This is the peer reviewed version of the following article: Kays, R, Arbogast, BS, Baker-Whatton, M, et al. An empirical evaluation of camera trap study design: How many, how long and when? Methods Ecol Evol. 2020; 11: 700–713. https://doi.org/10.1111/2041-210X.13370. which has been published in final form at https://doi.org/10.1111/2041-210X.13370. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Methods in Ecology and Evolution

DR ROLAND KAYS (Orcid ID : 0000-0002-2947-6665) DR PATRICK A. JANSEN (Orcid ID : 0000-0002-4660-0314) DR MARCELA LIMA (Orcid ID : 0000-0002-2203-7598) MS ARIELLE WALDSTEIN PARSONS (Orcid ID : 0000-0003-1076-2896) DR XINGFENG SI (Orcid ID : 0000-0003-4465-2759)

Article type : Research Article

Handling editor: Dr Diana Fisher

TITLE PAGE

Title: An empirical evaluation of camera trap study design: how many, how long, and when? Running Head: camera trap study design Authors: Roland Kays^{1,2,3*} Brian S. Arbogast⁴ Megan Baker-Whatton⁵ Chris Beirne⁶ Hailey M. Boone² Mark Bowler⁷ Santiago F. Burneo⁸ Michael V. Cove⁹ Ping Ding¹⁰ Santiago Espinosa^{11,12} André Luis Sousa Gonçalves¹³ Christopher P. Hansen¹⁴ Patrick A. Jansen^{15,16} Joseph M. Kolowski⁹ Travis W. Knowles¹⁷ Marcela Guimarães Moreira Lima¹⁸ Joshua Millspaugh¹⁴ William J. McShea⁹ Krishna Pacifici² Arielle W. Parsons^{1,2} Brent S. Pease² Francesco Rovero^{19,20} Fernanda Santos²¹ Stephanie G. Schuttler¹ Douglas Sheil²² Xingfeng Si²³ Matt Snider²

Wilson R. Spironello¹³

- 1. North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- North Carolina State University, Department of Forestry and Environmental Resources, Raleigh, NC, USA
- 3. Smithsonian Tropical Research Institute, Balboa, Panama
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC, USA
- 5. The Nature Conservancy, Arlington, VA, USA
- 6. Nicholas School of the Environment, Duke University, Durham, NC, USA
- 7. University of Suffolk, Ipswich, Suffolk, UK
- 8. Museo de Zoología, Pontificia Universidad Católica del Ecuador, Ecuador
- 9. Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- 10. College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China

- 11. Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- 12. Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Grupo de Pesquisa de Mamíferos Amazônicos, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
- 14. Wildlife Department, University of Montana, Missoula, MT, USA
- 15. Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
- 16. Centre for Tropical Forest Science, Smithsonian Tropical Research Institute, Balboa, Panama
- 17. Department of Biology, Francis Marion University, Florence, SC, USA
- Laboratório de Ecologia e Conservação, Universidade Federal do Pará, Belém, PA, Brazil Instituto Nacional de Pesquisas da Amazônia – INPA, Brazil
- 19. Tropical Biodiversity Section, MUSE Museo delle Scienze, Trento, Italy
- 20. Department of Biology, University of Florence, Florence, Italy
- 21. Departament of Mastozoology, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
- 22. Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Norway
- 23. Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
 *Corresponding Author: rwkays@ncsu.edu

ABSTRACT

- 1. Camera traps deployed in grids or stratified random designs are a well-established survey tool for wildlife but there has been little evaluation of study design parameters.
- 2. We used an empirical subsampling approach involving 2225 camera deployments run at 41 study areas around the world to evaluate three aspects of camera trap study design (number of sites, duration and season of sampling) and their influence on the estimation of three ecological metrics (species richness, occupancy, detection rate) for mammals.
- We found that 25-35 camera sites were needed for precise estimates of species richness,
 depending on scale of the study. The precision of species-level estimates of occupancy (ψ) was

highly sensitive to occupancy level, with <20 camera sites needed for precise estimates of common (ψ >0.75) species, but more than 150 camera sites likely needed for rare (ψ <0.25) species. Species detection rates were more difficult to estimate precisely at the grid level due to spatial heterogeneity, presumably driven by unaccounted habitat variability factors within the study area. Running a camera at a site for 2 weeks was most efficient for detecting new species, but 3-4 weeks were needed for precise estimates of local detection rate, with no gains in precision observed after 1 month. Metrics for all mammal communities were sensitive to seasonality, with 37-50% of the species at the sites we examined fluctuating significantly in their occupancy or detection rates over the year. This effect was more pronounced in temperate sites, where seasonally sensitive species varied in relative abundance by an average factor of 4-5, and some species were completely absent in one season due to hibernation or migration.

4. We recommend the following guidelines to efficiently obtain precise estimates of species richness, occupancy and detection rates with camera trap arrays: run each camera for 3-5 weeks across 40-60 sites per array. We recommend comparisons of detection rates be model-based and include local covariates to help account for small-scale variation. Furthermore, comparisons across study areas or times must account for seasonality, which could have strong impacts on mammal communities in both tropical and temperate sites.

KEY WORDS

relative abundance, camera traps, community, detectability, occupancy, mammals, study design

RESUMEN

1. Las trampas cámara desplegadas en cuadrículas o diseños aleatorios estratificados son una herramienta bien establecida para inventarios de vida silvestre, pero ha habido poca evaluación de los parámetros de diseño del estudio.

2. Utilizamos un enfoque empírico de submuestreo que involucra 2225 implementaciones de cámaras en 41 áreas de estudio en todo el mundo para evaluar tres aspectos del diseño del estudio de trampa cámara (número de sitios, duración y temporada de muestreo) y su influencia en la estimación de tres métricas ecológicas (riqueza de especies, ocupación y tasa de detección) para mamíferos.

3. Encontramos que se necesitaban 25-35 sitios de cámara para estimar con precisión la riqueza de especies, dependiendo de la escala del estudio. La precisión de las estimaciones de ocupación a nivel de especie (ψ) fue muy sensible al nivel de ocupación, con menos de 20 sitios de trampas cámara necesarios para estimaciones precisas de especies comunes ($\psi > 0.75$), pero es probable que se necesiten más de 150 sitios de trampas cámara para especies raras ($\psi < 0.25$) especies. Las tasas de detección de especies fueron más difíciles de estimar con precisión a nivel de cuadrícula debido a la heterogeneidad espacial, presumiblemente impulsada por factores de variabilidad del hábitat no contabilizados dentro del área de estudio. Hacer funcionar una cámara en un sitio durante dos semanas fue más eficiente para detectar nuevas especies, pero se necesitaron de tres a cuatro semanas para estimar con precisión la tasa de detección local, sin ganancias de precisión observadas después de un mes. Las métricas para todas las comunidades de mamíferos fueron sensibles a la estacionalidad, el 37 - 50 % de las especies en los sitios que examinamos fluctuaron significativamente en sus tasas de ocupación o detección durante el año. Este efecto fue más pronunciado en sitios templados, donde las especies estacionalmente sensibles variaron en abundancia relativa en un factor promedio de 4 - 5, y algunas especies estuvieron completamente ausentes en una temporada debido a hibernación o migración.

4. Recomendamos las siguientes pautas para obtener de manera eficiente estimaciones precisas de la riqueza de especies, la ocupación y las tasas de detección con matrices de cámaras trampa: desplegar cada cámara durante 3 - 5 semanas en 40 - 60 sitios por arreglo. Recomendamos que las comparaciones de las tasas de detección se basen en modelos e incluyan covariables locales para ayudar a explicar la variación a pequeña escala. Además, las comparaciones entre áreas o tiempos de estudio deben tener en cuenta la estacionalidad, que podría tener un fuerte impacto en las comunidades de mamíferos tanto en sitios tropicales como templados.

摘要

1. 红外相机是一种成熟的野生动物调查工具,通常以网格化或分层随机的方案布设,但目前 很少有研究评估红外相机技术的实验设计参数。

 我们对全球41个研究区域内的2225台相机数据使用二次抽样方法评估了红外相机实验设计 的三个参数(相机位点数、监测时长和季节),及其对估计兽类群落物种数、占有率和探测 率的影响。

3. 取决于研究尺度,我们发现需要25-35个相机位点才能精确估计物种数。物种水平占有率(ψ)估计的精确度对占有率大小非常敏感:对于常见种(ψ>0.75),不到20个相机位点便可以 精确估计物种的占有率,但是对于稀有种(ψ<0.25),则需要150个甚至更多的相机位点。由 于空间异质性,基于网格化布设的红外相机更难以精确地估计物种的探测率,这大概是由于 所在研究区域内未解释的生境差异因素所导致的。在同一个位点持续监测2周可以最有效地探 测到新物种,但是精确估计本地探测率则需要3-4周,而持续置放1个月后不会继续提高估计 的精确度。所有兽类群落的生态指标(物种数、占有率和探测率)都对季节性敏感。在本研 究的相机位点内,37-50%的物种在一年中占有率或探测率具有非常显著的波动。这种影响在 温带地区更为明显:温带地区对季节性敏感的物种的相对丰度变化幅度为平均的4-5倍,并且

4.为了有效地获得红外相机阵列中物种数、占有率和探测率的精确估计,我们建议以下调查 准则:每批红外相机至少需布设40-60个相机位点,且每台相机持续监测3-5周。我们建议探 测率的比较研究需要基于模型,并包括局部协变量以帮助解释小尺度的差异。此外,不同研 究区域或时间之间的比较必须考虑季节的因素,因为季节性可能对热带和温带地区的兽类群 落产生强烈的影响。

关键词

相对丰度、红外相机、群落、探测率、占有率、兽类、实验设计

1. INTRODUCTION

Monitoring wildlife populations is more important than ever, given the imperiled status of many species around the world, and the rapid changes to the earth's climate and landcover (Dirzo et al.,

2014). Camera traps are now a standard method for monitoring a variety of species over relatively large areas (Steenweg et al., 2017; Wearn & Glover-Kapfer, 2017), being used to quantify species diversity, and estimate occupancy and relative abundance. These estimates can be compared across space and time to monitor changes in populations and test hypotheses about the effects of landscape and human factors on species relative abundance, distribution, and interspecific interactions.

The growth of camera trap surveys for monitoring biodiversity has led to substantial variation in study designs across projects, with sample size ranging from 1 to >1,000 camera sites (Burton et al., 2015). The foundational questions a researcher must address when designing a camera trap study include: how many camera traps to run, for how long, and at what time of year? Although there have been strong theoretical assessments of camera trap survey design (Guillera-Arroita, Ridout, & Morgan, 2010; Gálvez, Guillera-arroita, Morgan, & Davies, 2016), unfortunately, empirical evaluations using real-world data have been fewer. For example, Si et al (2014) found that adding camera trap sites was a higher priority than increasing survey length, and Shannon et al (2014) found that precise estimates could be made with surveys of 30-50 sites for common animals, but those species with low probabilities of detection required extended survey lengths, and that adding camera sites was more effective than lengthening survey duration to improve estimate precision. The influence of seasonality on camera trapping data has been largely neglected to date, probably because most tropical data come from cameras run during the dry season to reduce damage to cameras (TEAM Network, 2008), while most temperate zone data come from the growing season. A few studies have noted seasonal differences including migratory ungulates in the Serengeti (Palmer, Swanson, Kosmala, Arnold, & Packer, 2018) and a peak of covote detections in California when individuals were dispersing (Larrucea, Brussard, Jaeger, & Barrett, 2007).

The surge in popularity of sampling with camera traps, combined with improvements in technology and data management, has facilitated the accumulation of large centralized datasets from around the world. These datasets can be examined to evaluate the consequences of survey study design across species and locations allowing for general recommendations to researchers and practitioners. We analyzed 41 camera trap datasets including 1771 sites to evaluate three aspects of camera trap study design: (1) how many camera traps should researchers run? (2) how long should they run each individual camera trap? and (3) does seasonality affect results? For each question, we

subsampled large datasets to investigate how sample effort and design affect estimates of species richness, individual species detections, and occupancy probabilities. To facilitate comparisons of sites from around the world we used no habitat covariates in our occupancy or relative abundance models. These covariates would improve the precision of estimated parameters (occupancy and detection rate) by helping to explain variation caused by different environments. Therefore, our results on recommended sampling effort to reach a given level of precision are conservative in comparison to the precision local studies might achieve when including habitat covariates. Our results allow us to offer general recommendations for camera trap survey design to achieve the most precise estimates of species richness, occupancy, and relative abundance across a wide-range of species around the world.

2. MATERIALS AND METHODS

We analyzed camera trap data from 41 studies from the eMammal (http://www.eMammal.org) and TEAM (http://www.teamnetwork.org) databases and coauthors (Figure 1, Table S1). Subsets of 28, 16 and 5 datasets were used to examine spatial, temporal and seasonal questions, respectively. We used one year of data from each TEAM site. All studies used similar camera trap protocols in that sites were unbaited and were set in grids or stratified-random design (i.e. not on well-established trails), making data directly comparable (Jansen, Ahumada, Fegraus, & O'Brien, 2014). Cameras were set at ~0.5m above the ground on a tree, or high in the tree canopy (Peru), and set to trigger with passive infrared motion sensor at high sensitivity with no rest period between triggers. The camera brands used (Reconyx, Bushnell, ScoutGuard) had fast trigger times (<0.5sec) to minimize missing fast-moving species and used infrared flashes at night to avoid disturbing animals. Cameras were set to take multiple pictures at each trigger and continued to retrigger as long as animals were in sensor range. Triggers within 60s of each other were considered one detection.

Our evaluation of study design focuses on the precision of three metrics frequently used by ecologists: species richness, occupancy, and detection rate. We compare species richness of subsampled data to the total number of species detected at a study area by the cameras, not the total number of species theoretically possible based on geographic range maps. Likewise, we compare estimates of occupancy and detection rate from subsamples of data to values calculated with the full dataset, although we have no way of knowing the 'true' value for a given species at a site. We make

direct comparisons of occupancy estimates from camera arrays set at different spatial scales, but assume that the occupied site is the small detection zone directly in front of the camera and not some larger area defined by camera spacing (Efford & Dawson, 2012). To simplify our analyses, we consider number of samples and sampling effort separately, although there can be an interaction between these factors (Shannon et al., 2014). Although detection rate can be a misleading measure of relative abundance if field protocols are not standardized (Sollmann, Mohamed, Samejima, & Wilting, 2013), it has been tied mechanistically to abundance (M. Rowcliffe, Field, Turvey, & Carbone, 2008), and has been shown to reflect animal density in a number of studies using grids or stratified random sampling (e.g., Parsons et al., 2017; Palmer et al., 2018), and we therefore refer to it here as an index of relative abundance.

2.1 Number of camera points

We subsampled from existing datasets (Table S1) using program R (version 3.3, R Core Development Team, 2018) to evaluate the number of sample points needed for precise estimates of species richness (using data from 28 study areas), occupancy and detection rate (using data from 20 study areas) within a given protected area. We estimated richness as the number of individual species detected in each study area across all cameras. We estimated detection rate as the total count of detections of each species divided by the number of camera nights (i.e. detections/day) at each study area. We ran occupancy models using the single species occupancy framework (MacKenzie et al., 2002) and estimated detection probability (p), defined as the probability of detecting an occurring species during a seven-day period at a camera site, and occupancy (ψ), defined as the expected probability that a given camera site is occupied, for each species. Although daily periods are sometimes used for occupancy analyses of camera trap data for common species, these weekly intervals allowed us to use the same protocol for all species. We recognize that occupancy estimates for wide-ranging animals detected with camera traps is more analogous to "use" than true occupancy, though no less informative in terms of habitat use (Efford & Dawson 2012; Burton et al. 2015). Although some of the cameras from our fine-scale grids might not be spatially independent for wide ranging species, we note that the independence assumption is not necessary (though it is helpful) since the MLE of ψ is consistent even if occupancy statuses are not independent (Royle and Link 2006). We constructed

models using the package unmarked (Fiske & Chandler, 2011) in R. We estimated detection rate and occupancy for two species at each of 20 study areas, the most common species and the least common with at least 100 detections (and therefore enough to have a reasonable chance of models converging). The one exception was for the UCSC Grid study area, where only one species had >100 detections.

