This is an Accepted Manuscript of the following article:

The published version of the article is available here:

https://journals.lww.com/nsca-scj/Abstract/9000/The_Flywheel_Paradigm_in_Team_Sports__A_Soccer.99263.aspx
The Flywheel Paradigm in Team-Sports: A Soccer Approach

ABSTRACT
Strength training is a key strategy to improve performance and injury prevention in team-sports. Accordingly, several methods have been used, although due to the benefits reported after training based on eccentric contractions, the use of flywheel devices (FW) has extended within the periodization of strength training of team-sports. However, nowadays, there is no clear consensus about the parameters used to optimize the training effects. This article examines the research behind these claims and attempts to draw evidence-based conclusions as to the practical implications for a precise use of FW with team-sports players, attending to their specific demands and objectives.

KEYWORDS
Strength, eccentric-overload, in-season, performance, injury prevention.

INTRODUCTION
In most team-sports (e.g., soccer, basketball, rugby, handball or volleyball), players are required to perform a great amount of high-intensity actions (HIA) such as jumps, accelerations, linear sprint and change-of-direction (COD) (11, 77, 86), in order to achieve a great on-field competitive performance (1, 2, 12). In this sense, the most determinant actions in team-sports are preceded by at least one powerful action, for example, straight line sprint prior to a goal in soccer (30), jumping higher than an opponent to plug a shot in basketball (63) or withstand contact and blows during a handball throw (64), which underline the importance of these actions during match-play. Players require high levels of physical conditioning to exhibit HIA, technical and tactical skills throughout a game (85). Regarding this, higher relationships between power outcomes (i.e., application of the maximum force able to be applied in short-time periods) and HIA in team-sports were observed (84). Therefore, it seems that the ability to generate maximal power is related to a players’ athletic performance (22) and thus, an appropriate strategy aimed at maximizing on-field performance in team-sports is considered crucial (16).

Several resistance training programs have been conducted to improve the HIA performance in team-sport players, although most of them have focused on and are limited by applying loads during the concentric (CON) phase of the movement (i.e., the muscle tension rises to overcome the resistance and then remains stable as the muscle shortens) (83). However, the advantages of training under an eccentric (ECC) regimen (i.e., the muscle lengthens as the resistance becomes greater than the force the muscle is producing) (60), has led to the development of new devices (i.e., YO-YO technology and Versapulley) which allow a greater application of load during the ECC phase while reproducing the stretch-shortening cycle (i.e., CON+ECC phases). Additionally, training with these devices following a series of indications (e.g., to delay the braking action to the last third of the ECC phase), favour the presence of greater load during the ECC phase than the CON one, which is named eccentric-overload (6).

The aforementioned devices are based on the Flywheel (FW) paradigm, which is characterized by producing unlimited resistance during the entire range of motion (60). During the CON phase, the force applied allow for the unwinding of the cord/strap connected to the shaft within the device, which starts to rotate and store energy. Once the CON action is completed, the cord/strap rewinds and the participant must resist the pull of the device by braking, generating an ECC action (5). Due to its specific characteristics,
training through these devices leads to the increase of muscle mass (60,87) as well as improvements in various sports actions such as jumping (38,62), linear sprint (57,82) and COD (50,56). In addition, using these devices has shown positive effects in the prevention of sports injuries (4,50). However, no official guidelines exist about FW training at the moment. Therefore, this review aims to increase the knowledge about FW training in order to optimize its use for practitioners in team sports athletes’ performance, specifically for those involved in soccer practice.

