for the central scotoma but not for the peripheral
scotoma (cf. Nuthmann, 2014). Collectively, the data
highlight the importance of peripheral vision for target
localization, and the importance of foveal and central
vision for target verification. This pattern of results
is consistent with the central-peripheral dichotomy
(Zhaoping, 2019).

The interaction between salience and type of
scotoma informs us about the role target salience
plays in central and peripheral vision (Experiment 2).
A central question concerned the degree to which
target salience affects localization in the periphery
and verification in central vision. In the normal vision
baseline condition, both scanning and verification
time showed a significant advantage for high-salience
targets.

By comparison, the peripheral scotoma weakened
the effect of target salience on scanning time (Figure 9c)
and also total search time (Figure 9a). This finding is
different from results by Foulsham and Underwood
(2011). In their Experiment 2, the authors used a
gaze-contingent 6° square window to selectively
remove image features from the periphery. They tested
three image features that are important for saccade
target selection under the saliency map hypothesis:
(1) color, (2) high-spatial frequency information,
and (3) contrast (i.e., the contrast of the image was
globally lowered). If saliency in peripheral vision
was guiding eye movements toward the target,
then peripheral filtering should eliminate or at least
diminish the effect of target salience. Contrary to
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these predictions, the authors found a significant
salience effect on the latency to first fixate the target
in all three filtering conditions. Unfortunately, their
Experiment 2 lacked a full-vision control condition.
Moreover, the filtering manipulations left some of the
saliency map representation intact. By comparison,
the peripheral scotoma in our Experiment 2 blocked
out peripheral vision completely. Compared with the
no-scotoma control condition, we observed a greatly
diminished effect of target salience during target
localization, as indexed by scanning time (Figure 9c).
Our results therefore suggest that salience in peripheral
vision was guiding eye movements towards the
target.

The central scotoma increased the effect of target
salience on verification time (Figure 9d, Table 2).
Compared with the no-scotoma control condition,
mean target verification times were not only elevated,
but they also showed a significantly increased effect
of target salience. Thus our results not only suggest
that central vision benefits target verification (cf.
Nuthmann, 2014), but also that this subprocess of
search is influenced by target salience. The increase
in the salience effect for verification times was large
enough to produce an increased salience effect on total
search time as well (Figure 9a, Table 2).

The data from both experiments replicate the
well-known “windowing effect” on saccade amplitudes,
which reflects a tendency to fixate more locations
in the nondegraded scene area than the degraded
area (Loschky & McConkie, 2002; Miellet et al.,
2010; Nuthmann, 2014; Reingold & Loschky, 2002).
Moreover, the present results replicate the finding
that fixation durations are elevated in the presence
of an artificial scotoma (Clayden et al., 2020; Miellet
et al., 2010; Nuthmann, 2014). In our experiments,
we experimentally manipulated properties of the
search target, and our analysis of saccade amplitudes
and fixation durations considered the entire search
period. On a given fixation, the target was situated
in either foveal, central, or peripheral vision, where
it could be obscured by a simulated scotoma or not.
In Experiment 1, global eye-movement parameters
were affected by target properties such that large
targets and high-salience targets were associated
with shorter saccade amplitudes and shorter fixation
durations; for target size, similar results were obtained
by Clayden et al. (2020). Interestingly, significant effects
of target size and salience were already present for
the duration of the very first fixation, measured as
search initiation time (Figure 5b, Table 1). Previous
research has demonstrated that the “story,” or gist,
of a scene can be gleaned from it within around 100
ms of the onset of a scene (Oliva, 2005; Potter, 1975).
Scene gist is typically perceived without recognizing
any individual object. Therefore we tentatively propose
that observers, during the first glance of the scene, may

form a hypothesis about the scene’s search difficulty
in terms of target size and salience and globally
adjust their fixation durations and saccade amplitudes
accordingly.

In Experiment 2, we replicated effects of target
salience on saccade amplitudes, fixation durations,
and search initiation times (Table 2). Interestingly,
the results for the scotoma conditions in both
experiments provide clues about necessary conditions
for these effects to occur. The peripheral scotoma in
Experiment 2 prevented observers from analyzing
the scene gist and covered the target during most
fixations, including the very first. In this condition,
no differences for low- and high-salience targets were
observed for saccade amplitudes and search initiation
times; the same was true for fixation durations, as long
as the target was outside the window in which scene
content was visible. For saccade amplitudes, the effect
of target salience was unchanged when searching with
a foveal scotoma (Experiment 1) or with a central
scotoma (Experiment 2). For fixation durations, the
effect of target salience was reduced when searching
with a foveal scotoma. For the central scotoma, the
salience effect was present when the target was visible
(outside the scotoma) and absent when it was not
visible because of being masked by the scotoma. When
all valid fixations were analyzed together, the salience
effect was therefore smaller in the central-scotoma
condition than in the no-scotoma control condition.
Collectively, the data suggest that the salience effect
on fixation durations arises from both foveal, central,
and peripheral processing. Moreover, peripheral vision
needs to be intact to observe effects of target salience
on saccade amplitudes.