We subsampled sites by randomly selecting from one to the maximum number of cameras in the study, using the data collected at subsampled cameras to generate estimates. A minimum of five camera sites was used for occupancy analysis due to model convergence issues. For each of 50 subsamples (without replacement) at each camera sample size, we recorded the mean, standard deviation, standard error and 95% confidence interval for richness, detection rate, and occupancy probability. We used the total sample for each camera, which was variable, but should not affect our results. For detection rate, we assume animal movement is constant over the study period so camera deployment length should not affect these estimates or recommendations (i.e., a camera running 5 days captures 10 deer and if it ran 10 days instead it would capture 20). For occupancy, we also did not standardize the number of trap days per camera, however we tested whether there was a relationship between survey effort and the estimated occupancy probability but found no significant relationship (T37 = 0.867, p-value = 0.39).

To determine how many cameras were adequate to obtain precise estimates of occupancy and detection rate, we set two thresholds: (1) when the width of the 95% confidence interval changed <1% and remained <1% regardless of added cameras, representing the point of diminishing return on investment and (2) when the standard error was <10% of the mean and remained <10% regardless of added cameras, representing a precise measurement. For richness, we assessed how many cameras were necessary to detect 95% of the total number of species detected with all cameras. We stratified the studies based on latitude (tropical and temperate) and scale of the study (small was \leq 0.2km camera spacing, large was \geq 1.0km spacing) when considering how many camera sites were needed to meet each threshold. We summarized the effect of camera number on richness in each stratification level by fitting an asymptotic curve to the resampled data points using a nonlinear least squares method.

2.2 Sample duration

We subsampled long camera deployments (~60 sampling days) to evaluate the effect of sample duration on detection rate and species accumulation across each deployment day for selected species to determine how survey duration affected precision. We selected 24 representative species of large (>100 kg, n = 6), medium (5-100 kg, n = 9), and small (<5 kg, n = 9) mammals including three trophic levels (carnivores, omnivores, herbivores) from surveys with a minimum of 10 camera sites, excluding deployments with less than 20 sampling days (range = 10-77 deployments per study) across five continents (Table S2). These groupings represented potential differences in movements/home-ranges across the taxa, but also accounted for some inevitable variation in detection probability associated with the sizes and trophic guilds of target species (Cove et al., 2013). We calculated the daily detection rate of each species across all sites with detections within a selected study area and examined how the cumulative daily detection rate changed with increasing camera deployment. We considered the detection rate at the end of the sampling period as the true result for a site and set a threshold of precision as the number of sampling days that were required to obtain an estimate within 10% of this value.

We used negative binomial generalized linear models to determine how this threshold duration varied with three species traits – species-specific trophic guild (e.g., carnivores, ornivores), size (small, medium, and large), climatic zone (tropical or temperate) –, maximum number of days per deployment, and final detection rate. To determine which species traits or survey effects most influenced the detection rate bias, we compared eight *a priori* hypotheses, including a null model, in an information-theoretic framework, based on their Akaike weights (Burnham & Anderson, 2002). These analyses allowed us to consider if relationships were general to all mammals or specific to guilds or study regions. Furthermore, we plotted the mean percent detection rate error across all species to visualize an inflection point in the percent error patterns, such that increasing effort beyond a threshold point resulted in diminishing returns in terms of accuracy (*sensu* Lashley et al., 2018).

To assess species accumulations, we selected five tropical and five temperate study areas and randomly selected 30 camera sites to represent each study area. We determined the accumulations for each individual camera site in addition to the total accumulation for each study area. For both tropical and temperate regions, the totals of each study area were averaged together to represent how long it

can take to reach a high percentage of total species per region, as determined by the actual camera data.

2.3 Seasonality

To evaluate the importance of seasonality in camera trap surveys we calculated monthly and seasonal estimates of mammal detection rates, occupancy, and species richness for five locations that experience seasonal differences in either temperature or precipitation and that had at least one year of continuous camera data (Table S1). For two temperate climates with seasons determined by changes in temperature (Montana and North Carolina), we defined seasons as summer (April – September) and winter (October – March). For three tropical or sub-tropical climates with seasons determined by changes in precipitation, we identified seasons as wet and dry, where the wet seasons used were May – October (China), November – April (Peru), and July – December (Panama).

To consider the effect of seasonality on estimated species richness at each site we calculated the total number of species observed each month. We present observed species richness for sites with equal effort between months (Montana, North Carolina, China, and Panama) and where sampling effort was unequal (Peru), we present estimated richness from the iNEXT package (Hsieh, Ma, & Chao, 2016). To facilitate visual assessment of seasonal trends in species richness and detection rates we fit a non-parametric LOESS smoother line to the points.

We calculated the detection rate of each species for each study area. To identify whether season was a significant predictor of detection rate at a study site, we included season as a predictor and species-specific detection rate as the response in a quasi-Poisson generalized linear model, adjusted for overdispersion (Wedderburn, 1974). We considered season to have a significant effect on detection rate if the 95% confidence interval around the season coefficient did not overlap with zero.

We also quantified the effect of season on species occupancy and detection. We created species-specific detection histories by splitting continuous camera deployments into intervals representing 7 camera trap nights. For the Panama dataset (BCI plots), cameras were not deployed continuously, rather they were moved every 7-12 days within each one of ten 1ha survey blocks. In this case, each 7-12 day interval represents a separate deployment within the same survey block. For

each species we used season of deployment as a predictor, calculated the season coefficient in occupancy and detection models using package unmarked in R, and if the 95% confidence interval around the season coefficient did not overlap with zero we considered it a significant effect.

3. Results

We examined camera trap sampling design patterns for 106 mammal species and used common names when describing results in the text, but present taxonomy in Table S2. Animal detections not identified to the species level were not included.

3.1 Number of Cameras

On average, large-scale (\geq 1.0km spacing), tropical study areas required more cameras (mean=35±1 SE) for species richness to reach an asymptote than did smaller-scale (\leq 0.2km camera spacing) sites (Figure 2, Table S3). With much lower total species counts, small-scale sites detected 95% of total species with less effort, requiring 22±3 sites in the more diverse tropics and 17±4 in the temperate studies. The number of cameras necessary for richness to level off varied with camera spacing (β = 70±23, t=3, p=0.0005), with large-scale camera grids requiring more sites. Only two large scale temperate study areas were available and leveled off at 17 or 18 species (Table S3) but were not included in the graph due to low sample size.

We plotted the improvement in precision of detection rate and occupancy estimates with increasing number of cameras for 39 species from 20 study areas (Table S1; Figure 3). The example plots in Figure 3 illustrate how we determined when an estimate was precise (10% or 20% SE from final value) and when adding additional cameras did not lead to significant improvements in the estimate (confidence intervals improve by <1%). We found a strong negative relationship between the occupancy level of a species and the number of cameras needed to get a precise estimate (Figure 4C) and the point of diminishing returns (Figure 4D). Furthermore, occupancy could only be estimated with certainty for species with occupancy values > 0.7 (Figure 4C, Table S4). The number of cameras needed to get precise occupancy estimates was marginally correlated with detection rate (linear regression: $\beta = -13.3\pm7.1$, t = -1.89, p = 0.08).

There was also no relationship between the detection rate of a species and the number of cameras needed for precise estimates of detection rate, although only two species reached our 10% SE cutoff (Table S5), so we had to evaluate this relationship at 20% SE (Figure 4A). When considering the point of diminishing returns, there was a positive relationship, indicating that species with higher detection rates required more camera locations before the confidence intervals reached an asymptote.

Figure 4. Number of camera sites needed to estimate detection rate (A, B) and occupancy values (C, D) to a point of precision (standard error <20% A or <10% C) or to the point of diminishing returns (confidence intervals improve by <1% with additional cameras, B, D). Each dot on the graph represents a species, with example plots showing how these were derived in Figure 3. Only two species reached high (<10% SE) confidence estimates for detection rate so we show the results for a lower (20%) confidence level in A. No trend line is provided in A due to the low coefficient of determination. Values and species names are reported in Table S4 and S5.

3.2 Sample Duration

At a single camera site, species richness increased such that after the first 30 days, each camera detected 96.67% ± 0.01 SE or 85.62% ± 0.02 SE of the species it would detect over 60 days in temperate or tropical sites, respectively (Figure 5). However, when all cameras at a study area were considered together, species richness plateaued rapidly, with 89.7% \pm 5.60 SE of the species at temperate sites detected in 2 weeks and 100% in 30 days. For tropical sites 84.9% \pm 5.05 SE of species were detected in two weeks, 97.1% \pm 1.82 SE in 30 days.

Since detections typically accumulate slower than days, the ratio of detections/day are erratic and highly erroneous at smaller (<2 weeks) sampling intervals, but then rapidly improve. Across species, the mean time needed to obtain an estimate within 10% of the final estimate was 34.4 ± 2.5 SE days (Figure 6). The variation in time needed to get a precise measure of detection rate was best explained by final detection rate (Akaike Weight = 0.41, Table S7), with some additional model support suggesting a difference between temperate and tropical study areas (Akaike Weight = 0.15, Table S7). We used those two covariates to make predictions of survey length requirements across detection rates that we observed in temperate and tropical study areas (Fig 7).

3.3 Seasonality

We examined the effects of seasonality on animal communities at five study areas with varying latitudes and species compositions (Table S8). All five sites showed seasonal effects for some but not all species (Table 1, Table S9, Figure S2). Although there was no clear seasonal trend in species richness for the site in China (Figure 8A), overall detection rates increased in the wet season (Figure 8B), and there was species-specific variation in the detection rates by season (Figure 8 C,D). For example, we found much higher detection rates in masked palm civet, hog badger and Chinese white-bellied rat during the wet season, weaker pulses of Reeve's muntjac and wild boar during the dry season, and little seasonal variation in the detection rates for other species.

The proportion of species with significant seasonal changes in occupancy or detection probability was surprisingly consistent across four sites, being 37.5%, 37.5%, 37.5%, and 38.4% in Montana, China, Peru, and Panama, respectively; while for North Carolina it was 50.0% (Table 1, Figure S2). However, when considering the magnitude of the effect in terms of the average size of the change in detection rate (higher season/lower season) for species where detection or occupancy models indicated a significant seasonal effect, the two temperate sites had relatively larger changes (Montana: 480% change, North Carolina: 390% change) than the two tropical sites (Peru: 230%, Panama: 180%), while the subtropical Chinese site average change was 470%.

4. DISCUSSION

In the most comprehensive empirical study on camera trap survey design to date, we evaluated how the number of cameras deployed, the length of time they are run, and the seasonality of the site affect estimates of mammal species richness, occupancy, and detection rates. Our samples include 41 study areas across 20 countries on five continents, making our results broadly relevant to others designing camera trap studies. All cameras were run in systematic or stratified random designs, off major trails

and without bait, providing relatively unbiased measures of the animal community and offering comparable data across a variety of habitats.

4.1 Number of Cameras

We found that more camera sites (~35) were needed to detect a high percentage of species richness for larger-scale studies. A likely explanation is that larger-scale studies sample a greater diversity of habitats and have a larger component of β -diversity, which serves as a good reminder that species lists from small-scale surveys will be incomplete representations of the larger area. Given higher species richness in tropical areas, it was surprising that both tropical and temperate small-scale sites required similar number of cameras (17-22) to detect 95% of the total species eventually detected with the full data set. Given the variation across studies, we recommend that studies aiming to quantify the diversity of species in an area use at least 35 camera sites for large-scale surveys (\geq 1.0 km spacing), and 25 for small-scale (\leq 0.2 km camera spacing) tropical sites.

Occupancy and detection rate are two metrics often used as indices of abundance to compare across years or sites for monitoring population trends or testing ecological hypotheses, and are the most common metrics used to study species that cannot be uniquely identified (Kays et al., 2017). We found that more cameras were needed to get precise estimates of species with lower occupancy values (i.e. less common species) which is in agreement with recent studies (Shannon et al., 2014; Beaudrot, Ahumada, O'Brien, & Jansen, 2019). Among the 39 species considered, occupancy could only be estimated precisely (SE < 10% of occupancy estimate) for species with high (> 0.7) occupancy probabilities (Figure 4A, Table S4). Extrapolating this linear relationship suggests that 3-4 times more cameras (~150 camera sites) would be needed to produce precise estimates for species with an occupancy probability of 0.25. This is worrisome given that rare species are the most important to monitor, and that low occupancy probabilities are common in camera trapping studies. For example, almost half (48%) of the 158 carnivore populations evaluated in a recent global analysis had occupancy levels <0.25 (Rich et al., 2017). Adding ecological covariates to occupancy models would help increase precision of occupancy estimates, and are therefore especially important for working with species with low occupancy probabilities. These models might allow more precise estimates with fewer camera sites than our results suggest, as we did not include any covariates to enable large scale comparisons.

Community-level occupancy models (Dorazio, Kéry, Royle, & Plattner, 2010) might also help improve the precision of occupancy estimates for rare species by sharing information across species, but there are extensive assumptions about guild-specific detection probability relationships that need to be considered (Pacifici, Zipkin, Collazo, Irizarry, & DeWan, 2014). Detecting ecological relationships will always be difficult for species with few detections and we suggest that these situations might warrant the use of lures or baits, or adaptive sampling (Pacifici, Reich, Dorazio, & Conroy, 2016; Specht et al., 2017).

We expected that it would require fewer cameras to precisely estimate occupancy for species with higher detection rates, since data would presumably accumulate faster, but we found no relationship (Table S5). We suspect that this reflects patchy space use by animals, with higher detection rates being driven by repeated use of the same sites, rather than many sites across the camera array. Alternatively, this might be simply a principal of the data structure. One possibility is related to pseudo-Poisson patterns of count data, where variation and mean tend to be proportional and the lower bound becomes less constraining at higher densities (Guisan, Edwards, & Hastie, 2002). Another possibility could be that since the count cannot go below zero, when you have rare species there are so many estimates right around that lower bound that precision is actually quite high whereas with more abundant species we would have a lot more variation in the count and lower precision.

We were surprised to not find a relationship between detection rate and the number of cameras within a study area. Only two species reached our 10% SE precision cutoff for detection rate, and even when considering a lower point of precision (20% SE), there was no strong tendency for species with higher detection rates to be easier to survey with fewer sites (Figure 4A). In fact, we found that species with higher detection rates required more cameras to reach the point of diminishing returns. We suspect this difference between occupancy and detection rate stems from a higher spatial variation in detection rates within a study site. As a binary variable (each site is either 0 or 1), occupancy probabilities are capped at 1 and inherently less variable than detection rates, and thus appear to be easier to estimate precisely from camera traps. It is important to note that we used raw detection rate

values and made no attempt to account for variation within sites with ecological models. Adding habitat covariates and using model estimates for detection rates would likely improve the precision of detection rate estimates, adding important ecological inference, and making comparisons between sites more valid.

4.2 Sample Duration

By subsampling long camera deployments, we were able to evaluate the relationship between sample duration and accuracy and offer recommendations for optimized study design. In general, the number of species detected by a camera rapidly accumulated during the first two weeks of deployment, after which few new species were detected. Only the more diverse tropical sites continued to accumulate species up to about one month (Figure 5).

We found that detection rates – the widely used measure of relative abundance – were highly variable for the first two weeks of camera deployments: the addition of a single detection could dramatically change the estimate. However, after 2-3 weeks there was a sharp improvement in precision for all species, and from about one month onwards, estimates were within 10% of the estimate from the full 60-d samples (Figure 6). The exact sampling duration needed to reach this 10% precision level varied depending on the final detection rate of the target species, with precise estimates being reached sooner for species with higher detection rates, with slightly different relationships for tropical versus temperate areas. The higher error rates for apparently rare species (based on final detection rates) showcases that researchers should likely implement species-specific efforts when targeting rare species but might achieve accurate relative abundance information for common species within short sampling windows. Similar to our examinations of detection rate and the number of cameras, spatial heterogeneity among sites most likely influences these site-specific detection rates and capture rates might therefore be subject to more local variation in detectability due to microhabitat variation, which should be accounted for in model-based approaches (Kolowski & Forrester, 2017).