FW PARADIGM AND SPORTING ACTIONS

Vertical Jump Performance

Traditionally, plyometric training has been considered as an effective strategy to improve vertical jump ability in athletes (81,91), due to the high eccentric load produced and the involvement of high-speed stretch-shortening cycle (SSC), which is carried out in any sport specific task (76). Since FW paradigm is based on the repetition SSC increasing the ECC load due to an inertia (61,62), substantial improvements in team-sport players’ vertical jump ability, measured though the countermovement jump (CMJ), have been reported. In this sense, several studies have used the half-squat FW exercise (38,40,62), proposing a training load of 4-6 sets of 6-10 reps at maximal velocity for a duration of 6-24 weeks, reporting improvements in CMJ of 3.26-10% in team-sport athletes. Other exercises (i.e., leg press and lateral half-squat) or the combination of two exercises in the same training program (i.e., half-squat + lunge or half-squat + leg curl) have been used to improve the CMJ performance in team-sport athletes, ranging from 4.53 to 9.80 % (50,57,62,69). On the other hand, previous studies have not observed improvements in the vertical jump ability after the application of resistance training programs based on the FW paradigm (38,72,78,89). These studies were characterized by using multi-exercise programs, focused on different movement vectors (i.e., vertical, horizontal and diagonal), and consequently, with lower training volume in relation to the vertical vector, while in those previous studies in which the CMJ performance was improved, vertical exercises were predominantly used. Therefore, and despite being a novel methodology, we must not forget the classical training principles (i.e., principle of specificity) (39), which should be applied to the training programs based on the FW paradigm.

Linear Sprint
Throughout the literature, several distances have been used to assess the linear sprint performance in team athletes (19,50,82). In this sense, shorter distances (e.g., 5-10 m) are associated with a higher incidence of acceleration ability, while longer distances (e.g., 30-40 m) are needed to assess maximum speed, mainly in adult athletes (17,41). Several studies have included experimental protocols based on FW paradigm for the improvement of the linear sprint, however, these studies presented inconsistent findings (3,20,89,37,48,49,56,61,73,77,82). Regarding this, some authors have observed improvements in both short and long sprint distances (4,38,57,78,82), while other authors failed to improve the performance of athletes in linear sprint through these training programs, mainly over short distances (21,49,50,62,74,89). These results seem to be conditioned by three fundamental aspects. At first, it is believed that the performance in sprint tests depends largely on genetic factors, obtaining only relatively small improvements thanks to the training effect (73). Secondly, the individual adaptation potential of each athlete clearly influences the effects of a training program, making it more difficult to achieve improvements with highly trained professional athletes (54). Thirdly, it is known that sprint performance is the product of stride speed and stride length, in addition to numerous anthropometric components that influence this product (73). Therefore, a key component for the improvement of sprint performance through the FW paradigm may be the application of individualized training programs.

Changes of direction
COD maneuver is characterized by a high braking action followed by an immediate requirement of high propulsive forces to accelerate (52), similar to the movement pattern required during FW tasks’ execution in the transition from ECC to CON phase (88). Therefore, and in accordance with the mentioned principle of specificity (42), it is expected that significant improvements were obtained in COD ability after strength training based on the FW paradigm. In this sense, the literature collects positive effects of this methodology in different COD tests and distances, as well as assessing both sports performance (21,38,57,69,89) and kinetics parameters (51). Attending to only-one COD maneuver tests (i.e., L-run with different turning angles and distances), Gonzalo-Skok et al. (38) showed substantial improvements in COD 45º 2m performance in both legs after the application of two FW training program configurations (i.e., vertical movement vs. multidirectional movements), while only the group who participated with the second configuration improved the COD 45º 10m performance. Similarly, Nuñez et al. (62)
observed improvements in COD 90° 10m performance in both legs after a unilateral program but only in the dominant leg with the bilateral program. Finally, Raya-González et al. (69) only increased the COD 90° 20m performance in the left leg after a 6 weeks training program based on the lateral squat. On the other hand, improvements between 5 to 12% were observed in those studies which assessed the COD ability through multiple COD maneuver tests (i.e., T-test, 0-30m non-lineal sprint test and V-cut test) (21,57,78,89). Most of the aforementioned studies applied 2 sessions/week, mainly for 6 weeks, while in those in which only one weekly session was held, the experimental period was extended from 8 to 11 weeks (Table 1).