Conclusions

Methodologically, reliably disentangling stimulus-
driven and task-driven influences on human behavior
requires researchers to exert experimental control over
relevant stimulus dimensions, which is challenging
when working with images of naturalistic scenes. Here,
we placed context-free targets within scenes using
the T.E.A. (Clayden et al., 2020), which allowed us
to manipulate their salience and size parametrically.
When using these stimuli for a target acquisition task
in two experiments, clear effects of target salience on
search performance and eye-movement parameters
were found. Moreover, the results obtained in different
simulated scotoma conditions lend further support to
the central-peripheral dichotomy (Zhaoping, 2019).

Keywords: naturalistic scenes, visual search, visual
salience, eye movements, simulated scotomas
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Footnotes
1The code for the T.E.A. is available at https://github.com/
AdamClayden93/tea.
2Compared to the five target sizes that were tested in the two experiments
of Clayden et al. (2020), our small targets correspond to their intermediate
targets, whereas our large targets correspond to their large targets.
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Appendix A: Mathematical
definition of local contrast

As a measure of visual salience, the root-mean-square (RMS) contrast was calculated as

RMS (R,C) = 1
p̄Img

√√√√√ 1(
(2L + 1)2 − 1

)
R+L∑

r=R−L

C+L∑
c=C−L

(p (r, c) − p̄ (R,C))2

where L is either 11 (patch width 23) or 23 (patch width 47), p(r,c) is the pixel value at row r and column c, p̄(R,C) is
the mean of the patch calculated as

p̄ (R,C) = 1
(2L + 1)2

R+L∑
r=R−L

C+L∑
c=C−L

p (r, c)

and p̄Img is the mean of the image.

Appendix B: Distribution of search
targets in the scenes

Figure B1. Positions of search targets in the 120 scenes used in Experiments 1 and 2. The light blue dots represent the positions of the
low-salience targets, whereas the salmon dots represent the positions of the high-salience targets. The cross is the central fixation
cross, and the circle with solid perimeter represents the central viewing area (radius 3°).
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Appendix C: Mixed-model
specification for Experiment 1

The mixed-model equation for the 2 × 2 × 2 within-subjects design of Experiment 1 is

ysi = β0 + bs0 + bi0 +
7∑

k=1

(βk + bsk + bik) xksi + esi

where y denotes the dependent variable, β denotes fixed effects, b denotes random effects, and e denotes the residuals.
The index s represents subjects (1 ≤ s ≤ Nsub), whereas the index i represents images/items (1 ≤ i ≤ Nitems). The index
k identifies the intercept and the contrasts: k = 0, intercept; k = 1, target size; k = 2, target salience; k = 3, foveal
scotoma; k = 4, size × salience; k = 5, size × scotoma; k = 6, salience × scotoma; k = 7, size × salience × scotoma.

For the maximal random effects structure, the variance-covariance matrix for by-subject random effects is given by

�s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

var(bs0) cov(bs0, bs1) cov(bs0, bs2) cov(bs0, bs3) cov(bs0, bs4) cov(bs0, bs5) cov(bs0, bs6) cov(bs0, bs7)
cov(bs1, bs0) var(bs1) cov(bs1, bs2) cov(bs1, bs3) cov(bs1, bs4) cov(bs1, bs5) cov(bs1, bs6) cov(bs1, bs7)
cov(bs2, bs0) cov(bs2, bs1,) var(bs2) cov(bs2, bs3) cov(bs2, bs4) cov(bs2, bs5) cov(bs2, bs6) cov(bs2, bs7)
cov(bs3, bs0) cov(bs3, bs1) cov(bs3, bs2) var(bs3) cov(bs3, bs4) cov(bs3, bs5) cov(bs3, bs6) cov(bs3, bs7)
cov(bs4, bs0) cov(bs4, bs1) cov(bs4, bs2) cov(bs4, bs3) var(bs4) cov(bs4, bs5) cov(bs4, bs6) cov(bs4, bs7)
cov(bs5, bs0) cov(bs5, bs1) cov(bs5, bs2) cov(bs5, bs3) cov(bs5, bs4) var(bs5) cov(bs5, bs6) cov(bs5, bs7)
cov(bs6, bs0) cov(bs6, bs1) cov(bs6, bs2) cov(bs6, bs3) cov(bs6, bs4) cov(bs6, bs5) var(bs6) cov(bs6, bs7)
cov(bs7, bs0) cov(bs7, bs1) cov(bs7, bs2) cov(bs7, bs3) cov(bs7, bs4) cov(bs7, bs5) cov(bs7, bs6) var(bs7)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where var(.) denotes the variance and cov(.,.) the covariance matrix. Similarly, the variance-covariance matrix for
by-item random effects is given by

�i =

⎛
⎜⎜⎝

var(bi0)
cov(bi1, bi0) var(bi1)

...
... . . .

cov(bi7, bi0) cov(bi7, bi1) · · · var(bi7)

⎞
⎟⎟⎠ .

In summary, the fixed-effects structure includes seven contrasts (three main effects, three two-way interactions, one
three-way interaction). Consequently, the maximal random-effects structure would require estimating 72 parameters
(by subject: random intercept, 7 random slopes, 28 correlation terms; by item: same as by subject).
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