In practice, species richness and relative abundance measures for a study area are not taken from single camera points but derived from an array. Thus, our analysis of the performance of single cameras is most relevant when considering the return on investment of time, rather than absolute error rates of each individual camera. In this case, the stabilization of detection rate between two and three weeks suggest that three weeks should be the minimum deployment length, while estimates will continue to improve up to about one month. These recommendations agree with earlier studies that point out that increasing the number of locations is generally better than sampling longer at the same site for detection rate (Si, Kays, & Ding, 2014), but our results draw from a broader dataset of species and localities.

4.3 Seasonality

All five sites we examined for seasonal dynamics had a mixture of species with and without seasonal variation in occupancy and/or relative abundance. Thus, sampling an area in only one season would not necessarily yield estimates of animal abundance and species richness that are representative. The number of species at each site showing some seasonal trends was high, ranging from 37-50% of the mammal community, without obvious latitudinal trends (Table 1). However, the magnitude of the effect was roughly 2 times stronger in the two temperate study areas we analyzed, where species are known to migrate, hibernate, or seasonally cache food. Hibernation and seasonal migration are not known for the mammal species that showed seasonal variation in Peru and Panama, and we suspect that these patterns could be caused by seasonal breeding or shifts in foraging strategies in response to changes in fruit availability. Species detectability is also known to change from wet to dry season in Panama (M. J. Rowcliffe, Carbone, Jansen, Kays, & Kranstauber, 2011), highlighting the importance of using an analytical framework that accounts for detectability. The subtropical montane Chinese study area had similar effect sizes to the temperate study areas. Some of the specific patterns for the Chinese species can be explained by known behaviors of reducing activity during the cold (Masked palm civet, Zhou et al., 2014), elevational migration (Hairy-fronted muntjac, Zheng, Bao, Ge, & Zheng, 2005), or seasonal breeding (Chinese white-bellied rat, Bao, 1993)

While it might not be surprising that all animal communities would have strong seasonal effects, our results illustrate the importance of taking season into account when planning field surveys or making comparisons between existing data. Although some of these changes were predictable based on animal biology, most were not, especially in tropical sites (Table 1). Furthermore, the simple 2-season comparison we used for our analyses belies a more complicated temporal pattern

seen for many species when looking at variation in abundance over a finer (i.e. monthly) scale. For example, at our Montana study area, Columbian ground squirrel detections peaked in early summer, white-tailed deer peaked in late summer, and mule deer peaked at the transition between winter and summer (Figure S2C).

4.4 Study Design Recommendations

Based on these analyses, we recommend that studies aimed at estimating species richness and relative abundance/occupancy of mammal species use arrays of at least 40-60 camera traps run for 3-5 weeks. Studies targeting rare species will need more camera locations but could also benefit from the use of target-specific attractants or more adaptive study designs (Pacifici et al., 2016). Studies aimed at estimating species diversity over small areas (i.e., $< 1 \text{ km}^2$) may use fewer cameras (~20), but should note this will be an incomplete record of diversity over larger scales. Study area averages of detection rate required more effort to estimate precisely than occupancy, due to high variation within camera arrays, so we recommend comparisons of detection rates be model-based and include local covariates to help explain small-scale variation, which should also provide additional ecological inference about the target species. Finally, comparisons across study areas or over time must account for seasonality, which had strong impacts on mammal communities in both tropical and temperate sites.

Acknowledgements

We appreciate support for the original camera trapping field work from National Natural Science Foundation of China (#31572250, #31872210), Riverbanks Zoo and Gardens, Satch Krantz Conservation Fund, Francis Marion University Professional Development Fund and International Collaboration Grants, University of North Carolina-Wilmington Charles L. Cahill Grant, US National Science Foundation, and San Diego Zoo Global. Data from the Tropical Ecology Assessment and Monitoring (TEAM) Network are the result of a collaboration between Conservation International, the Smithsonian Institution, and the Wildlife Conservation Society, and partially funded by these institutions, the Gordon and Betty Moore Foundation, and other donors. We also acknowledge logistical, permitting, and field support from the Ecuador Ministry of the Environment, Sumaco National Park, Jonas Nilsson, Wildsumaco Wildlife Sanctuary, Instituto Nacional de Pesquisas da Amazônia (INPA), Conservation International Suriname, Organization for Tropical Studies, Uganda Wildlife Authority, Museo Tridentino di Scienze Naturali and Institute of Tropical Forest Conservation. Jen Zhou for maintaining and organizing eMammal data for analysis.

Authors' Contributions

RK, CB, HMB, MVC, CPH, AWP, BSP, SGS, KP, and MS conceived the ideas, designed the methodology, and analyzed the data. BSA, MB-W, MB, SFB, PD, SE, ALSG, PAJ, TWK, MGML, WJM, BNS, FS, FR, DS, XS, WRS and WJM contributed data; RK led the writing of the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

Data Accessibility

All camera trap detection data used in this paper is available at Data Dryad under https://doi.org/10.5061/dryad.p8cz8w9m2

References

- Bao, Y. (1993). A summary of studies on Rattus niviventer. Journal of Zhejiang Normal University (Nat. Sci.), 16, 50–54.
- Beaudrot, L., Ahumada, J., O'Brien, T. G., & Jansen, P. A. (2019). Detecting tropical wildlife declines through camera-trap monitoring: an evaluation of the Tropical Ecology Assessment and Monitoring protocol. *Oryx*, *53*(1), 126–129. doi:10.1017/S0030605318000546
- Burnham, K. P., & Anderson, R. D. (2002). *Model selection and multi-model inference*. New York: Springer.
- Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., ... Boutin, S. (2015).
 Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. *Journal of Applied Ecology*, *52*, 675–685. doi:10.1111/1365-2664.12432
- Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., & Collen, B. (2014). Defaunation in the Anthropocene. *Science*, 345(6195), 401–406. doi:10.1126/science.1251817

- Dorazio, R. M., Kéry, M., Royle, J. A., & Plattner, M. (2010). Models for inference in dynamic metacommunity systems. *Ecology*, 91(8), 2466–75. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20836468
- Efford, M., & Dawson, D. (2012). Occupancy in continuous habitat. *Ecosphere*, *3*, 1–15. Retrieved from http://www.esajournals.org/doi/abs/10.1890/ES11-00308.1
- Fiske, I., & Chandler, R. (2011). unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance. *Journal of Statistical Software*, *43*(10). doi:10.18637/jss.v043.i10
- Gálvez, N., Guillera-arroita, G., Morgan, B. J. T., & Davies, Z. G. (2016). Cost efficient effort allocation for camera-trap occupancy surveys of mammals. *Biological Conservation*, 204, 350–359. doi:10.1016/j.biocon.2016.10.019
- Guillera-Arroita, G., Ridout, M. S., & Morgan, B. J. T. (2010). Design of occupancy studies with imperfect detection. *Methods in Ecology and Evolution*, *1*, 131–139. doi:10.1111/j.2041-210X.2010.00017.x
- Guisan, A., Edwards, T. C., & Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distributions: setting the scene. *Ecological Modeling*, *157*, 89–100.
 Retrieved from www.elsevier.com/locate/ecolmodel
- Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity. *Methods in Ecology and Evolution*, 7, 1451–1456. doi:10.1111/2041-210X.12613
- Jansen, P. A., Ahumada, J. A., Fegraus, E. H., & O'Brien, T. G. (2014). TEAM: a standardised camera trap survey to monitor terrestrial vertebrate communities in tropical forests. In *Camera trapping: wildlife management and research*.
- Kays, R., Parsons, A. W., Baker, M. C., Kalies, E. L., Forrester, T., Costello, R., ... McShea, W. J. (2017). Does hunting or hiking affect wildlife communities in protected areas? *Journal of Applied Ecology*, *54*, 242–252. doi:10.1111/1365-2664.12700
- Kolowski, J. M., & Forrester, T. D. (2017). Camera trap placement and the potential for bias due to trails and other features. *PLOS ONE*, *12*(10), e0186679. doi:10.1371/journal.pone.0186679
- Larrucea, E. S., Brussard, P. F., Jaeger, M. M., & Barrett, R. H. (2007). Cameras, coyotes, and the assumption of equal detectability. *Journal of Wildlife Management*, *71*, 1682–1689.

doi:10.2193/2006-407

- Lashley, M. A., Cove, M. V., Chitwood, M. C., Penido, G., Gardner, B., Deperno, C. S., & Moorman,
 C. E. (2018). Estimating wildlife activity curves: comparison of methods and sample size.
 Scientific Reports, 8. doi:10.1038/s41598-018-22638-6
- MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., & Langtimm, C. A.
 (2002). Estimating site occupancy rates when detection probabilities are less than one. *Ecology*, 83, 2248–2255.
- Network, T. (2008). *Terrestrial vertebrate (camera trap) protocol implementation manual, V. 3.0.* Arlington, VA, USA: Tropical Ecology, Assessment and Monitoring Network, Center for
 Applied Biodiversity Science, Conservation International.
- Pacifici, K., Reich, B. J., Dorazio, R. M., & Conroy, M. J. (2016). Occupancy estimation for rare species using a spatially-adaptive sampling design. *Methods in Ecology and Evolution*, 7(3), 285–293. doi:10.1111/2041-210X.12499
- Pacifici, K., Zipkin, E. F., Collazo, J. A., Irizarry, J. I., & DeWan, A. (2014). Guidelines for a priori grouping of species in hierarchical community models. *Ecology and Evolution*, 4(7), 877–888. doi:10.1002/ece3.976
- Palmer, M. S., Swanson, A., Kosmala, M., Arnold, T., & Packer, C. (2018). Evaluating relative abundance indices for terrestrial herbivores from large-scale camera trap surveys. *African Journal of Ecology*, 56, 791–803. doi:10.1111/aje.12566
- Parsons, A. W., Forrester, T., McShea, W. J., Baker-Whatton, M. C., Millspaugh, J. J., & Kays, R.
 (2017). Do occupancy or detection rates from camera traps reflect deer density? *Journal of Mammalogy*, 98, 1547–1557. doi:10.1093/jmammal/gyx128
- Rich, L. N., Davis, C. L., Farris, Z. J., Miller, D. A. W., Tucker, J. M., Hamel, S., ... Kelly, M. J. (2017). Assessing global patterns in mammalian carnivore occupancy and richness by integrating local camera trap surveys. *Global Ecology and Biogeography*. doi:10.1111/geb.12600
- Rowcliffe, M., Field, J., Turvey, S., & Carbone, C. (2008). Estimating animal density using camera traps without the need for individual recognition. *Journal of Applied Ecology*, *45*, 1228–1236.
- Rowcliffe, M. J., Carbone, C., Jansen, P. A., Kays, R., & Kranstauber, B. (2011). Quantifying the sensitivity of camera traps using an adapted distance sampling approach. *Methods in Ecology*

and Evolution, 2, 467–476.

- Royle, J.A. and Link, W.A. (2006) Generalized site occupancy models allowing for false positive and false negative errors. *Ecology*, 874, 835-841.
- Shannon, G., Lewis, J. S., & Gerber, B. D. (2014). Recommended survey designs for occupancy modelling using motion-activated cameras: insights from empirical wildlife data. *PeerJ*. doi:10.7717/peerj.532
- Si, X., Kays, R., & Ding, P. (2014). How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. *PeerJ*, *2*, e374. doi:10.7717/peerj.374
- Sollmann, R., Mohamed, A., Samejima, H., & Wilting, A. (2013). Risky business or simple solution –
 Relative abundance indices from camera-trapping. *Biological Conservation*, *159*, 405–412.
 doi:10.1016/j.biocon.2012.12.025
- Specht, H. M., Reich, H. T., Iannarilli, F., Edwards, M. R., Stapleton, S. P., Weegman, M. D., ...
 Arnold, T. W. (2017). Occupancy surveys with conditional replicates: An alternative sampling design for rare species. *Methods in Ecology and Evolution*, 8(12), 1725–1734.
- Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J. T., Burton, C., ... Rich, L. N.
 (2017). Scaling up camera traps: monitoring the planet's biodiversity with networks of remote sensors. *Frontiers in Ecology and the Environment*, *15*, 26–34. doi:10.1002/fee.1448
- Team, R. D. C. (2018). R, A Language and Environment for Statistical Computing. R Core Team: Vienna, Austria. doi:3-900051-14-3
- Wearn, O. R., & Glover-Kapfer, P. (2017). Camera-trapping for conservation: a guide to bestpractices. Woking, United Kingdom: WWF.
- Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the gaussnewton method. *Biometrika*, *61*(3), 439–447. doi:10.1093/biomet/61.3.439
- Zheng, X., Bao, Y., Ge, B., & Zheng, R. (2005). The current distribution and conservation status of black muntjac in Gutian Mountain Nature Reserve. *Journal of Natural Resources*, 20, 508–513. Retrieved from http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZX200504005.htm
- Zhou, Y., Newman, C., Palomares, F., Zhang, S., Xie, Z., & Macdonald, D. W. (2014). Spatial organization and activity patterns of the masked palm civet (Paguma larvata) in central-south China. *Journal of Mammalogy*, 95(3), 534–542. doi:10.1644/13-MAMM-A-185

Tables

Table 1. Summary of significant seasonal variation in occupancy and detection rate models for 70 species across five sites. "0" indicates no variation, "+" and "-" indicate higher or lower values in the winter (Montana and North Carolina) or wet season (China, Panama, and Peru). Models that did not converge have blank cells. Species indicated with * had so few detections in a season that statistical models did not converge, but clearly showed strong seasonal patterns such as complete absence due to hibernation. Model parameter values are available as supplemental material (Figure S2, Table S9).

	Model Occupancy	Model Detection	Detection Rate	Notes
Montana				
Columbian Ground				
Squirrel			_*	hibernates
Brown Bear			-	hibernates
Moose			0	
Striped Skunk			0	
White-tailed Deer	0	-	-	elevational migran
White-tailed Jackrabbit			0	
Gray Wolf			0	
Elk	-	0	0	
American Badger			0	
North American Porcupine			0	
Bobcat	0	0	0	
Coyote	+	-	0	
Snowshoe Hare	0	0	0	
Puma	0	0	0	
Mountain Cottontail	0	0	0	
American Red Squirrel			0	

	Mule Deer	+	+	0	elevational migrant
D	Prairie Ridge, NC				
	Woodchuck			_*	hibernates
	Coyote	0	-	0	
	Virginia Opossum	+	-	0	
	Northern Raccoon			0	
	White-tailed Deer	0	0	0	
	Eastern Cottontail	0	0	0	
	Bobcat	0	0	0	
	Eastern Gray Squirrel	0	-	0	seasonal seed hoarder
	Gray Fox	+	0	+	
	Red Fox			0	
	China				
	Wild Boar			0	
	Reeves's Muntjac	0	-	-	
	Edwards's Long-tailed				
	Giant Rat			0	
	Hairy-fronted Muntjac	0	0	0	elevational migrant
	Pallas's Squirrel			0	
	Hog Badger	0	0	0	
					strong seasonal
	Chinese White-bellied Rat	+	+	+	breeder
	Masked Palm Civet	0	+	0	
	Panama				
	Collared Peccary	0	-	-	
	Northern Tamandua			-	
	Red Brocket Deer	0	-	-	
	White-nosed Coati	0	0	-	
	Common Opossum			0	

A (:			0	
Agouti			0	
Tayra			0	
Paca	0	+	0	
Baird's Tapir			0	
Red-tailed Squirrel			0	
Ocelot	0	0	0	
White-faced Capuchin			0	
Nine-banded Armadillo	0	0	0	
Peru Canopy				
Tayra			+*	
Brazilian Porcupine	0	-	0	
Western Woolly Opossum	-	0	0	
Olingo	0	0	0	
Hairy Saki Monkey	-	0	0	
Tamandua	0	0	0	
Microsciurus sp.			0	
Dwarf Porcupine	+	-	0	
Black-mantled Tamarin	0	0	0	
White-fronted Capuchin	0	0	0	
Spix's Night Monkey	-	+	0	
Common Woolly Monkey	0	0	0	
Kinkajou			0	
Scurius sp.			0	
Common Squirrel Monkey	0	0	0	
Two-toed Sloth	0	+	0	
Yellow-handed Titi				
Monkey			0	
	0	0		

Figures

Figure 1. Map showing locations of the 41 datasets used for analyses of the importance of survey duration, survey size, and seasonality on estimates of biodiversity variables using camera traps.