FW AND INJURY PREVENTION

Team-sports such as handball, basketball, soccer or Australian football are characterized by the unpredicted repetition of HIA over the course of the games, which involve an inherent risk of injury for athletes (79). Since injuries are one of the major problems that team-sport athletes have to face throughout their careers (29) due to its negative impact on team performance (43) and economy (28), great efforts have focused on reducing the injury incidence (68). In this regard, strength training has shown significant benefits in terms of reducing likelihood of injury (55), either preparing muscles and tendons to resist strains produced by high-intensity actions (20), reducing muscular asymmetries (37), modifying the angle of peak torque towards longer muscle lengths (10), or allowing a player to activate the required muscles suddenly and with adequate force-level ahead of unpredictable situations (25). Due to the fact that these effects are magnified thanks to the application of ECC loads (61) and the muscle's injury risk is influenced by its capacity to generate or absorb force during the ECC phase (32), it seems beneficial to include strength sessions additionally to standard on field training sessions across the team athletes’ periodization in order to improve ECC power, and consequently to reduce the injury risk. Regarding this, FW devices are considered a valid alternative to traditional strength training programs in order to generate load during the ECC movement phase (61), allowing high-velocity executions as well as reproduction of specific sporting movement patterns. Thus, previous studies have analyzed the effects of strength training programs based on the FW paradigm in team-sports athletes’ injury incidence. For example, De Hoyo et al. (50) applied a FW training program based on the half-squat and leg curl exercises in U-19 elite male soccer players and substantially reduced the severity of injuries (from 5.9 ± 8.2 to 1.9 ± 1.8 absence days), despite no differences in injury
incidence being observed (effect size = 0.18; possibly). On the other hand, Askling et al. (4) showed a significant lower number of hamstring injuries (3 versus 10) after the application of a 10-week eccentric-strength training program amongst professional soccer players. These results observed in the aforementioned studies revealed the beneficial effects of training programs based on the FW paradigm on injury rate and severity.

##Insert Table 1 near here, please##

CONSIDERATIONS FOR FW PARADIGM TRAINING PRESCRIPTION: A SOCCER PRACTICAL APPROACH

Soccer is a team-sport that requires high levels of physical conditioning to allow players to exhibit their technical and tactical skills throughout a game (45). Players are exposed to greater physical and physiological demands during the soccer-specific context, both during training sessions and matches (18). In line with this, higher strength and power levels, and more concretely greater capacity to produce a maximal amount of power in a minimum amount of time period (85), are related with successful soccer players (3,93). So, power training has great interest (22,24) because of its association with the likelihood to achieve sport success. Regarding this, ECC-oriented power training seems to be an interesting alternative for soccer players (82) since most of the performance determining actions in this sport (i.e., COD, landings and jumps) requires them to perform ECC muscle contractions at high-velocity (70). In addition, different studies have concluded that strength gains are magnified when combining CON and ECC movement phases in the same exercise compared to the use of isolated CON or ECC actions (46,47), so incorporating training sessions based on the FW paradigm into a soccer teams’ schedule could be an interesting strategy to improve their performance while reducing the injury risk.

Despite the results obtained with soccer players (i.e., improvements in vertical jump, linear sprint and change of direction abilities), this methodology must be used with caution, periodizing training load and recovery periods adequately, due to ECC actions generated by FW devices could imply acute reductions in maximal isometric voluntary contraction values (14) as well as greater levels of fatigue and muscle damage (13), mainly when players start working with these devices (31). Regarding this, it is necessary to be aware that soccer schedules are often chaotic in nature and constantly changing, due
to several factors which may include television rights and progression through knock-out tournaments (92). These handicaps characterize soccer as a sport with a highly dense competitive period, where multiple matches can be played per week (26), significantly hindering training periodization, and even minimizing the number of weekly training sessions, which are mainly aimed at post-effort recovery and activation for the competition. Additionally, differences between teams, starters and non-starters and matches per week influence the amount of time available to train and thus further complicates the organization of training. These aspects must be considered when locating strength training using FW devices in soccer periodization.

In response to the specific demands and objectives of soccer, as well as the characteristics of this sport, the following methodology is proposed for training with FW devices, based on some key variables (i.e., type of programs, exercises, density, volume, intensity, recovery, familiarization, weekly frequency and blocks’ duration) (Table 2).

MULTI-EXERCISE PROGRAMS

Given the nature of soccer movement directions (i.e., horizontal, vertical and rotational), it seems necessary to combine exercises that emphasize the application of force in each of these directions, being also a time-efficient protocol. This is also justified by the fact that the force-vector application may play an important role in developing different and specific functional adaptations (38). Additionally, considering that the rotational movements demand high loads to players (53), other types of exercises (i.e., compensatory [exercises that involve muscle groups not included in the main exercises of the workout, with the aim of achieving a harmonious and multilateral development of the player reducing deficits and asymmetries] and complementary [mono-articular or analytical exercises whose objective is to strengthen the specific muscles to obtain different benefits]) should be added to attenuate the decompensatory effects generated by these aggressive loads, as well as by the soccer practice.