Figure 2. Species accumulation curves with increasing camera sites showing average (lines) and SE (shading) across 19 tropical and 9 temperate study areas. Vertical lines show where a class of sites reached 95% of all the total number of species recorded, which was least for small-scale (≤ 0.2 km camera spacing) tropical study areas (17±4 SE sites), followed by small-scale temperate (22±3 sites) and large-scale (≥ 1.0 km spacing) tropical studies (35±1 sites). Results per site are in Table S3.

Figure 3. Examples of changes in detection rate (A) and occupancy (B) with increasing number of cameras at a site for two species: white-tailed deer (A) and red acouchi (B). The black line represents the average of 50 subsamples, while the blue dashed line shows standard error and the red dashed line shows the 95% confidence intervals. For each species, we calculated the number of cameras needed to reach a precise estimate with standard error that was 10% of the estimate (solid blue line representing point of high precision) and the point of diminishing returns where the change in the confidence interval between timesteps was <1 % (red solid line representing point of diminishing return).

Figure 4. Number of camera sites needed to estimate detection rate (A, B) and occupancy values (C, D) to a point of precision (standard error <20% A or <10% C) or to the point of diminishing returns (confidence intervals improve by <1% with additional cameras, B, D). Each dot on the graph represents a species, with example plots showing how these were derived in Figure 3. Only two species reached high (<10% SE) confidence estimates for detection rate so we show the results for a lower (20%) confidence level in A. No trend line is provided in A due to the low coefficient of determination. Values and species names are reported in Table S4 and S5.

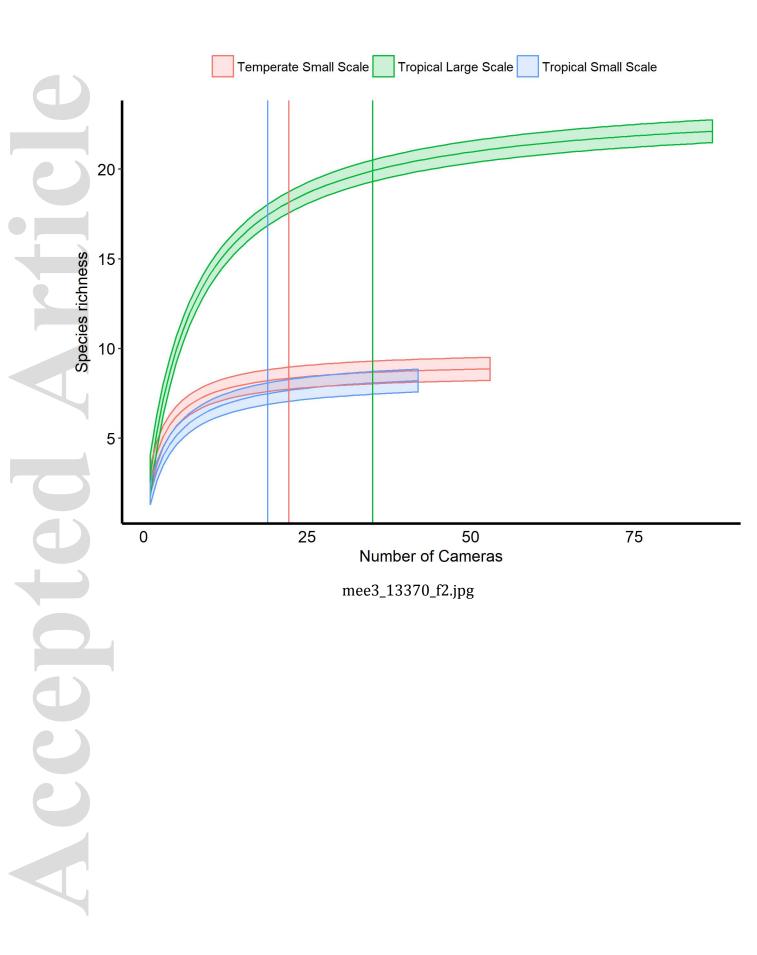
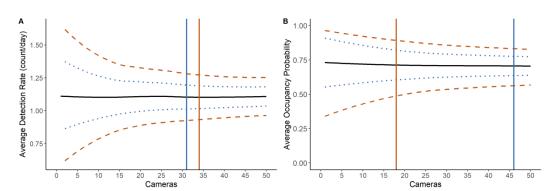
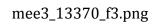
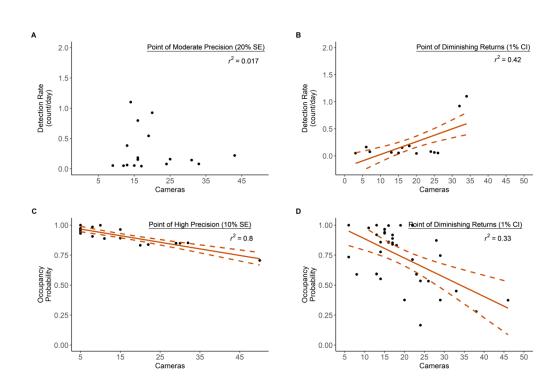
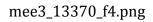

Figure 5. Example species accumulation curves at one temperate (A, Albany Area) and one tropical study site (B, Thailand Reserves) illustrating the rate of species detection by individual cameras (grey lines) and for the whole survey (black lines). Eight additional sites are graphed in Figure S1. For five temperate (C) and tropical (D) sites combined, curves are shown in proportion to the total number of species they detected at the end of the 60-day survey.

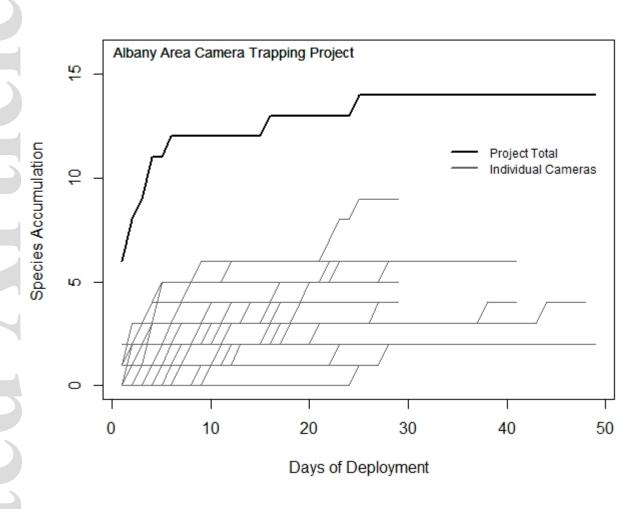
Figure 6. Change in the accuracy of detection rate estimates with increased sample duration showing mean percent daily detection rate error, with 95% confidence intervals (red dashed lines) and standard error (blue dashed lines). These are estimated from 24 representative species at 11 study areas across five continents. The vertical line (34 days) represents the mean number of days at which the percent error decreased below 10% for the remainder of the survey (Table S6, S7).

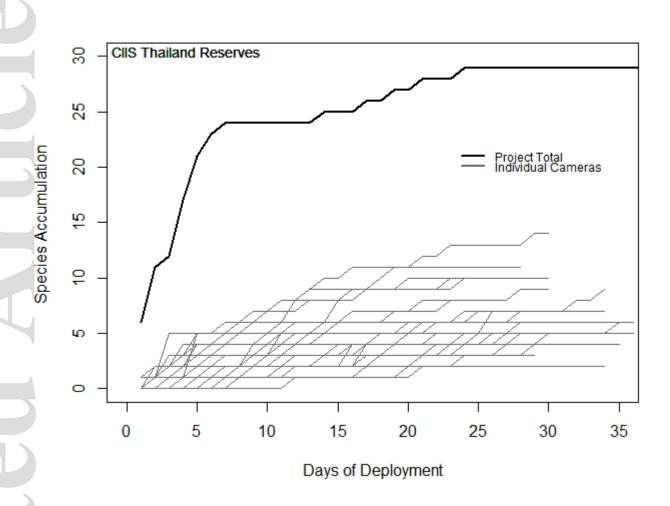

Figure 7. Model predictions of the number of days of camera trap sampling before the percent error of the estimated detection rate decreases below 10% based on Negative binomial regression models with the final species detection rate and tropical versus temperate zones as predictors.

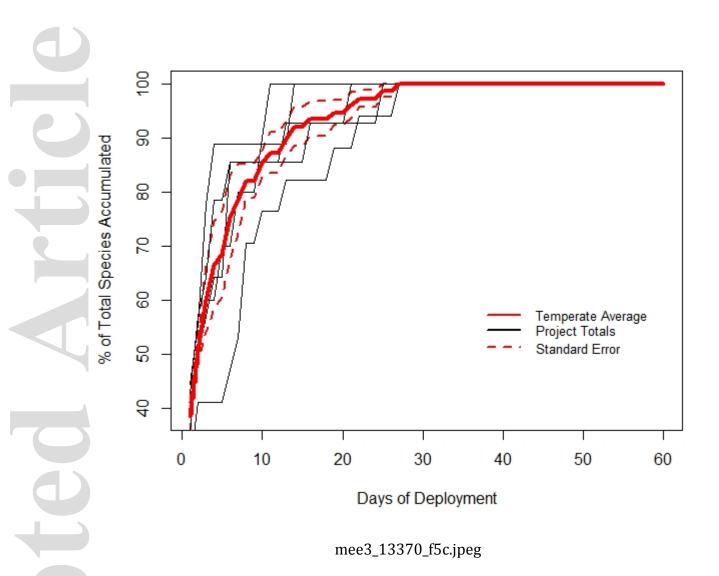

Figure 8. Seasonal variation shown as monthly averages for (a) estimated species richness, (b) total mammal detection rate, (c) species-specific detection rate (for species with > 20 records), and (d) seasonal averages for mammals surveyed by camera traps (for species with > 20 records, blue shows wet season) from 2009-2011 in Gutianshan Plot, China. Points are average monthly observed richness (A) and detection rates (B); lines are smoothed observed richness (A) and smoothed average detection rates (B&C); shaded areas are approximate 95% confidence intervals around smoothed averages. The species in plot (c) follow the color coding in (d), and both only show species with > 20 records. The raw data for all sites are presented in Table S9, seasonal graphs for sites in Montana, North Carolina, Panama, and Peru are presented as Figure S2.

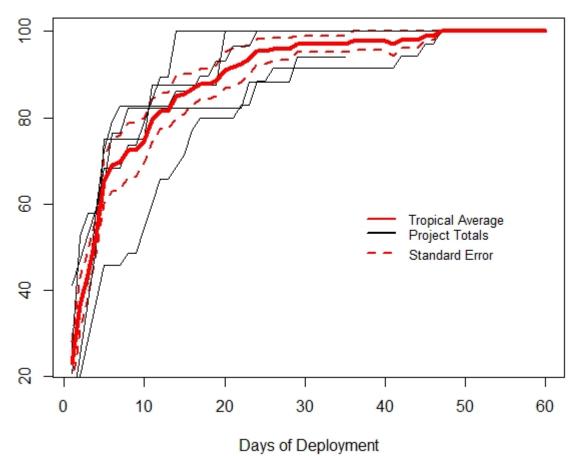


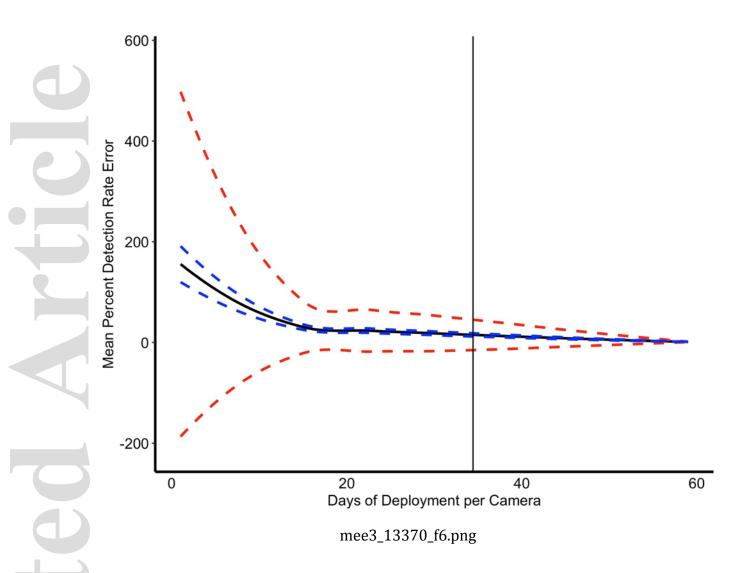


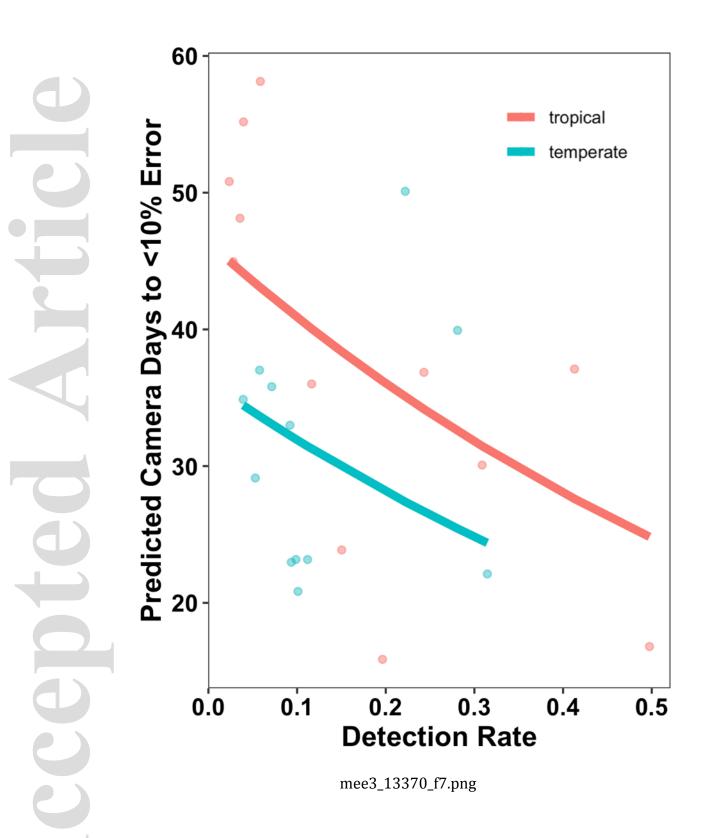

CCE

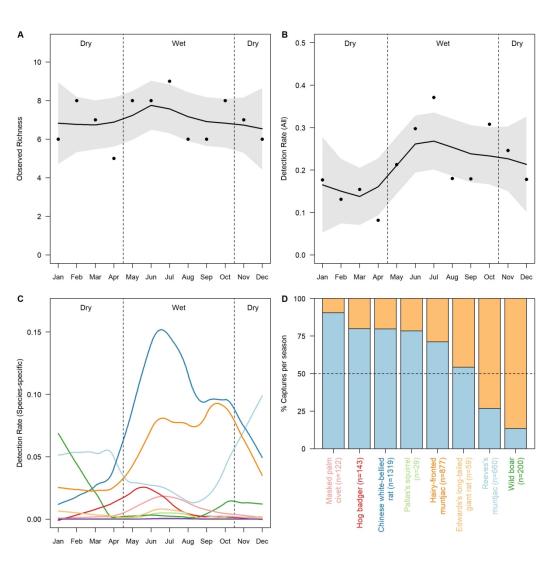





mee3_13370_f5a.jpeg


mee3_13370_f5b.jpeg





mee3_13370_f5d.jpeg

mee3_13370_f8.jpeg

This article is protected by copyright. All rights reserved

SUPPLEMENTAL MATERIAL

										Analysis	
Name	Region	Location	Latitude	Longitude	Source	Camera Deployments	Spacing	Arrangement	Spatial (n=28)	Temporal (n=16)	Seasonal (n=5)
Kenya Wildlife Service Project	Africa	Kenya	-3.372440	39.873430	eMammal	30	Large	Stratified Random	x	x	
Korup	Africa	Cameroon	5.046442	8.839358	Team	60	Large	Grid	x		
Nouabala Ndoki	Africa	Congo	2.519552	16.513092	Team	64	Large	Grid	x		
Ranomafana	Africa	Madagascar	-21.22491	47.473436	Team	60	Large	Grid	x		
Udzungwa	Africa	Tanzania	-7.783217	36.868785	Team	61	Large	Grid	x		
Virunga Massif	Africa	Rwanda	-1.454465	29.540277	Team	60	Large	Grid	x		
Bukit Barisan	Asia	Indonesia	-5.658888	104.465402	Team	60	Large	Grid	x		
Carnivore Intraguild Interactions in Select Thailand Reserves	Asia	Thailand	14.156110	102.475360	eMammal	30	Large	Stratified Random		x	
Nam Kading	Asia	Laos	18.398413	104.176223	Team	60	Large	Grid	x		
Pasoh	Asia	Malaysia	3.045081	102.317913	Team	60	Large	Grid	x		
Gutianshan Plot	Asia	China	29.254127	118.119625	Other	19	Small	Stratified Random	x	x	x
BCI Plots	Central America	Panama	9.155988	-79.843884	Other	77	Small	Stratified Random			x
Gonzolillo	Central America	Panama	9.175022	-79.148352	eMammal	25	Small	Stratified Random	x		

Table S1. Camera trapping data sets used for study design analysis.