SEQUENCES

Soccer is dominated by acyclic actions defined as situations of an intermittent nature, which include periods of high intensity that are interspersed with others of low intensity (77), so it seems necessary to use a configuration for strength training programs based on the FW paradigm that allows to alternate between different acyclic actions in order to
comply with the specificity principle (80). In this sense, an interesting option is the sequence of exercises, which also allows for the greater time efficiency and stimulus variability (23,27). Some authors indicated (79) that sequences in strength training programs could be performed following to different configurations (79). On one hand, sequences which develop one area mainly (e.g., hamstrings), and on the other hand sequences which develop several areas (e.g., hamstrings, quadriceps and core muscles). Sequences could include primary (i.e., FW exercises) and secondary (i.e., compensatory and complementary) exercises, and the proportion of each type depend on the main goal (e.g., prevention or performance), and it is related to the recovery needs (22). Finally, previous studies have postulated the need to include several elements (e.g., instability, concurrent vibratory stimuli, and unexpected and antiphase movements) to find an optimal degree of fluctuations between exercise progressions to optimize the FW training programs effects (38,48).

UNILATERAL EXECUTION

Most high-intensity actions in soccer occur unilaterally (7,36) being unlikely to be performed in equal amounts using both limbs (8). In this sense, previous studies have analyzed the comparative effects of strength training programs executed bilaterally or unilaterally, involving mainly FW exercises or plyometric protocols (35,62). The aforementioned studies are conclusive and have showed an increase effect on sporting actions (i.e., jumping, sprinting and COD ability) when training programs are prescribed based on unilateral executions. Despite this, some authors (67) have observed that changes in young soccer players’ performance are specific to the modality of strength training (i.e., bilateral vs. unilateral). Thus, although a greater proportion of FW training programs must be composed of unilateral exercises, it could be interesting to combine unilateral and bilateral exercises during preparatory periods (38). On the other hand, some authors have postulated (44) that the differentiation between limbs’ force-production generate the appearance of inter-limb asymmetries in soccer players, confirming that asymmetry is a by-product of playing soccer. Regarding this, thresholds of >10% are to be accepted as cutoffs where reduced performance (9) and increased risk of injury are present (71), so one of the main objectives of the training is the reduction of inter-limb asymmetries. In this sense, Gonzalo-Skok et al. (37) observed that only the unilateral strength training program had positive effects in the reduction of asymmetries, so its use is also justified in this regard.
REDUCED REPETITIONS

Due to the chaotic nature of current elite soccer schedules, the FW-based strength training programs will be carried out mainly prior to regular on-field training, although, ideally, they would be done as different sessions with a longer recovery time. In this sense, an interesting option is to perform a reduced number of repetitions per series in relation to the maximum number of possible repetitions, in order to avoid a negative impact on subsequent training, either by reducing performance or increasing the risk of suffering an injury due to fatigue. In addition, this training load configuration seems to generate improvements of a neural nature, prioritizing structural improvements. Several authors such as González-Badillo et al. (33) and Pareja-Blanco et al. (66) have shown that performing half of the maximal repetitions reached by the athlete instead of reaching muscular/volitional failure or getting close to it produces lower impairments of neuromuscular performance and faster recovery as well as reduced hormonal responses and muscle damage. Specifically, several authors (75) studied from which repetition number there were significant ECC-power losses with respect to the best repetition in the half-squat executed in a FW device, obtaining ranges between 5 and 10 repetitions in the studied inertial loads (i.e., 0.025, 0.050, 0.075 and 0.100 kg·m⁻²). Therefore, 6-8 repetitions per series, programming 1-3 series for each sequence, seems to be adequate to optimize performance of soccer players.

MAXIMAL INTENDED VELOCITY

Given that most soccer actions are carried out at maximum intensity and an aim of strength training is to allow the players to be able to generate as much power as possible in the shortest time (85), it seems clear that during FW programs each repetition must be performed with the maximal intended velocity. Despite this and under the influence of weightlifting as the most relevant strength-based sport, many studies have analyzed the improvements on strength training exercises executed at low velocity, or without indicating lift velocity to move a certain load, although few previous studies have analyzed differences in lifting with maximal intended velocity in comparison to an intentional half-maximal velocity. In this sense, González-Badillo et al. (34) showed that performing every repetition at the maximum possible velocity compared to intentionally slower velocity resulted in considerably greater gains in strength and velocity developed against any given load. Specifically, and based on what has been previously mentioned,
most of the studies based on the FW paradigm specify that the exercises were executed at maximal velocity, with the objective of achieving a specific execution to the gestures of the sport itself.

FAMILIARIZATION/PROGRESSION

Despite the multiple reported benefits related to strength training through FW devices, it seems essential to consider two aspects in the implementation of this type of program, with the aim of optimizing its possibilities: progression and familiarization, which are closely related. Regarding this, it is essential to follow the principle of progression in order to mitigate the negative effects derived from the FW (shown above), since using an individualized progression will affect the muscles involved in a controlled manner. In addition, several authors have shown that the repeated bout effect takes place in this type of exercises, which indicates that in the case of training sessions where intense ECC actions are performed, significant muscle damage will occur, although the muscles are able to adapt, and therefore, that same session will generate less muscle damage the following occasions (59). Attending to the familiarization process, there are several previous studies that have shown that the power values generated by FW devices failed to stabilize until at least the third familiarization session with such devices (58,75,90). In addition, one of the most affected variables by the inexperience of the participants was the production of ECC-power and, consequently, the ECC-overload generated. For all these reasons, it seems essential to carry out a progression of individualized training for each player along with a wide familiarization with the FW devices to be used.

INERTIAL LOADS AND STRATEGIES TO IMPROVE ECC-OVERLOAD

As traditional exercises, the differences of using high, medium or low loads in terms of strength and power are widely studied, several authors have focused their work to characterize the FW-based strength training in response to the different inertial loads (15,58,75). In this sense, it has been assumed that the light inertial loads allow the development of higher values of movement velocity, moderate inertial loads optimize individual maximal power and high loads elicit higher levels of strength (both CON and ECC, especially), and consequently, higher ECC-overload values. From a practical point of view, medium-light loads seem adequate for optimizing sports performance, while high loads, due to the greater production of ECC-strength and ECC-overload, seem more
suitable for injury prevention. Considering this is a general proposal, it is crucial to advocate for the use and periodization of training load in an individualized, intelligent and responsible manner. Finally, several authors have reported the need to apply certain strategies, such as to provide instructions that encourage the participants to delay the braking action to the last third of the ECC phase (58), in order to optimize the presence of ECC-overload during FW programs.

SECTIONS PER WEEK
As previously mentioned, a very limited amount of time is available between weekly matches to introduce intensive strength and power-training sessions, so a normal frequency of 1 session per week in-season could be adequate. In response to this, it seems necessary during the pre-season (more time available), to incorporate a second weekly session, to familiarize players with the methodology and thus mitigate muscle damage once the player works with these devices during the season, preventing it from interfering with the performance in competition or contributing, involuntarily, to increased injury risk due to the muscle damage or fatigue generated. On the other hand, and although there are studies that show improvements after the application of 1 session per week of a training program based on the FW paradigm, mainly in the vertical jump (21,40), Otero-Esquinás et al. (65) observed that sprint values (linear and COD) only improved in soccer players who perform the training program with a frequency of 2 sessions/week.

TRAINING BLOCKS
It seems pertinent to periodize training blocks of at least 6 weeks, since it is the minimum duration used in previous studies with FW devices (57,62,69). It therefore seems a rational duration for the realization of fixed assessments, with the aim of knowing the effectiveness of training not only in terms of performance improvement, but with a preventive orientation. Regarding this, it could be adequate to assess after blocks of 6-8 weeks to know changes in muscle deficits/deficiencies that have occurred, in order to re-orient training, if necessary. If larger blocks are proposed, the assessments become more spaced in time, so it may be too late to detect deficiencies of the training programme, and that training is not fulfilling its objective of reducing injury risk, prolonging the duration players are at an increased injury risk. As a practical strategy not to interfere with the daily performance of soccer players, it would be interesting to monitor these training sessions, and use some of them as an assessment, but not part of the proposed training
itself. For this purpose, to include a rotary encoder during training sessions could be a key strategy [63].