Panama Team	Central America	Panama	9.159299	-79.808457	Team	60	Large	Grid	x		
Volcan Barva	Central America	Costa Rica	10.352668	-84.046701	Team	60	Large	Grid	x		
Speulderbos	Europe	Netherlands	52.253420	5.699852	eMammal	42	Small	Grid	x	х	
Zofin	Europe	Czech Republic	48.665098	14.706484	eMammal	25	Small	Grid	x		
Albany Area Camera Trapping Project	North America	New York	42.723440	-73.862510	eMammal	30	Large	Stratified Random		x	
Bandy Ranch	North America	Montana	47.073325	-113.25250	eMammal	20	Large	Grid	x		
North Carolina Candid Critters	North America	North Carolina	35.986940	-79.395830	eMammal	30	Large	Stratified Random		x	
Prairie Ridge	North America	North Carolina	35.813957	-78.714713	eMammal	163	Small	Stratified Random		x	x
Roosevelt Ranch	North America	Montana	48.107133	-112.67768	eMammal	215	Large	Grid	x	X	x
SCBI	North America	Virginia	38.893386	-78.147111	eMammal	49	Small	Grid	x		
SCBI Grid	North America	Virginia	38.894766	-78.146253	eMammal	28	Small	Grid	x		
SCBI2	North America	Virginia	38.891784	-76.559497	eMammal	46	Small	Grid	x		
Schenck	North America	North Carolina	35.817065	-78.726349	eMammal	54	Small	Grid	x		
TRC	North America	Missouri	38.517662	-90.557613	eMammal	47	Small	Grid	x		
UCSC Grid	North America	California	37.015170	-122.07271	eMammal	49	Small	Grid	x		
Caxiuana	South America	Brazil	-1.771972	-51.512277	Team	60	Large	Grid	x		
Manaus	South America	Brazil	-2.663266	-59.968673	Team	90	Large	Grid	x		

Peperpot Nature Park	South America	Suriname	5.798960	-55.116270	eMammal	18	Small	Stratified Random		X	
Peruvian Amazon Terrestrial	South America	Peru	-1.779528	-75.640346	eMammal	23	Large	Grid		X	
Peruvian Amazon Canopy	South America	Peru	-3.1	-72.9	Other	41	Large	Grid			x
Sumaco Cloud Forest	South America	Ecuador	-0.566570	-77.596560	eMammal	30	Small	Stratified Random		x	
Suriname	South America	Suriname	4.775049	-56.171565	Team	65	Large	Grid	x		
Bayuelin Nature Reserve	Asia	China	29.043012	102.990763	eMammal	40	Small	Stratified Random		X	
Niuweihe Nature Reserve	Asia	China	32.1744	104.1853	eMammal	55	Large	Stratified Random		x	
Okaloosa S.C.I.E.N.C.E	North America	Florida	30.632937	-86.615033	eMammal	72	Small	Stratified Random		x	
Mpala Primary	Africa	Kenya	0.462391	36.971745	eMammal	10	Small	Stratified Random		X	
HKK ForestGEO	Asia	Thailand	15.62918	99.22246	eMammal	77	Small	Grid		x	
Yasuni	South America	Ecuador	-0.680300	-76.434331	Team	60	Large	Grid	x		

Family	Genus and species	Common Name
Aotidae	Aotus vociferans	Spix's night monkey
Atelidae	Alouatta seniculus	Red howler monkey
Atelidae	Alouatta palliata	Mantled howler monkey
Atelidae	Lagothrix lagothricha	Common woolly monkey
Bovidae	Capricornis sumatraensis	Sumatran serow
Bovidae	Cephalophus leucogaster	White-bellied Duiker
Bovidae	Cephalophus harveyi	Harvey's duiker
Bovidae	Philantomba monticola	Blue duiker
Bovidae	Tragelaphus scriptus	Bushbuck
Callitrichidae	Cebuella pygmaea	Pygmy marmosetd
Callitrichidae	Saguinus nigricollis	Black-mantled tamarin
Caluromys	Caluromys lanatus	Western woolly opossum
Canidae	Canis lupus	Gray wolf
Canidae	Canis latrans	Coyote
Canidae	Urocyon cinereoargenteus	Gray fox
Canidae	Vulpes vulpes	Red fox
Cebidae	Cebus capucinus	White-faced capuchin
Cebidae	Cebus albifrons	White-fronted capuchin
Cebidae	Saimiri sciureus	Common squirrel monkey
Cercopithecidae	Macaca nemestrina	Southern pig-tailed macaque
Cervidae	Alces alces	Moose
Cervidae	Capreolus capreolus	Roe deer
Cervidae	Cervus canadensis	Elk
Cervidae	Cervus elaphus	Red deer
Cervidae	Mazama americana	Red brocket deer
Cervidae	Muntiacus reevesi	Reeves's muntjac
Cervidae	Muntiacus crinifrons	Hairy-fronted muntjac
Cervidae	Odocoileus virginianus	White-tailed eer
Cervidae	Odocoileus hemionus	Mule deer
Cuniculidae	Cuniculus paca	Lowland paca
Dasypodidae	Dasypus kappleri	Greater Long-nosed armadillo
Dasypodidae	Dasypus novemcinctus	Nine-banded armadillo
Dasyproctidae	Dasyprocta punctata	Central American agouti
Dasyproctidae	Dasyprocta leporina	Red-rumped agouti
Dasyproctidae	Myoprocta acouchy	Red acouchi
Didelphidae	Didelphis virginiana	Virginia opossum
Didelphidae	Didelphis marsupialis	Common opossum

Table S2. Family and scientific name for 106 species of mammals presented in this paper.

Didelphidae	Marmosa robinsoni	Robinson's mouse opossum
Didelphidae	Monodelphis sp.	Short-tailed opossum
Didelphidae	Philander opossum	Gray four-eyed opossum
Elephantidae	Loxodonta africana	African elephant
Erethinzontidae	Coendou ichillus	Streaked dwarf porcupine
Erethizontidae	Coendou prehensilis	Brazilian porcupine
Erethizontidae	Erethizon dorsatum	North American porcupine
Eupleridae	Fossa fossana	Malagasy civet
Felidae	Leopardus pardalis	Ocelot
Felidae	Leopardus tigrinus	Oncilla
Felidae	Leopardus wiedii	Margay
Felidae	Leptailurus serval	Serval
Felidae	Lynx rufus	Bobcat
Felidae	Panthera onca	Jaguar
Felidae	Prionailurus bengalensis	Leopard cat
Felidae	Puma concolor	Puma
Herpestidae	Herpestes naso	Long-nosed mongoose
Hystricidae	Atherurus macrourus	Asiatic brush-tailed porcupine
Leporidae	Lepus townsendii	White-tailed jackrabbit
Leporidae	Lepus americanus	Snowshoe hare
Leporidae	Sylvilagus nuttallii	Mountain cottontail
Leporidae	Sylvilagus floridanus	Eastern cottontail
Macroscelididae	Petrodromus tetradactylus	Four-toed elephant shrew
Megalonychidae	Choloepus didactylus	Linnaeus's two-toed sloth
Mephititdae	Mephitis mephitis	Striped skunk
Muridae	Leopoldamys edwardsi	Edwards's long-tailed giant rat
Muridae	Niviventer confucianus	Chinese white-bellied rat
Mustelidae	Arctonyx collaris	Hog badger
Mustelidae	Eira barbara	Tayra
Mustelidae	Lontra canadensis	River otter
Mustelidae	Martes flavigula	Yellow-throated marten
Mustelidae	Martes martes	Pine marten
Mustelidae	Meles meles	European badger
Mustelidae	Mellivora capensis	Honey badger
Mustelidae	Melogale moschata	Chinese ferret-badger
Mustelidae	Mustela frenata	Long-tailed weasel
Mustelidae	Taxidea taxus	American badger
Myrmecophagidae	Tamandua mexicana	Northern tamandua
Myrmecophagidae	Tamandua tetradactyla	Southern tamandua
Nesomyidae	Cricetomys gambianus	Northern giant pouched rat

Nesomyidae	Nesomys rufus	Island mouse
Pitheciidae	Cheracebus lucifer	Yellow-handed titi monkey
Pitheciidae	Pithecia hirsuta	Hairy saki
Procyonidae	Bassaricyon alleni	Eastern lowland olingo
Procyonidae	Nasua narica	White-nosed coati
Procyonidae	Potos flavus	Kinkajou
Procyonidae	Procyon lotor	Northern raccoon
Procyonidae	Procyon cancrivorus	Crab-eating raccoon
Sciuridae	Callosciurus erythraeus	Pallas's squirrel
Sciuridae	Glaucomys volans	Southern flying squirrel
Sciuridae	Marmota monax	Woodchuck
Sciuridae	Microsciurus sp.	Squirrel
Sciuridae	Sciurus carolinensis	Eastern gray squirrel
Sciuridae	Sciurus granatensis	Red-tailed squirrel
Sciuridae	Sciurus sp.	Tree squirrel
Sciuridae	Tamias amoenus	Yellow-pine chipmunk
Sciuridae	Tamias striatus	Eastern chipmunk
Sciuridae	Tamiasciurus hudsonicus	American red squirrel
Sciuridae	Urocitellus columbianus	Columbian ground squirrel
Suidae	Phacochoerus africanus	Common Warthog
Suidae	Sus scrofa	Wild Boar
Tapiridae	Tapirus bairdii	Baird's tapir
Tapiridae	Tapirus terrestris	Lowland tapir
Tayassuidae	Pecari tajacu	Collared peccary
Tragulidae	Tragulus kanchil	Lesser mouse-deer
Ursidae	Ursus americanus	American black bear
Ursidae	Ursus arctos	Brown bear
Viverridae	Genetta maculata	Large-spotted genet
Viverridae	Paguma larvata	Masked palm civet

Table S3. Estimates of how many cameras are needed to estimate richness within 5% of the maximum number of species detected in different protected areas around the world representing both temperate and tropical climates and having both small (≤ 0.2 km) and large (>0.2km) camera spacing.

Ŧ	# Cameras to detect 95% of		
Protected Area	species	Spacing	Туре
Arabuko	17	Large	Tropical
Bandy Ranch	17	Large	Temperate
BCI	42	Large	Tropical
Bukit Barisan	35	Large	Tropical
Caxiuana	30	Large	Tropical
Gonzolillo	12	Small	Tropical
Korup	42	Large	Tropical
Manaus	52	Large	Tropical
Nam Kading	24	Large	Tropical
Nouabala Ndoki	43	Large	Tropical
Pasoh	37	Large	Tropical
Ranomafana	29	Large	Tropical
Roosevelt Ranch	18	Large	Temperate
SCBI	38	Small	Temperate
SCBI Grid	20	Small	Temperate
SCBI2	12	Small	Temperate
Schenck	28	Small	Temperate
Si	14	Small	Temperate
Speulderbos	26	Small	Tropical
Suriname	29	Large	Tropical
TRC	36	Small	Temperate
UCSC Grid	23	Small	Temperate
Udzungwa	42	Large	Tropical
Virunga Massif	41	Large	Tropical
Volcan Barva	32	Large	Tropical
Yasuni	37	Large	Tropical
Zofin	19	Small	Tropical

Table S4. Estimates of how many cameras are needed to precisely estimate occupancy in different protected areas around the world representing both temperate and tropical climates and having both small (<500m) and large (>500m) camera spacing. We used two metrics to determine at which number of cameras precision no longer improved: (1) the width of the 95%

confidence interval changed <1% and (2) the standard error was <10% of the mean, regardless of whether more cameras were added. Protected areas for which the maximum number of cameras did not appear to be enough for precision to asymptote are marked as "DNLO" (i.e., Did Not Level Off). Otherwise, the minimum number of cameras necessary for a precise estimate is listed. We also provide 95% Lower Confidence Limits (LCL) and Upper Confidence Limits (UCL) for the occupancy estimate.

Site	Species	Occupancy probability	LCL	UCL	Point of Diminishing returns	Point of Precision
Arabuko	Large-spotted genet	0.965	0.588	0.999	22	5
Arabuko	Four-toed elephant shrew	0.907	0.700	0.990	13	8
BCI	Central American agouti	0.961	0.662	0.998	15	5
BCI	Ocelot	0.482	0.265	0.958	24	DNLO
Bukit Barisan	Southern pig-tailed macaque	0.859	0.652	1.001	17	DNLO
Bukit Barisan	Wild boar	0.967	0.425	1.000	28	DNLO
Caxiuana	Greater long-nosed armadillo	0.304	0.145	0.661	20	DNLO
Caxiuana	Collared peccary	0.431	0.224	0.877	33	DNLO
Korup	Long-nosed mongoose	1.000	0.211	1.000	19	10
Korup	Blue duiker	0.850	0.647	0.975	14	29
Manaus	Nine-banded armadillo	0.681	0.474	0.995	6	DNLO
Manaus	Red acouchi	0.706	0.563	0.833	22	50
Nam Kading	Asiatic brush-tailed porcupine	0.374	0.211	0.617	46	DNLO
Nam Kading	Wild boar	0.520	0.224	1.000	8	DNLO
Nouabala Ndoki	White-bellied duiker	0.153	0.062	0.301	24	DNLO
Nouabala Ndoki	African elephant	0.521	0.352	0.684	26	DNLO
Pasoh	Southern pig-tailed macaque	0.946	0.622	0.998	6	5
Pasoh	Lesser mouse-deer	0.271	0.149	0.448	15	DNLO
Ranomafana	Malagasy civet	0.939	0.682	1.000	17	DNLO
Ranomafana	Island mouse	0.513	0.294	0.953	13	DNLO
SCBI Grid	White-tailed deer	1.000	0.811	1.000	13	5
SCBI Grid	American black bear	0.985	0.612	1.000	16	8
Schenck	White-tailed deer	1.000	0.892	1.000	6	5
Schenck	Eastern gray squirrel	0.965	0.573	0.993	DNLO	DNLO
Speulderbos	Roe deer	0.852	0.659	0.982	16	32
Speulderbos	Wild boar	0.973	0.740	0.999	11	5
Suriname	Red-rumped agouti	0.931	0.546	0.997	15	5
Suriname	Nine-banded armadillo	0.841	0.314	1.000	14	DNLO
TRC	White-tailed deer	0.964	0.797	0.999	15	15
TRC	Eastern gray squirrel	0.568	0.405	0.743	52	DNLO
UCSC Grid	Mule deer	0.838	0.644	0.962	17	22

Udzungwa	Harvey's duiker	0.888	0.620	0.989	17	11
Udzungwa	Honey badger	0.802	0.310	1.000	29	DNLO
Virunga Massif	Serval	0.376	0.137	0.995	29	DNLO
Virunga Massif	Bushbuck	0.832	0.633	0.950	18	20
Volcan Barva	Lowland paca	0.483	0.231	0.990	14	DNLO
Volcan Barva	Collared peccary	0.849	0.663	0.981	16	15
Yasuni	Tayra	0.421	0.221	0.913	13	DNLO
Yasuni	Collared peccary	0.892	0.651	0.990	DNLO	44

Table S5. Estimates of how many cameras are needed to precisely estimate detection rate (DR) in different protected areas around the world. We used two metrics to determine at which number of cameras precision no longer improved: (1) the width of the 95% confidence interval changed <1% and (2) the standard error was <10% of the mean, regardless of whether more cameras were added. Protected areas for which the maximum number of cameras did not appear to be enough for precision to asymptote are marked as DNLO (i.e. Did Not Level Off). Otherwise, the minimum number of cameras necessary for a precise estimate is listed. We also provide 95% Lower Confidence Limits (LCL) and Upper Confidence Limits (UCL) for the detection rate estimate.

detection rate est	innate.						
Site	Species	Mean DR	SE	LCL	UCL	# Cameras for CI width change <1%	# Cameras for SE/mean <10%
	Large-spotted						
Arabuko	genet	0.15	0.03	-0.1	0.41	DNLO	DNLO
Arabuko	Four-toed	2.3	0.45	-1.9	6.49	DNLO	DNLO
Alabuko	elephant shrew Central American	2.3	0.43	-1.9	0.49	DINLO	DNLU
BCI	agouti	1.75	0.56	-3.53	7.04	DNLO	DNLO
BCI	Ocelot	0.08	0.01	-0.05	0.2	7	DNLO
	Southern pig-						
Bukit Barisan	tailed macaque	0.19	0.03	-0.05	0.43	18	DNLO
Bukit Barisan	Wild boar	0.07	0.01	-0.04	0.19	DNLO	DNLO
a .	Greater long-	0.1.4	0.00	0.11	0.00		DUILO
Caxiuana	nosed armadillo	0.14	0.03	-0.11	0.39	DNLO	DNLO
Caxiuana	Collared peccary	0.93	0.41	-2.95	4.82	DNLO	DNLO
Varun	Long-nosed	0.05	0.01	-0.01	0.12	26	DNLO
Korup	mongoose						
Korup	Blue duiker	0.36	0.08	-0.34	1.07	DNLO	DNLO
Manaug	Nine-banded	0.08	0.01	-0.01	0.17	DNLO	33
Manaus	armadillo	0.08	0.01	-0.01	0.17	DINLO	33

Manaus	Red acouchi Asiatic brush-	0.45	0.16	-1.09	1.98	DNLO	DNLO
Nam Kading	tailed porcupine	0.14	0.03	-0.13	0.41	DNLO	DNLO
Nam Kading	Wild boar	0.4	0.2	-1.43	2.24	DNLO	DNLO
Nouabala	White-bellied						
Ndoki	duiker	0.06	0.01	-0.02	0.15	25	DNLO
Nouabala		0.15	0.02	0.00	0.00	17	
Ndoki	African elephant Southern pig-	0.15	0.03	-0.09	0.39	16	DNLO
Pasoh	tailed macaque	0.4	0.07	-0.27	1.07	DNLO	DNLO
	Lesser mouse-						
Pasoh	deer	0.15	0.04	-0.2	0.5	DNLO	DNLO
Ranomafana	Malagasy civet	0.08	0.02	-0.07	0.24	24	DNLO
Ranomafana	Island mouse	0.06	0.01	-0.08	0.2	13	DNLO
SCBI Grid	White-tailed deer American black	0.8	0.08	0.06	1.53	DNLO	DNLO
SCBI Grid	bear	0.07	0.01	-0.01	0.15	DNLO	DNLO
Schenck	White-tailed deer	1.1	0.1	0.14	2.06	34	31
	Eastern gray						
Schenck	squirrel	0.24	0.05	-0.25	0.73	DNLO	DNLO
Speulderbos	Roe deer	0.14	0.03	-0.13	0.41	DNLO	DNLO
Speulderbos	Wild boar	0.61	0.08	-0.18	1.4	DNLO	DNLO
Suriname	Red-rumped agouti	0.33	0.06	-0.22	0.89	DNLO	DNLO
Surmanic	Nine-banded	0.55	0.00	-0.22	0.89	DINLO	DINLO
Suriname	armadillo	0.05	0.01	-0.02	0.13	15	DNLO
TRC	White-tailed deer	0.53	0.09	-0.29	1.36	DNLO	DNLO
TD C	Eastern gray		0.07	• •		DULO	DULO
TRC	squirrel	0.24	0.06	-0.3	0.78	DNLO	DNLO
UCSC Grid	Mule deer	0.4	0.06	-0.16	0.97	DNLO	DNLO
Udzungwa	Harvey's duiker	0.42	0.12	-0.67	1.51	DNLO	DNLO
Udzungwa	Honey badger	0.05	0.01	-0.02	0.12	3	DNLO
Virunga Massif	Serval	0.05	0.01	-0.02	0.12	15	DNLO
Virunga Massif	Bushbuck	0.9	0.18	-0.77	2.57	32	DNLO
Volcan Barva	Lowland paca	0.08	0.01	0	0.15	DNLO	DNLO
Volcan Barva	Collared peccary	0.38	0.06	-0.15	0.91	DNLO	DNLO
Yasuni	Tayra	0.05	0.01	-0.02	0.11	20	DNLO
Yasuni	Large-spotted genet	0.15	0.03	-0.14	0.45	6	DNLO
1 asuin	gonor	0.13	0.05	-0.14	0.43	0	DINLO

Crab-cating raccoonPeperpot Nature Park0.02omnivore tropicaltropicalmedium51Lowland tapirPeruvian Amazon Terrestrial0.03herbivore tropicallarge45laguarPeruvian Amazon Terrestrial0.04carnivore tropicaltropicallarge48OcelotPeruvian Amazon Terrestrial0.04carnivore tropicaltropicalmedium55European badgerSpeulderbos0.05carnivore temperatemedium35Leopard cat ReserveReserve0.05carnivore temperatemedium29Ycllow- throatedNiuweihe Nature Reserve0.06carnivore temperatetemperatesmall37Masked Palm Bayuelin Nature sivetReserve0.07omnivore temperatesmall58Masked Palm bivetBayuelin Nature Reserve0.07omnivore temperatesmall36Pine marten sivetSpeulderbos0.11carnivore temperatesmall23Hog badger Speulderbos0.11omnivore temperatemedium33Red fox Speulderbos0.11omnivore temperatemedium33Red deer Speulderbos0.11omnivore temperatemedium33Red deer Speulderbos0.11herbivore temperatemedium33Red deer Speulderbos0.11herbivore temperatemedium34Shrew Service Project<	Species	Study Area	Final Detection Rate	Trophic level	Region	Size	Days to reach <10% error
Lowland tapir TerrestrialTerrestrial0.03herbivore tropicaltropicaltarge45JaguarPeruvian Amazon Terrestrial0.04carnivoretropicallarge48OcelotPeruvian Amazon Terrestrial0.04carnivoretropicalmedium55European badgerSpeulderbos0.05carnivoretropicalmedium35Leopard cat ReserveBayuelin Nature Reserve0.05carnivoretemperatemedium35Yellow- throatedNiuweihe Nature Reserve0.06carnivoretemperatesmall37Gray four-eyed Opossum ParkPeperpot Nature Reserve0.06omnivoretropicalsmall58Masked Palm Bayuelin Nature Reserve0.07omnivoretemperatesmall36Pine marten Speulderbos0.1carnivoretemperatesmall23Hog badger ReserveNiuweihe Nature Reserve0.1omnivoretemperatemedium21Hog badger ColdenSpeulderbos0.11omnivoretemperatemedium23Red deer Genet Service Project0.12omnivoretemperatelarge23Colden Elephant Kenya Wildlife Shrew0.15carnivoretropicalsmall36Colden Elephant 	Crab-eating raccoon		0.02	omnivore	tropical	medium	
JaguarTerrestrial0.04carnivoretropicallarge48DeclotPeruvian Amazon Terrestrial0.04carnivoretropicalmedium55European badgerSpeulderbos0.05carnivoretropicalmedium35Leopard catBayuelin Nature Reserve0.05carnivoretemperatemedium29Yellow- throatedNiuweihe Nature 	Lowland tapir	Terrestrial	0.03	herbivore	tropical	large	45
DecionTerrestrial0.04carnivoretropicalmedium55European badgerSpeulderbos0.05carnivoretemperatemedium35Leopard cat ReserveBayuelin Nature Reserve0.05carnivoretemperatemedium29Yellow- throatedNiuweihe Nature Reserve0.06carnivoretemperatemedium29Yellow- throatedNiuweihe Nature Park0.06carnivoretemperatesmall37Masked Palm Dossum ParkBayuelin Nature Park0.06omnivoretropicalsmall58Masked Palm Bayuelin Nature Pine martenSpeulderbos0.1carnivoretemperatesmall36Hog badger ReserveNiuweihe Nature Reserve0.1omnivoretemperatesmall23Hog badger ReserveSpeulderbos0.11omnivoretemperatemedium21Red fox GenetSpeulderbos0.11omnivoretemperatemedium23Red deer Genet Service Project0.12omnivoretemperatelarge23ColdenService Project0.12omnivoretropicalsmall36Golden0.12omnivoretropicalsmall36Shrew Service Project0.22herbivoretropicalsmall36Shrew SurrelSCBI Grid Candid Critters0.24omnivoretropicalmedium37Shrew	Jaguar	Terrestrial	0.04	carnivore	tropical	large	48
badgerSpeulderbos0.05carnivoretemperatemedium35Leopard catBayuelin Nature Reserve0.05carnivoretemperatemedium29Yellow- throatedNiuweihe Nature Reserve0.06carnivoretemperatemedium29Yellow- throatedNiuweihe Nature Peperpot Nature Dopossum Divert0.06carnivoretemperatesmall37Gray four-eyed Opossum ParkPeperpot Nature Peperpot Nature Divet0.06omnivoretropicalsmall58Masked Palm Bayuelin Nature DivetBayuelin Nature Reserve0.07omnivoretemperatesmall36Pine martenSpeulderbos0.1carnivoretemperatesmall23Hog badger Red foxSpeulderbos0.11omnivoretemperatemedium23Red deer GenetSpeulderbos0.11herbivoretemperatemedium23Red deer Golden elephantService Project0.12omnivoretropicalsmall36Shrew Service Project0.12omnivoretropicalsmall36Shrew Service Project0.22omnivoretropicalsmall36Shrew Service Project0.22herbivoretropicalsmall36Shrew SuirrelSCBI Grid0.24omnivoretropicalsmall37Suirrel SuirrelSCBI Grid0.24omnivoretemperate<	Ocelot		0.04	carnivore	tropical	medium	55
Leopard catReserve0.05carnivoretemperatemedium29Yellow- throatedNiuweihe Nature0.06carnivoretemperatemedium29Gray four-eyedPeperpot Nature0.06omnivoretemperatesmall37Gray four-eyedPeperpot Nature0.06omnivoretropicalsmall58OpossumPark0.07omnivoretemperatesmall36Masked PalmBayuelin Nature0.07omnivoretemperatesmall23Pine martenSpeulderbos0.1carnivoretemperatesmall23Hog badgerNiuweihe Nature Reserve0.1omnivoretemperatemedium21Red foxSpeulderbos0.11omnivoretemperatemedium23Red deerSpeulderbos0.11herbivoretemperatemedium23Large-spottedKenya Wildlife Service Project0.12omnivoretemperatelarge23GoldenScBI Grid0.15carnivoretropicalsmall36Eastern gray SquirrelSCBI Grid0.22herbivoretemperatesmall50WarthogMpala Primary Carolina Candid Critters0.28omnivoretemperatelarge40African0.31herbivoretropicallarge30	European badger	-	0.05	carnivore	temperate	medium	35
throated martenNiuweihe Nature Reserve0.06carnivoretemperatesmall37Gray four-eyed OpossumPeperpot Nature Park0.06omnivoretropicalsmall58Masked Palm 	Leopard cat	2	0.05	carnivore	temperate	medium	29
Opossum DipossumPark Bayuelin Nature Reserve0.06omnivore tropicaltropicalsmall58Masked Palm civetBayuelin Nature Reserve0.07omnivore temperatesmall36Pine martenSpeulderbos0.1carnivore temperatetemperatesmall23Hog badgerNiuweihe Nature Reserve0.1omnivore temperatetemperatesmall23Hog badgerNiuweihe Nature Reserve0.1omnivore temperatetemperatemedium21Red fox Red deerSpeulderbos0.11omnivore temperatemedium33Red deer GenetSpeulderbos0.11herbivore temperatemedium23Large-spotted GoldenKenya Wildlife Service Project0.12omnivore tropicalsmall36Shrew Service Project0.12omnivore tropicalsmall36Wild pig Eastern gray SquirrelSCBI Grid0.22herbivore temperatesmall24Warthog Mala Primary North Carolina Candid Critters0.24omnivore tropicalmedium37Black bearNorth Carolina Candid Critters0.31herbivore temperatetemperate temperatearge30	Yellow- throated marten		0.06	carnivore	temperate	small	37
civetReserve0.07omnivoretemperatesmall36Pine martenSpeulderbos0.1carnivoretemperatesmall23Hog badgerNiuweihe Nature Reserve0.1omnivoretemperatesmall23Red foxSpeulderbos0.11omnivoretemperatemedium21Red foxSpeulderbos0.11omnivoretemperatemedium23Red deerSpeulderbos0.11herbivoretemperatemedium23Large-spottedKenya Wildlife Service Project0.12omnivoretropicalsmall36GoldenService Project0.15carnivoretropicalsmall24Wild pigHKK ForestGEO0.2omnivoretropicalmedium16Eastern gray SquirrelSCBI Grid0.22herbivoretemperatesmall50WarthogMpala Primary North Carolina Candid Critters0.28omnivoretemperatelarge40African0.31herbivoretropicallarge30	Gray four-eyed Opossum		0.06	omnivore	tropical	small	58
Hog badgerNiuweihe Nature Reserve0.1omnivore temperatetemperate medium21Red foxSpeulderbos0.11omnivore temperatetemperate 	Masked Palm civet	•	0.07	omnivore	temperate	small	36
Hog badger Red foxReserve0.1omnivore temperatetemperate mediummedium21Red foxSpeulderbos0.11omnivore temperatetemperate 	Pine marten	Speulderbos	0.1	carnivore	temperate	small	23
Roe deerSpeulderbos0.11herbivoretemperatemedium23Red deerSpeulderbos0.11herbivoretemperatelarge23Large-spottedKenya Wildlife0.12omnivoretropicalsmall36GenetService Project0.15carnivoretropicalsmall24GoldenKenya Wildlife0.15carnivoretropicalsmall24ShrewService Project0.2omnivoretropicalmedium16Wild pigHKK ForestGEO0.2omnivoretropicalmedium16Eastern graySCBI Grid0.22herbivoretemperatesmall50WarthogMpala Primary0.24omnivoretropicalmedium37Black bearNorth Carolina Candid Critters0.31herbivoretemperatelarge30	Hog badger		0.1	omnivore	temperate	medium	21
Red deerSpeulderbox0.11herbivoretemperatelarge23Large-spottedKenya Wildlife0.12omnivoretropicalsmall36GenetService Project0.12omnivoretropicalsmall36GoldenKenya Wildlife0.15carnivoretropicalsmall24ShrewService Project0.2omnivoretropicalsmall24Wild pigHKK ForestGEO0.2omnivoretropicalmedium16Eastern graySCBI Grid0.22herbivoretemperatesmall50WarthogMpala Primary0.24omnivoretropicalmedium37Black bearNorth Carolina Candid Critters0.31herbivoretemperatelarge30	Red fox	Speulderbos	0.11	omnivore	temperate	medium	33
Large-spotted GenetKenya Wildlife Service Project0.12omnivore tropicaltropicalsmall36Golden elephantKenya Wildlife Service Project0.15carnivore tropicalsmall24ShrewService Project0.15carnivore tropicalsmall24Wild pig Eastern gray SquirrelHKK ForestGEO0.2omnivore tropicalmedium16Eastern gray SquirrelSCBI Grid0.22herbivore temperatesmall50Warthog Black bearMpala Primary Candid Critters0.24omnivore tropicalmedium37O.21herbivore temperatelarge40African0.31herbivore tropicallarge30	Roe deer	Speulderbos	0.11	herbivore	temperate	medium	23
GenetService Project0.12omnivoretropicalsmall36GoldenGoldenService Project0.15carnivoretropicalsmall24ShrewService Project0.15carnivoretropicalsmall24Wild pigHKK ForestGEO0.2omnivoretropicalmedium16Eastern graySCBI Grid0.22herbivoretemperatesmall50SquirrelSCBI Grid0.24omnivoretropicalmedium37Black bearNorth Carolina Candid Critters0.28omnivoretemperatelarge40African0.31herbivoretropicallarge30	Red deer	Speulderbos	0.11	herbivore	temperate	large	23
elephant ShrewKenya Wildlife Service Project0.15carnivore tropicaltropicalsmall24Wild pig Eastern gray SquirrelHKK ForestGEO0.2omnivore tropicalmedium16Eastern gray SquirrelSCBI Grid0.22herbivore temperatemedium16WarthogMpala Primary North Carolina Candid Critters0.24omnivore tropicalmedium37Black bearNorth Carolina Candid Critters0.28omnivore temperatelarge40	Large-spotted Genet Golden	2	0.12	omnivore	tropical	small	36
Wild pigHKK ForestGEO0.2omnivoretropicalmedium16Eastern gray SquirrelSCBI Grid0.22herbivoretemperatesmall50SCBI Grid0.22herbivoretemperatesmall50WarthogMpala Primary0.24omnivoretropicalmedium37Black bearNorth Carolina Candid Critters0.28omnivoretemperatelarge40African0.31herbivoretropicallarge30	elephant Shrew	•	0.15	carnivore	tropical	small	24
SquirrelSCBI Grid0.22nerbivoretemperatesmall50WarthogMpala Primary0.24omnivoretropicalmedium37Black bearNorth Carolina Candid Critters0.28omnivoretemperatelarge40African0.31herbivoretropicallarge30	Wild pig	5	0.2	omnivore	tropical	medium	16
Black bearNorth Carolina Candid Critters0.28omnivore temperatelarge40African0.31herbiyore tropicallarge30	Eastern gray Squirrel	SCBI Grid	0.22	herbivore	temperate	small	50
African Candid Critters 0.28 omnivore temperate large 40	Warthog	Mpala Primary	0.24	omnivore	tropical	medium	37
1) (1) herbivore tropical large (1)	Black bear	North Carolina	0.28	omnivore	temperate	large	40
	African elephant	Mpala Primary	0.31	herbivore	tropical	large	30