Insert Table 2 near here, please

PRACTICAL APPLICATIONS

Training with FW devices produces several benefits, both for the improvement of sports physical performance and for injury prevention. However, the high workload encountered by soccer players and the concentrated soccer schedules should be taken into account when FW exercises are included in the training process. Specifically, the Strength and Conditioning coach must apply these FW programs in a progressive, individualized manner and following a rigorous familiarization process. In addition, aspects related to the training load (e.g., number of series and repetitions) or the selection of exercises (e.g., unilateral exercises) should be considered in the design of training programs based on the FW paradigm to optimize their conditional effects.

References

5. Beato, M, Stiff, A, and Coratella, G. Effects of postactivation potentiation after an
eccentric overload bout on countermovement jump and lower-limb muscle

asymmetries: the need for an individual approach to data analysis. J Strength Cond
Res. 1, 2018.

jump asymmetry is associated with reduced sprint and change-of-direction speed

Australian Rules football player with recurrent hamstring injuries. Phys Ther

12. Buchheit, M, Haddad, H Al, Simpson, BM, Palazzi, D, Bourdon, PC, Salvo, V Di,
et al. Monitoring accelerations with gps in football: Time to slow down. Int J
Sports Physiol Perform. 9, 2014.

13. Cardinale, M, Whiteley, R, Hosny, AA, and Popovic, N. Activity profiles and
positional differences of handball players during the World Championships in

Muscle enzyme and fiber type-specific sarcomere protein increases in serum after
2015.

15. Carmona, G, Mendiguchía, J, Alomar, X, Padullés, JM, Serrano, D, Nescolarde,
L, et al. Time course and association of functional and biochemical markers in
severe semitendinosus damage following intensive eccentric leg curls: differences
between and within subjects. Front Physiol. 9, 2018.

Characterising overload in inertial flywheel devices for use in exercise training.

17. Castillo, D, Domínguez, R, Rodríguez-Fernández, A, and Raya-González, J.
Effects of caffeine supplementation on power performance in a flywheel device: a

31. Faude, O, Koch, T, and Meyer, T. Straight sprinting is the most frequent action in

42. Al Haddad, H, Simpson, BM, Buchheit, M, Di Salvo, V, and Mendez-Villanueva,

544 2009.
546 of torsional loading of the tibia during quick change of running direction. *Int J
548 55. Keul, J, König, D, Huonker, M, Halle, M, Wohlfahrt, B, and Berg, A. Adaptation
549 to training and performance in elite athletes. *Res Q Exerc Sport.* 67: S-29-S-36,
550 1996.
551 56. Lauersen, JB, Bertelsen, DM, and Andersen, LB. The effectiveness of exercise
552 interventions to prevent sports injuries: a systematic review and meta-analysis of
554 57. Maroto-Izquierdo, S, García-López, D, Fernandez-Gonzalo, R, Moreira, OC,
555 González-Gallego, J, and de Paz, JA. Skeletal muscle functional and structural
556 adaptations after eccentric overload flywheel resistance training: a systematic
558 58. Maroto-Izquierdo, S, García-López, D, and de Paz, JA. Functional and muscle-size
559 effects of flywheel resistance training with eccentric-overload in professional
561 59. Martinez-Aranda, LM and Fernandez-Gonzalo, R. Effects of inertial setting on
562 power, force, work, and eccentric overload during flywheel resistance exercise in
564 60. McHugh, MP. Recent advances in the understanding of the repeated bout effect:
565 the protective effect against muscle damage from a single bout of eccentric
567 61. Norrbrand, L, Fluckey, JD, Pozzo, M, and Tesch, PA. Resistance training using
568 eccentric overload induces early adaptations in skeletal muscle size. *Eur J Appl
570 62. Nuñez, FJ and Sáez de Villarreal, E. Does flywheel paradigm training improve
572 2017.
573 63. Nuñez, FJ, Santalla, A, Carrasquila, I, Asian, JA, Reina, JI, and Suarez-Arrones,
574 LJ. The effects of unilateral and bilateral eccentric overload training on
575 hypertrophy, muscle power and COD performance, and its determinants, in team
577 64. Okazaki, VHA, Rodacki, ALF, and Satern, MN. A review on the basketball jump

Taber, C, Bellon, C, Abbott, H, and Bingham, GE. Roles of maximal strength and rate of force development in maximizing muscular power. *Strength Cond J.* 38:

Table 1. Summary of research investigating flywheel (FW) training programs effects on power performances and injury prevention in team sports.