Table S6. Effect of deployment duration on site level detection rate for 24 species, including the study areas, species traits, region, and the number of days to reach <10% error of final detection rate.

White-tailed deer	Okaloosa S.C.I.E.N.C.E	0.31	herbivore	temperate	large	22
Pouched rat	Kenya Wildlife Service Project	0.41	herbivore	tropical	small	37
Red-rumped agouti	Peperpot Nature Park	0.5	herbivore	tropical	small	17

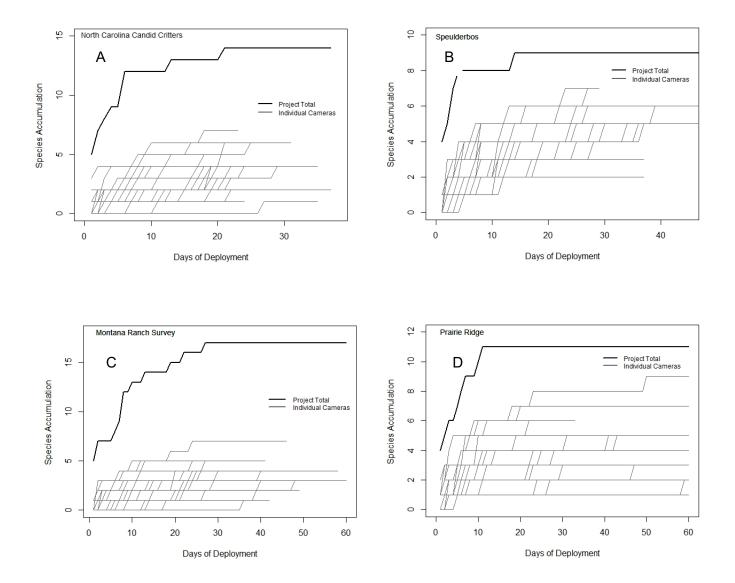
Table S7 Model selection results from Poisson regression analyses examining the influence of size (small, medium, or large), trophic guild (carnivore, omnivore, or herbivore), region (temperate or tropical), detection rate, and the maximum number of sampling days on the number of days of camera trap sampling before the percent error of the estimated detection rate decreases below 10%. Data come from 24 representative species occurring on 5 continents from the eMammal camera trap database (Table S5).

Model	K	AICc	Delta_AICc	AICcWt	LL
Final Detection Rate	2	215.13	0	0.97	-105.28
Region	2	222.67	7.54	0.02	-109.05
Herbivores	2	226.37	11.24	0	-110.9
Null	1	228.43	13.3	0	-113.12
Diet	3	228.96	13.83	0	-110.88
Small	2	230.47	15.34	0	-112.95
Max days	2	230.52	15.39	0	-112.97
Size	3	232.91	17.78	0	-112.86

				All mammals detection rate	
Study Area	Season	Months	Trap Nights	(n/day)	No. Species
China	Wet	May-October	8,944	0.26	10
	Dry	November-April	6,786	0.16	9
Peru	Wet	November-April	3,982	0.15	19
	Dry	May-October	5,797	0.16	22
Panama	Wet	July-December	2,839	2.12	14
	Dry	January-June	3,225	2.54	15
Montana	Winter	October-March	4,410	0.86	19
	Summer	April-September	2,377	0.94	18
North Carolina	Winter	October-March	3,272	3.82	13
	Summer	April-September	2,886	2.70	10

Table S8. Sample size for seasonal analysis.

Detection Detection Wet/Winter Study Rate: Wet/Winter Wet/Winter Rate: Area & Wet/ Coefficient: Coefficient: Coefficient: Count Dry/ Species Winter Summer Occupancy (SE) Detection (SE) Model (SE) Season Chinese white-bellied rat 0.12 0.031 China 1.47 (0.50) 0.68 (0.13) 0.93 (0.41) Wet/ Dry Masked palm civet 0.013 0.0013 0.77 (0.87) 1.53 (0.69) 1.88 (0.97) Hairy-fronted muntjac 0.075 0.030 0.06 (0.57) 0.29 (0.15) 0.47 (0.47) Hog badger 0.013 0.0034 0.02 (0.59) 0.59 (0.41) 1.97 (1.14) Reeves's muntiac 0.024 0.066 -0.84(0.47)-0.57 (0.18) -0.98 (0.41) Pallas's squirrel 0.0027 0.0007 1.54 (1.40) Wild boar 0.0038 0.025 -2.76 (1.52) Edwards's long-tailed 0.0040 0.0034 giant rat 0.29 (1.26) Chinese ferret-badger 0.0008 0.0001 Leopard cat 0.0002 0.00 0.11 Paca 0.1666 Panama 2.05 (1.62) 0.36 (0.18) -0.07(0.16)Wet/ Dry White-nosed coati 0.11 0.13 1.44(1.21)-0.04(0.21)-0.61 (0.27) Red brocket deer 0.074 0.12 1.43 (2.66) -0.64 (0.18) -0.68 (0.18) **Collared Peccary** 0.35 0.89 0.44 (1.24) -0.39 (0.17) -1.07 (0.24) 0.034 0.024 -1.66(6.26)0.43 (0.25) 0.19 (0.18) Ocelot Nine-banded armadillo 0.019 0.016 0.05 (0.95) -0.05(0.40)-0.05(0.33)Agouti 1.29 1.17 -0.16(0.11)Northern tamandua 0.011 -0.99 (0.30) 0.016 Red-tailed squirrel 0.080 0.062 0.14 (0.23)

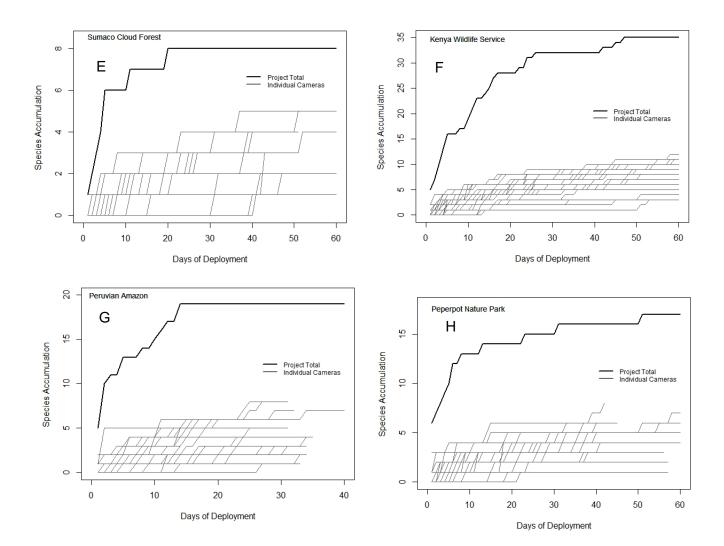
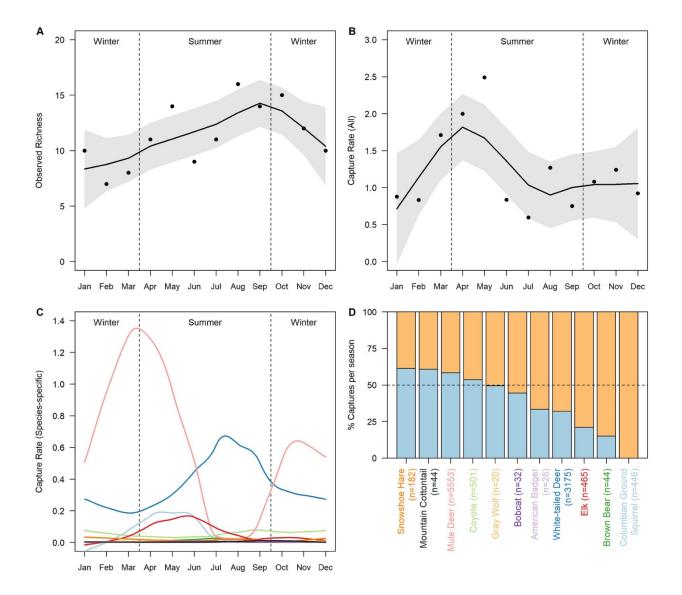
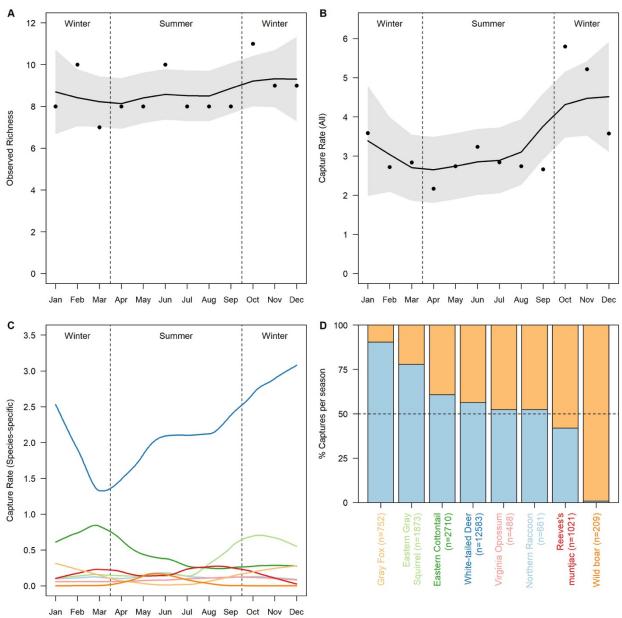

Table S9. Comparisons of seasonal effects on detection and occupancy of 70 mammal species across five study areas. Detection rates are per camera day, and model coefficients are bolded when the seasonal effect was significant. These values are also graphed in Figure S2. Species with a "–" for model coefficients had models that did not converge, usually because of low or uneven sample size.

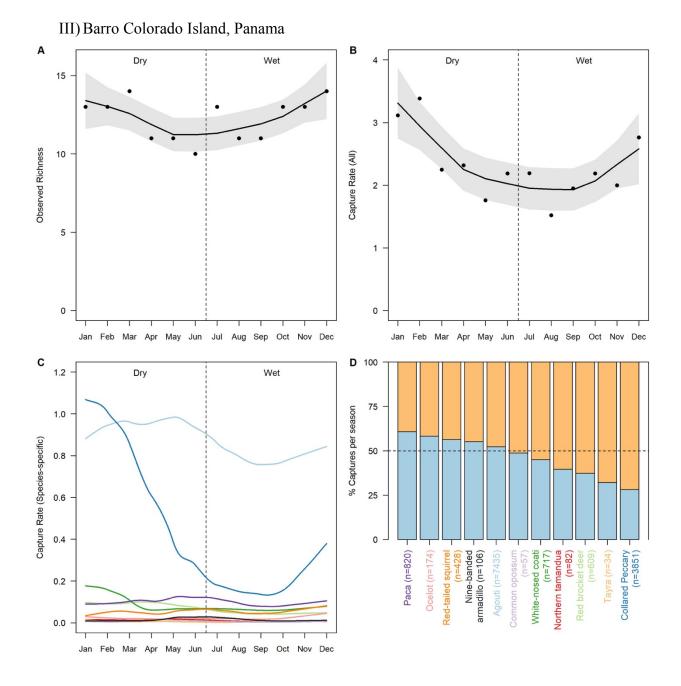
	Tayra	0.0035	0.0074	-	-	-0.16 (0.50)
	Common opossum	0.0092	0.0096	-	-	-0.35 (0.36)
	White faced capuchin	0.0039	0.0019	-	-	0.33 (0.71)
	Baird's tapir	0.0007	0.0006	-	-	0.11 (1.00)
	Puma	0.0018	0.0003	-	-	-
	Margay	0	0.0003	-	-	-
	Robinson's Mouse					
	Opossum	0.0004	0	-	-	-
	Howler monkey	0	0.0003			
		0	0			
Peru	Brazilian porcupine	0.0025	0.0074	2.75 (7.29)	-2.18 (1.01)	-1.21 (1.19)
Wet/						
Dry	Dwarf porcupine	0.0048	0.0066	1.58 (0.71)	-1.27 (0.41)	-0.31 (0.95)
	Two-toed sloth	0.017	0.0038	0.44 (0.61)	0.97 (0.42)	1.17 (0.82)
	Common squirrel	0.02(1	0.017			0.00 (0.70)
	monkey	0.0264	0.017	0.15 (0.55)	0.02 (0.25)	0.69 (0.72)
	Olingo	0.0055	0.006	-0.14 (0.75)	-0.40 (0.42)	-0.68 (0.55)
	Common woolly monkey	0.0018	0.0014	-0.21 (0.91)	0.24 (0.80)	0.14 (1.01)
	Black-mantled tamarin	0.012	0.012	-0.86 (0.57)	0.47 (0.34)	-0.10 (0.73)
	Hairy saki monkey	0.0098	0.016	-1.13 (0.55)	-0.17 (0.28)	-0.56 (0.50)
	Western woolly opossum	0.012	0.028	-1.14 (0.51)	-0.09 (0.24)	-0.82 (0.81)
	Red howler monkey	0.0028	0.0021	-1.23 (1.19)	0.81 (0.65)	
	White-fronted capuchin	0.0065	0.0078	-1.53 (0.84)	0.69 (0.39)	-0.07 (0.55)
	Spix's night monkey	0.010	0.0081	-1.89 (0.73)	0.83 (0.37)	0.13 (0.71)
	Tamandua	0.003	0.0036	-2.18 (1.30)	0.21 (0.74)	-0.45 (0.73)
	Tayra	0.0003	0.0055	-	-	
	Yellow-handed titi					
	monkey	0.0028	0.0007	-	-	1.97 (1.41)
	Kinkajou	0.039	0.0312	-	-	0.28 (0.34)
	Microsciurus sp.	0.001	0.0045	-	-	-0.36 (1.17)