<table>
<thead>
<tr>
<th>Study</th>
<th>Subject cohort</th>
<th>Training program</th>
<th>Weekly frequency</th>
<th>Duration</th>
<th>Effects on sprint performance</th>
<th>Effects on COD performance</th>
<th>Effects on jump ability performance</th>
<th>Effects on injury prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Askling et al. (4)</td>
<td>15 males, 24 ± 2.6 y, professional soccer players</td>
<td>FW leg curl (4x8 all-out reps.)</td>
<td>1-2 sessions</td>
<td>10 weeks</td>
<td>0-30 m = -2.38% (p < 0.05)</td>
<td>-</td>
<td>-</td>
<td>Lower occurrence of hamstring injuries (3 vs 10)</td>
</tr>
<tr>
<td>Coratella et al. (22)</td>
<td>40 males, 23 ± 4 y, semi-professional soccer players</td>
<td>FW squat (4-6x8 all-out reps.)</td>
<td>1 session</td>
<td>8 weeks</td>
<td>T-test = 7% (p < 0.05)</td>
<td>CMJ = 10% (p < 0.05)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gonzalo-Skok et al. (39)</td>
<td>24 males, 20.5 ± 2 y, semi-professional and amateur team-sport players</td>
<td>FW half-squat (6x6-10 all-out reps.)</td>
<td>2 sessions</td>
<td>8 weeks</td>
<td>Substantial improvements in: 0-5 m; 0-10 m; 0-20 m and 0-25 m</td>
<td>Substantial improvements in COD 45° 20 m in both legs</td>
<td>Substantial improvements in CMJ in both legs</td>
<td>-</td>
</tr>
<tr>
<td>Gonzalo-Skok et al. (39)</td>
<td>24 males, 20.5 ± 2 y, semi-professional and amateur team-sport players</td>
<td>Multi-exercise program (1x6-10 all-out reps.)</td>
<td>2 sessions</td>
<td>8 weeks</td>
<td>Substantial improvements in: 0-5 m; 0-10 m; 0-20 m and 0-25 m</td>
<td>Substantial improvements in COD 45° 10 m and COD 45° 20 m in both legs</td>
<td>Substantial improvements in CMJ only in the left leg</td>
<td>-</td>
</tr>
<tr>
<td>Gual et al. (41)</td>
<td>27 males and females, 22.5 ± 3.8 y, volleyball and basketball players</td>
<td>FW half-squat (4x8 all-out reps.)</td>
<td>1 session</td>
<td>24 weeks</td>
<td>-</td>
<td>-</td>
<td>CMJ = 3.26% (p < 0.05)</td>
<td>-</td>
</tr>
<tr>
<td>de Hoyo et al. (51)</td>
<td>17 males, 17 ± 0.1 y, professional soccer players</td>
<td>FW leg curl and FW half-squat (4-6x6 all-out reps.)</td>
<td>1-2 sessions</td>
<td>12 weeks</td>
<td>-</td>
<td>Substantial improvement of kinetic parameters during COD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>de Hoyo et al. (51)</td>
<td>18 males, 18 ± 1 y, professional soccer players</td>
<td>FW leg curl and FW half-squat (4-6x6 all-out reps.)</td>
<td>1-2 sessions</td>
<td>10 weeks</td>
<td>10-20 m = -3.08% (almost certainly)</td>
<td>Possibly improvements in 0-10 m and 0-20 m</td>
<td>CMJ = 7.28% (very likely)</td>
<td>Severity = -67.80% (very likely) Possibly improvements in incidence</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Exercise Details</td>
<td>Sessions</td>
<td>Duration</td>
<td>Improvements</td>
<td>Measures</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>--</td>
<td>----------</td>
<td>----------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Maroto-Izquierdo et al. (58)</td>
<td>15 males, 19.8 ± 1 y,</td>
<td>FW leg press (4x7 all-out reps.)</td>
<td>2-3</td>
<td>6 weeks</td>
<td>0-20 m = -10.81% (p < 0.001)</td>
<td>T-test = -6.52% (p < 0.001)</td>
<td>CMJ = 9.80% (p < 0.001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>professional handball players</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Núñez et al. (63)</td>
<td>14 males, 22.8 ± 2.9 y,</td>
<td>FW half-squat (4x7 all-out reps.)</td>
<td>2</td>
<td>6 weeks</td>
<td>Unclear improvements in 0-10 m</td>
<td>COD 90° dominant leg = -3.19% (very likely)</td>
<td>CMJ = 5.40% (likely)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>team sport players</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Núñez et al. (63)</td>
<td>13 males, 22.6 ± 2.7 y,</td>
<td>FW lateral half-squat (4x7 all-out reps.)</td>
<td>2</td>
<td>6 weeks</td>
<td>Possibly improvements in 0-10 m</td>
<td>COD 90° 10 m dominant leg = -5.51% (likely)</td>
<td>CMJ = 4.53% (likely)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>team sport players</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raya-González et al. (70)</td>
<td>8 males, 14.7 ± 0.3 y,</td>
<td>FW lateral half-squat (4x8 all-out reps.)</td>
<td>2</td>
<td>6 weeks</td>
<td>No substantial improvements in 0-20 m and 0-30 m</td>
<td>COD 90° left leg = -6.33% (very likely)</td>
<td>CMJ = 5.33% (likely)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>professional soccer players</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabido et al. (75)</td>
<td>11 males, 23.9 ± 3.8 y,</td>
<td>FW half-squat (4x8 all-out reps.) and FW lunge (2x8 all-out reps.)</td>
<td>1</td>
<td>15 weeks</td>
<td>-</td>
<td>-</td>
<td>No significant improvements in CMJ (p < 0.05)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>professional handball players</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sánchez-Sánchez et al. (79)</td>
<td>5 males, 23.7 ± 5.5 y,</td>
<td>Multi-exercise program (4x6-8 all-out reps.)</td>
<td>1</td>
<td>8 weeks</td>
<td>0-30 m lineal = -2.78% (p < 0.05)</td>
<td>0-30 m non-lineal = -12.73% (p < 0.01)</td>
<td>No substantial improvements in CMJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>semi-professional futsal players</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suárez-Arrones et al. (83)</td>
<td>14 males, 17.5 ± 0.8 y,</td>
<td>Multi-exercise program (1-2x6-8-16 all-out reps.)</td>
<td>2</td>
<td>27 weeks</td>
<td>Substantial improvements in: 0-10 m; 0-30 m and 0-40 m</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>professional soccer players</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tous-Fajardo et al. (90)</td>
<td>12 males, 17.0 ± 0.5 y,</td>
<td>Multi-exercise program (2x6-6-10 all-out reps.)</td>
<td>1</td>
<td>11 weeks</td>
<td>Unclear improvements in 0-10 m and 0-30 m</td>
<td>V-cut test = -5.50% (almost certainly)</td>
<td>Possibly improvements in CMJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>professional soccer players</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Abbreviations: COD: change of direction; CMJ: countermovement jump.
Table 2. Key variables to develop the Flywheel (FW) methodology in soccer players.