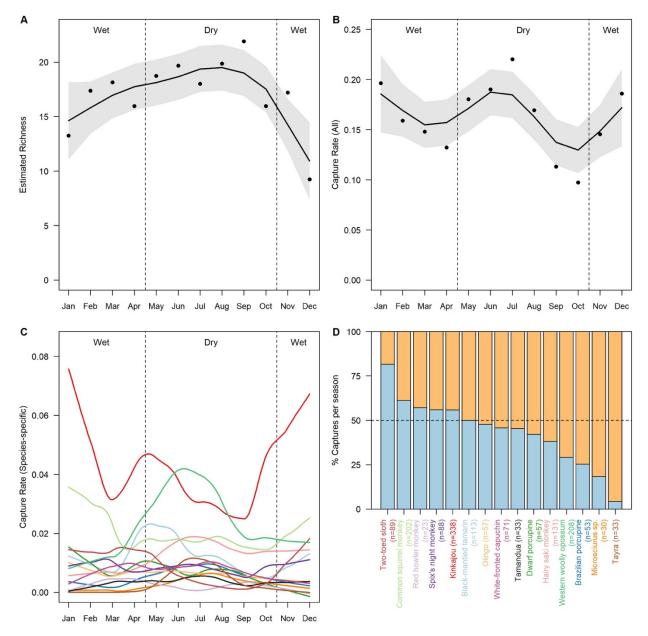
	Scurius sp.	0	0.0005	-	-	0.60 (1.21)
	Oncilla	0.0003	0	-	-	-
	Short-tailed opossum	0.0005	0	-	-	-
	Coati	0	0.0005	-	-	-
	Common opossum	0	0.0014	-	-	-
	Margay	0	0.0005	-	-	-
	Pygmy marmoset	0	0.0002	-	-	-
		0	0			
Montana Winter/	Coyote	0.059	0.070	1.37 (0.45)	-0.60 (0.21)	0.23 (0.20)
Summer	Mule Deer	0.53	0.048	1.25 (0.41)	1.07 (0.29)	0.15 (0.27)
	Snowshoe Hare	0.026	0.017	0.45 (0.52)	-0.32 (0.44)	0.41 (0.52)
	Bobcat	0.0036	0.0042	0.40 (0.96)	-0.42 (0.91)	-0.17 (0.51)
	Puma	0.0025	0.0013	0.28 (1.12)	-0.17 (1.18)	0.84 (0.95)
	Mountain Cottontail	0.0066	0.0063	0.00 (0.72)	-0.18 (0.73)	0.49 (1.16)
	White-tailed Deer	0.21	0.69	-0.54 (0.34)	-0.95 (0.18)	-0.69 (0.30)
	Elk	0.026	0.045	-1.71 (0.81)	0.22 (0.52)	-1.28 (0.45)
	Brown Bear	0.0018	0.012	-	-	-1.68 (0.71)
	American Badger	0.0023	0.0025	-	-	-0.33 (0.53)
	White-tailed Jackrabbit	0.0005	0.0008	-	-	-0.17 (1.00)
	Gray Wolf	0.0016	0.0025	-	-	-0.79 (0.70)
	North American				_	
	Porcupine	0.0002	0.0004	-		-1.78 (1.05)
	Moose	0.0007	0.0034	-	-	-1.85 (1.20)
	Striped Skunk	0.0005	0.0025	-	-	-1.27 (1.04)
	American Red Squirrel Columbian Ground	0.0007	0.0004	-	-	0.93 (1.67)
	Squirrel	0	0.042	-	-	-
	American Black Bear	0	0.0017	-	-	-
	Yellow-pine Chipmunk	0.0002	0	-	-	-

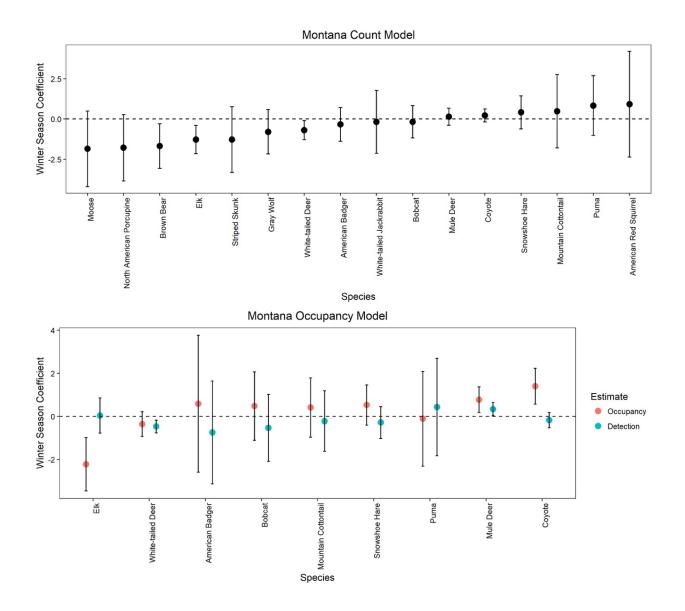
Long-tailed Weasel	0.0002	0	-	-	-
	0	0			
Gray Fox	0.21	0.022	1.33 (0.43)	1.04 (0.32)	1.93 (0.65)
Virginia Opossum	0.08	0.075	0.80 (0.40)	-0.41 (0.21)	0.00 (0.32)
Coyote	0.14	0.19	0.25 (0.56)	-0.35 (0.17)	-0.33 (0.24)
Eastern Gray Squirrel	0.46	0.13	0.25 (0.34)	-0.47 (0.23)	0.98 (0.51)
Eastern Cottontail	0.53	0.34	0.23 (0.33)	0.32 (0.20)	0.47 (0.35)
White-tailed Deer	2.29	1.77	-0.40 (1.24)	0.04 (0.19)	0.15 (0.17)
Bobcat	0.0031	0.0021	-0.84 (1.18)	1.03 (1.13)	0.44 (0.87)
Northern Raccoon	0.11	0.10	-	-	0.00 (0.43)
Red Fox	0.004	0.0003	-	-	2.22 (2.42)
Woodchuck	0.0006	0.072	-	-	-4.58 (4.06)
Southern Flying Squirrel	0.0028	0	-	-	-
River Otter	0.0003	0	-	-	-
Eastern Chipmunk	0.0006	0	-	-	-
	Gray Fox Virginia Opossum Coyote Eastern Gray Squirrel Eastern Cottontail White-tailed Deer Bobcat Northern Raccoon Red Fox Woodchuck Southern Flying Squirrel River Otter	0 Gray Fox 0.21 Virginia Opossum 0.08 Coyote 0.14 Eastern Gray Squirrel 0.46 Eastern Cottontail 0.53 White-tailed Deer 2.29 Bobcat 0.0031 Northern Raccoon 0.11 Red Fox 0.004 Woodchuck 0.0006 Southern Flying Squirrel 0.0028 River Otter 0.0003	0 0 Gray Fox 0.21 0.022 Virginia Opossum 0.08 0.075 Coyote 0.14 0.19 Eastern Gray Squirrel 0.46 0.13 Eastern Cottontail 0.53 0.34 White-tailed Deer 2.29 1.77 Bobcat 0.0031 0.0021 Northern Raccoon 0.11 0.10 Red Fox 0.004 0.0003 Woodchuck 0.0006 0.072 Southern Flying Squirrel 0.0028 0 River Otter 0.0003 0	0 0 Gray Fox 0.21 0.022 1.33 (0.43) Virginia Opossum 0.08 0.075 0.80 (0.40) Coyote 0.14 0.19 0.25 (0.56) Eastern Gray Squirrel 0.46 0.13 0.25 (0.34) Eastern Cottontail 0.53 0.34 0.23 (0.33) White-tailed Deer 2.29 1.77 -0.40 (1.24) Bobcat 0.0031 0.0021 -0.84 (1.18) Northern Raccoon 0.11 0.10 - Red Fox 0.004 0.0003 - Southern Flying Squirrel 0.0028 0 - River Otter 0.0003 0 -	0 0 Gray Fox 0.21 0.022 1.33 (0.43) 1.04 (0.32) Virginia Opossum 0.08 0.075 0.80 (0.40) -0.41 (0.21) Coyote 0.14 0.19 0.25 (0.56) -0.35 (0.17) Eastern Gray Squirrel 0.46 0.13 0.25 (0.34) -0.47 (0.23) Eastern Cottontail 0.53 0.34 0.23 (0.33) 0.32 (0.20) White-tailed Deer 2.29 1.77 -0.40 (1.24) 0.04 (0.19) Bobcat 0.0031 0.0021 -0.84 (1.18) 1.03 (1.13) Northern Raccoon 0.11 0.10 - - Red Fox 0.004 0.0003 - - Southern Flying Squirrel 0.0028 0 - - River Otter 0.0003 0 - -

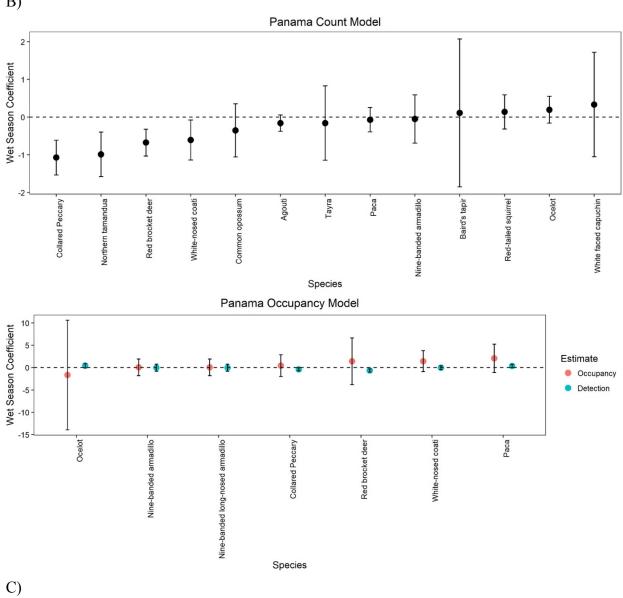
Figure S1. Species accumulation curves at a four temperate (A-D) and tropical (E-H) study areas showing increasing diversity detected by individual cameras (grey lines) and for the study area as a whole (black lines). The combination of these plots are shown in Figure 5. Study areas listed at the top of each graph are described in Table S1.

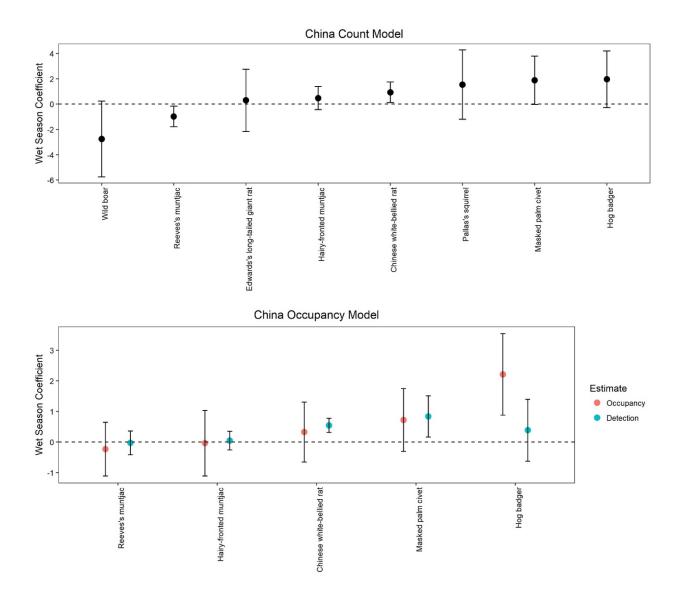




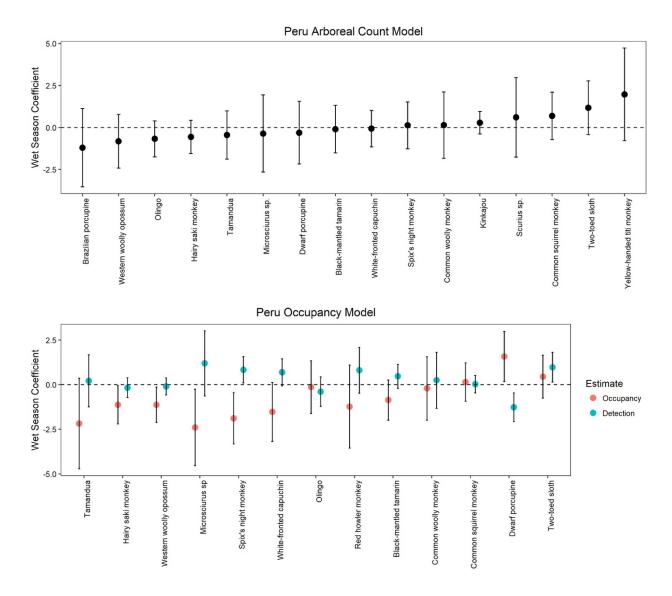

Figure S2. Seasonal variation shown as monthly averages for observed species richness, overall mammal detection rate, species-specific capture rate (all species > 20 captures), and the % of species captures stratified by season (all species with > 20 captures) for mammals surveyed for sites in (I) Montana, (II) North Carolina, (III) Panama, and (IV) Peru. Lines represent smoothed averages and gray polygons represent 95% confidence intervals. For the stacked bar charts; blue = winter (A & B) or rainy season (C & D); orange = summer (A & B) or dry season (C & D). All datasets represent captures from terrestrial cameras, except Peru, where the cameras were arboreal.

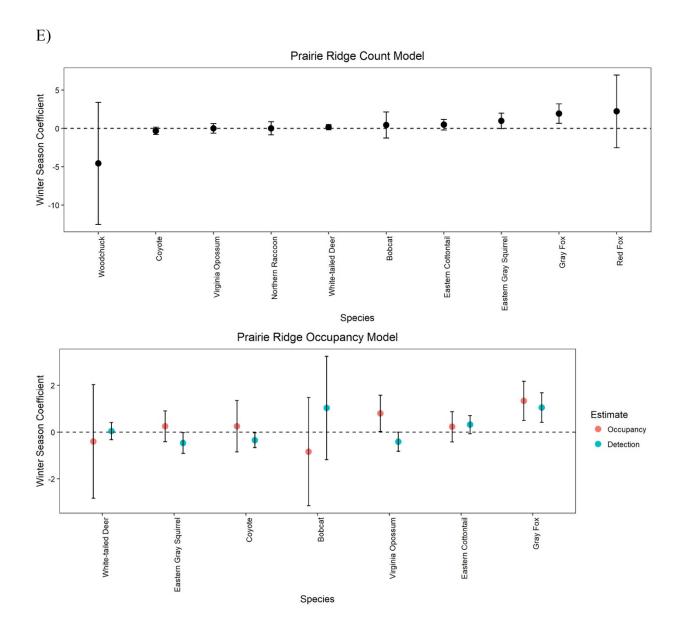

I)Theodore Roosevelt Memorial Ranch, Montana


II) Prairie Ridge, North Carolina




IV) Maijuna-Kichwa Regional Conservation Area, Peru


Figure S3. The importance of seasonality in models of detection rate (black dots in the count model), detectability (blue dots in the occupancy model), and occupancy (red dots in the occupancy model) for sites in Montana (A), Panama (B), China (C), Peru (D), and North Carolina (E). Coefficient values show whether a species detection rate, occupancy, or detection probability was higher (positive) or lower (negative) in winter (for temperate sites) or the wet season (for tropical sites). Error bars represent 95% confidence intervals. A)



B)

D)