<table>
<thead>
<tr>
<th>Blocks’ duration</th>
<th>6-8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly frequency</td>
<td>1 session/week during in-season; 2 sessions/week during pre-season</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td>Sets</td>
<td>1-3 sets/sequence</td>
</tr>
<tr>
<td>Repetitions</td>
<td>6-8 repetitions/set</td>
</tr>
<tr>
<td>Intensity</td>
<td></td>
</tr>
<tr>
<td>Inertial loads</td>
<td>Light-high for performance; High for injury prevention</td>
</tr>
<tr>
<td>Movement velocity</td>
<td>Maximal intended velocity</td>
</tr>
<tr>
<td>Recovery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 min between sets; 3 min between sequences</td>
</tr>
<tr>
<td>Density</td>
<td></td>
</tr>
<tr>
<td>1:1 injury prevention</td>
<td>1:1 injury prevention; 2:1 performance (focused on several muscle groups); 1:1 and 1:2 performance (focused on one muscle group)</td>
</tr>
<tr>
<td>Familiarization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At least 2 sessions, recommended 3 sessions</td>
</tr>
<tr>
<td>Exercises</td>
<td></td>
</tr>
<tr>
<td>Multi-exercises program</td>
<td></td>
</tr>
<tr>
<td>Sequences</td>
<td></td>
</tr>
<tr>
<td>Unilateral execution</td>
<td></td>
</tr>
</tbody>
</table>